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A note on the Nullstellensatz for -holomorphi funtionsby Maciej P. Denkowski (Kraków and Bordeaux)Abstrat. We begin this artile with a graph theorem and a kind of Nullstellensatzfor weakly holomorphi funtions. This yields a general Nullstellensatz for -holomorphifuntions on loally irreduible sets. In Setion 2 some methods of Pªoski�Tworzewskipermit us to prove an e�etive Nullstellensatz for -holomorphi funtions in the ase of aproper intersetion with the degree of the intersetion yle as exponent. We also extendthis result to the ase of isolated improper intersetion, generalizing a result of E. Cygan.The last setion is devoted to some onsiderations on the dimension of the zero-sets of-holomorphi mappings.1. Introdution. Let A ⊂ Ω be an analyti set in an open set Ω ⊂ Cm.Reall (see [R℄ where this notion was �rst introdued and also [�℄, [Wh℄)that a funtion f : A → C is alled -holomorphi if it is ontinuous andthe restrition of f to the subset Reg A of regular points is holomorphi. Wedenote by Oc(A) the ring of -holomorphi funtions on A. A mapping is -holomorphi i� all its omponents are -holomorphi funtions. The followingtheorem is fundamental for all we shall do (f. [Wh, 4.5Q℄):Theorem 1.1. A mapping f : A → Cn is -holomorphi i� it is on-tinuous and its graph Γf := {(x, f(x)) | x ∈ A} is an analyti subset of
Ω × Cn.For a more detailed list of basi properties of -holomorphi mappingssee [Wh℄, [D℄. The notion of weakly holomorphi funtions (H. Cartan) ismuh better known. We just reall that it refers to funtions de�ned andholomorphi on Reg A and loally bounded near the singularities (i.e. on thewhole of A). A mapping is alled weakly holomorphi if all its omponentsare weakly holomorphi. We denote by Ow(A, Cn) the ring of weakly holo-morphi mappings and put Ow(A) := Ow(A, C). More details an be foundin [Wh℄.2000 Mathematis Subjet Classi�ation: 32B15, 32A17.Key words and phrases: omplex analyti sets, -holomorphi and weakly holomorphimappings, Nullstellensatz, intersetion theory.[219℄ © Instytut Matematyzny PAN, 2007



220 M. P. DenkowskiWe just reall that if A =
⋃

Aι is the deomposition of A into irreduibleomponents, then a weakly holomorphi funtion f has a unique extensiononto Reg Aι for eah ι (and that works in fat for germs). Thus f is weaklyholomorphi i� it is so on eah irreduible omponent of A. Over a singularpoint a ∈ Sng A a weakly holomorphi funtion is multi-valued and takesat most as many values as the number of irreduible omponents of thegerm Aa.It may be useful to state expliitly what we mean by proper intersetion.Let X, Y be analyti sets in Ω ⊂ Cm of pure dimensions p and q respetively.The intersetion X ∩ Y is alled proper if it has pure dimension p + q − m,i.e. at eah intersetion point the dimension is the minimal possible. In theopposite ase the intersetion is said to be improper .For the de�nition and properties of the intersetion yle X · Y we referthe reader to [Dr℄ (for the proper ase) and [T℄ (for the general ase, see also[ATW℄ for isolated improper intersetion). We just reall that if X∩Y =
⋃

Sιis the (loally �nite) deomposition into irreduible omponents, then theintersetion yle is the formal sum
X · Y =

∑
i(X · Y, Sι)Sι,where i(X ·Y, Sι) is the intersetion multipliity of X∩Y along the omponent

Sι omputed following [Dr℄ or [T℄.The degree of the yle X · Y at a point a ∈ X ∩ Y is the number
dega(X · Y ) :=

∑
i(X · Y, Sι) dega Sι,where dega Sι stands for the lassial degree of the analyti set Sι at a (withthe onvention that dega Sι = 0 if a 6∈ Sι; thus the above sum is �nite).Finally, let U ⊂ Ck be open and onneted. If ϕ : A → U is a proper-holomorphi mapping and A has pure dimension k, then π : Γϕ → U ,where π : Cm × Ck → Ck is the natural projetion, is a branhed overing(see e.g. [Dr℄, [Wh℄ or [�℄) and so has �nite multipliity (or overing number ,see e.g. [Dr℄). We all it the multipliity of ϕ.2. General Nullstellensatz for weakly holomorphi funtions.Let A be an analyti subset of some open set Ω ⊂ Cm.We begin with a useful and apparently not known graph theorem forweakly holomorphi funtions. It is a weakly holomorphi ounterpart ofTheorem 1.1. Reall that an analytially onstrutible subset of Ω is a setwhih an be written loally in Ω as ⋃p
ι=1

⋂qj

j=1{Fιj∗ιj0}, where ∗ιj ∈ {=, 6=}and Fιj are holomorphi (see [�℄).Theorem 2.1. Let f : Reg A → Cn be a ontinuous mapping loallybounded on A. The following three onditions are then equivalent :
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(1) f ∈ Ow(A, Cn).
(2) The losure Γ f is an analyti subset of Ω × Cn.
(3) Γf is analytially onstrutible in Ω × Cn.Proof. First note that we may restrit ourselves to the ase n = 1 sine

Γf =
⋂n

j=1 Γj , where
Γj := {(x, y1, . . . , yj−1, fj(x), yj+1, . . . , yn) | x ∈ Reg A, yι ∈ C}.We may as well assume that A has pure dimension k (using restritions tothe irreduible omponents of A) with 0 < k < m (otherwise, sine there areno singularities, there is nothing to do�f. the analyti graph theorem).If we have (1)⇔(2), the equivalene (2)⇔(3) is quite immediate. Indeed,if Γ f is analyti, then Γf = Γ f \ (Sng A×C) is the di�erene of two analytisets, and hene is analytially onstrutible. On the other hand, if Γf isanalytially onstrutible, then its losure is analyti and so f ∈ Ow(A).We now turn to proving (1)⇔(2). If Γ f is analyti, then so is Γf in

(Ω \ Sng A) × C. Thus by the analyti graph theorem, f is holomorphi on
Reg A. Sine by assumption it is loally bounded on A, we have f ∈ Ow(A).Now suppose that f ∈ Ow(A). The problem being loal, we may assumethat h ∈ O(Ω) is a global universal denominator for A (f. Oka's theorem,see [�℄). Then we an �nd g ∈ O(Ω) suh that fh = g on Reg A. Considernow the analyti set X := {(z, t) ∈ A × C | h(z)t = g(z)}. It remains toobserve that the set

Γf ∩ {(z, t) ∈ Ω × C | h(z) 6= 0}
= X ∩ (Reg A × C) ∩ {(z, t) ∈ Ω × C | h(z) 6= 0}
= X \ [(X ∩ (Sng A × C)) ∪ {(z, t) ∈ Ω × C | h(z) = 0}]is dense in Γf . Its losure in Ω × C is learly analyti.Note also that by this theorem the zero-set of a weakly holomorphifuntion is analytially onstrutible and so its losure is analyti. It is morenatural, however, to onsider the intersetion of the losure of the graph with

A × {0} as a substitute for the zero-set of a weakly holomorphi funtion.Now we turn to proving the general weakly holomorphi Nullstellensatz.Theorem 2.2. Let A ⊂ Cm be an analyti germ at zero and suppose that
g, f1, . . . , fn ∈ Ow(A) are suh that

(1) 0 ∈ Γ f , where f := (f1, . . . , fn),
(2) (x, 0) ∈ Γ f ∩ (A × {0}n) implies Γ g ∩ ({x} × C) = {(x, 0)} for all xin some neighbourhood of zero.



222 M. P. DenkowskiThen there exists an integer p ≥ 1 suh that on Reg A,
gp =

n∑

j=1

hjfjfor some hj ∈ Ow(A), j = 1, . . . , n.Proof. Let ̺ : N → A be a loal normalization of A at zero (we onsider
A as an analyti subset of some neighbourhood of zero). Then g̃ := g ◦̺ and
f̃j := fj ◦ ̺ are holomorphi on the normal germ N .Observe now that g̃−1(0) ⊃ ⋂

j f̃−1
j (0). Indeed, if f̃j(x) = 0 for all j,then either ̺(x) ∈ Reg A, in whih ase ̺(x) ∈ ⋂

j f−1(0) and so g̃(x) = 0,or ̺(x) ∈ Sng A. If the latter ours, then we take a sequene of points
Reg A ∋ aν → ̺(x). The sequene xν := ̺−1(aν) has a subsequene {xνµ}onverging to x (by the properness of ̺). Then fj(aνµ) → 0 for all j and so
(̺(x), 0) ∈ Γ f . But then g(aνµ) → 0, whene g̃(x) = 0.Now we apply the holomorphi Nullstellensatz to g̃, f̃1, . . . , f̃n (see [�℄)obtaining holomorphi funtions h̃j suh that for some p ≥ 1,
(#) g̃p =

n∑

j=1

h̃j f̃jin a neighbourhood of the �bre ̺−1(0). For simpliity assume for the timebeing that this holds on the whole of N (in any ase the matter is loal).De�ne hj(a) := h̃j(̺
−1(a)) for a ∈ Reg A. In this way we learly getsome holomorphi funtions hj : Reg A → C. But ̺ being proper, all hj arebounded near the singularities and so they are weakly holomorphi.Indeed, �x j and take any point a ∈ Sng A. For an arbitrarily smallompat neighbourhood U of a the set V := ̺−1(U) is ompat and so

|h̃j| is bounded on it. If the |hj| were unbounded on any suh neighbourhood
U \Sng A, we would �nd a sequene Reg A ∋ aν → a suh that |hj(aν)| → ∞.However, hj(aν) = h̃j(̺

−1(aν)) and so it annot be unbounded.To �nish the proof we just observe that (#) remains true if we omitthe tildes and restrit ourselves to a neighbourhood of zero interseted with
Reg A. To be more preise, as a neighbourhood in whih (#) holds we maytake an open set U of the form ⋃r

j=1 Uj , where r is the number of points in the�bre ̺−1(0) and the union is disjoint. We may also ask that for any j, Uj beonneted. Clearly, V := ̺(U) is an open neighbourhood of zero in A. Thenon V \ Sng A the mapping ̺ is invertible and its inverse sends a onnetedneighbourhood of a ∈ V \ Sng A (ontained in V \ Sng A) into exatly oneof the Uj . There we have (#) whih beomes the required formula in theneighbourhood of a after omposition with ̺−1.



Nullstellensatz for -holomorphi funtions 223Example 2.3. Consider Whitney's umbrella A := {x2y = z2} ⊂ C3 andthe weakly holomorphi funtion g(x, y, z) = z/x de�ned on it. We have
Sng A = {0} × C × {0} and g has two possible values over any point of
Sng A \ {0}3, namely √

y and −√
y (properly understood in the omplexsense). On the other hand, g(0) is well de�ned and equals zero. In partiular

Γ g ∩ (A × {0}) = {0}4.Consider now f1(x, y, z) = z and f2(x, y, z) = x − y on A. The onlyommon zero of these funtions is the origin. They satisfy the assumptionsof our theorem and indeed
g3 = f1 − gf2.A somewhat less interesting example may be given using the funtions

f1(x, y, z) = x and f2(x, y, z) = y on A. In this ase g2 is just f2.Example 2.4. The assumption of univalene of g over the zeroes of f(i.e. over the set Γ f ∩ (A × {0}n)) is essential. To see this, onsider the set
A := {xy = 0} in C2 and, on Reg A, the funtions f(x, y) = x − y and
g(x, 0) = x2 (if x 6= 0), g(0, y) = 1 (if y 6= 0). Both are weakly holomorphion A and

f−1(0) = {0}2 = Γ g ∩ (A × {0}),while Γ g ∩ (A × C) = {(0, 0), (0, 1)}. A straightforward omputation showsthat within the lass of weakly holomorphi funtions, no power of g an bedivisible by f in any neighbourhood of zero. If gp = hf for some p ∈ N, then
|h| must be unbounded near zero on the omponent {x = 0} ⊂ A.We derive from the theorem above a general -holomorphi Nullstellen-satz on loally irreduible analyti sets.Corollary 2.5. Let A be a loally irreduible analyti set and supposethat g, f1, . . . , fk ∈ Oc(A) are suh that g−1(0) ⊃ ⋂

j f−1
j (0). Then for eah

a ∈ ⋂
j f−1

j (0) there is an integer p ≥ 1 and some -holomorphi funtions
hj in a neighbourhood of a suh that

gp =
k∑

j=1

hjfjin this neighbourhood.Proof. For simpliity let a = 0. The set A being loally irreduible, wehave Oc(A) = Ow(A). We now apply the preeding theorem, sine our as-sumptions imply both hypotheses (1) and (2). The assertion follows by on-tinuity or by applying the identity priniple as in the last setion of thispaper.



224 M. P. Denkowski3. Proper intersetion e�etive Nullstellensatz. In what follows,
E denotes the unit dis in C. The �rst result omes from observing that onean easily prove Lemma 1.1 from [PT℄ in the -holomorphi setting:Lemma 3.1. Let X be a pure k-dimensional analyti set in an open set
Ω ⊂ Cm and let ϕ = (ϕ1, . . . , ϕk) : X → Ek be a proper -holomorphimapping. Denote by d its multipliity and �x l ∈ {1, . . . , k}. Then for eah
g ∈ Oc(X) suh that g−1(0) ⊃ {x ∈ X | ϕ1(x) = · · · = ϕl(x) = 0} thereexist h1, . . . , hl ∈ Oc(X) suh that gd =

∑l
j=1 hjϕj.Proof. We onsider the set Γ := {(ϕ(x), g(x)) ∈ Ek × C | x ∈ X}. It iseasy to see that it is a pure k-dimensional analyti set.For the generi w ∈ Ek one has exatly d distint points in the �bre

ϕ−1(w) = {x1, . . . , xd}. For suh points w whih moreover do not lie in theanalyti set ϕ(Sng X) ( Ek we may de�ne
P (w, t) :=

d∏

j=1

(t − g(xj)) = td + a1(w)td−1 + · · · + ad(w),

where aj(w) = (−1)j
∑

1≤i1<···<ij≤d g(xi1) · · · g(xij ) are obviously ontinu-ous. It is also lear that outside an analyti proper subset of Ek these oe�-ients are holomorphi, whene by Riemann's theorem they are holomorphion Ek. Furthermore, P−1(0) = Γ and
Γ ∩ ({0}l × Ek−l × C) = {0}l × Ek−l × {0},whene aj |({0}l×Ek−l) ≡ 0 for all j. This in turn obviously means that forall j, aj(w) = y1aj,1(w) + · · · + ylaj,l(w), where w = (y, z) ∈ El × Ek−l and

aj,s ∈ O(Ek), s = 1, . . . , l.Finally, we obtain the result sought for from P (ϕ(x), g(x)) = 0.We now turn to generalizing the e�etive Nullstellensatz to the -holo-morphi ase using Lemma 3.1 and the methods of [PT℄.Let A be a pure k-dimensional analyti set in an open set Ω ⊂ Cm andlet f1, . . . , fn ∈ Oc(A) be suh that for f = (f1, . . . , fn) the set f−1(0) is ofpure dimension k − n (then the intersetion of Γf with Ω × {0}n is properin Ω × Cn). We denote by Zf the (Draper) yle de�ned by
Zf = Γf · (Ω × {0}n).Theorem 3.2. In the above setting , for any g ∈ Oc(A) suh that g−1(0)

⊃ f−1(0) and for all a ∈ A, there exists a neighbourhood U ∋ a in Ω andfuntions h1, . . . , hn ∈ Oc(U ∩ A) suh that
gdega Zf =

n∑

j=1

hjfj on U ∩ A.



Nullstellensatz for -holomorphi funtions 225Proof. Fix a ∈ A. For onveniene we may assume that a = 0.Suppose also that the oordinates in Cm are hosen in suh a way that
{0}k−n × Cm−(k−n) realizes deg0 Zf , i.e. their proper isolated intersetion atzero has multipliity d := deg0 Zf . In partiular 0 is isolated in the �bre
ϕ−1(0), where ϕ : A ∋ x 7→ (f(x), x1, . . . , xk−n) ∈ Ck is -holomorphi.Thus, for some neighbourhood V = U∩A∋ 0, the restrition ϕ|V : V →ϕ(V )is proper, ϕ−1(0) ∩ V = {0} and obviously ϕ(V ) is open. We may assumethat ϕ(V ) = Ek. By Lemma 3.1 it su�es to hek that the multipliity of
ϕ at zero is equal to d.It is easy to hek that the multipliity of ϕ is equal to the multipliity(at zero) of the projetion

π : U × Cn ∋ (x1, . . . , xm, y1, . . . , yn) 7→ (y1, . . . , yn, x1, . . . , xk−n) ∈ Ckwhen restrited to the set Γ := Γf ∩ (U × Cn). But this is the multipliityof proper isolated intersetion of Γ with π−1(0) at zero.It remains to observe that by [TW, Theorem 2.2℄ we have
Γ · π−1(0) = (Γ · (U × {0}n)) ·U×{0}n ({0}k−n × Cm−(k−n))

= Zf · ({0}k−n × Cm−(k−n)) = d{0}.Example 3.3. The oe�ients hj in the Nullstellensatz formula of The-orem 3.2 may well be stritly -holomorphi (i.e. have no holomorphi ex-tension onto any neighbourhood of a in Cm). To see this onsider the fol-lowing simple example. Let A := {(x, y) ∈ C2 | y2 = x3}, f(x, y) = y/xfor (x, y) ∈ A \ {(0, 0)} and f(0, 0) = 0. Then f ∈ Oc(A) and it annot bethe restrition of a holomorphi funtion in any neighbourhood of zero in C2(see [Wh℄ or [D℄). We ompute (see e.g. [D℄)
Zf = i(Γf · (C2 × {0}); 0){0}2 = m0(f){0}2 = ord0(f ◦ γ){0}2,where m0(f) is the geometri multipliity of f at zero and γ(t) = (t2, t3) isthe Puiseux parametrization of A. Thus deg0 Zf = 1.Now take g(x, y) = x restrited to A. Then g = hf on A with h = fand h is uniquely determined sine one an just divide g/f (as ord0(g ◦γ) ≥

ord0(f ◦ γ)) to obtain h.4. Isolated improper intersetion e�etive Nullstellensatz. Let Aand f be as in the previous setion but suppose now f−1(0) = {0}m ⊂ A (inpartiular n ≥ k). The intersetion Γf∩(Ω×{0}n) may not be proper (unless
n = k). In this ase deg0 Zf = i(Γf · (Ω × {0}n); 0), where the intersetionmultipliity is alulated aording to [ATW℄. Thus in fat deg0 Zf = m0(f)where the latter is the geometri multipliity of f at zero. The followingtheorem generalizes to -holomorphi funtions one of the results of [Cg℄.



226 M. P. DenkowskiTheorem 4.1. In the above setting , for any g ∈ Oc(A) suh that
g(0) = 0, there is a neighbourhood U of zero and funtions h1, . . . , hn ∈
Oc(U ∩ A) suh that

gm0(f) =

n∑

j=1

hjfj on U ∩ A.Proof. As in the proof of Theorem (2.6) from [D℄ we may assume that Ωis small enough to have f(A) analyti in a neighbourhood of 0 ∈ Cn. Fix anylinear mapping Φ ∈ L(Cm, Ck) of rank k satisfying KerΦ∩C0(f(A)) = {0}n.Take any g ∈ Oc(A) vanishing at zero. Then by Theorem 3.2 applied tothe mapping Φ ◦ f , we �nd a neighbourhood U of zero and -holomorphifuntions h̃j in U ∩ A suh that
gdega ZΦ◦f =

n∑

j=1

h̃j · (Φ ◦ f)j on U ∩ A.

We have dega ZΦ◦f = i(ΓΦ◦f · (Ω × {0}k); 0) and we hek exatly as in theproof of Theorem (2.6) from [D℄ (see also [S℄) that the latter is equal to
i(Γf · (Ω × {0}n); 0), whih is m0(f).It remains to observe that sine (Φ◦f)j = Φj ◦f and Φj(y) =

∑n
ι=1 αj

ιyι,where αj
ι ∈ C, we obtain Φj ◦ f =

∑n
ι αj

ιfι and so we may put
hj :=

n∑

κ=1

ακ
j h̃κ ∈ Oc(U ∩ A)in order to get the assertion.5. On the dimension. We end this paper with a useful remark (answer-ing a question of Piotr Tworzewski) whih is not at all obvious at �rst glane.It onerns the proper intersetion of analyti sets and may be treated as aommentary to [D℄.Proposition 5.1. Let A be a pure k-dimensional analyti set in an openset Ω ⊂ Cm and let f1, . . . , fn ∈ Oc(A) be suh that for f = (f1, . . . , fn)the set f−1(0) has pure dimension k − n. Then for all l ∈ {1, . . . , n} the set⋂l

j=1 f−1
j (0) has pure dimension k − l.To prove this we shall need two lemmata:Lemma 5.2. Let A be an irreduible analyti set in an open set Ω ⊂ Cmand let f ∈ Oc(A). If there is an open set U suh that f ≡ 0 on U ∩ A 6= ∅,then f ≡ 0.Proof. This follows easily from the identity priniple. Indeed, sine Reg Ais a onneted manifold and U ∩ Reg A is a non-empty and open subset init on whih the holomorphi funtion f |Reg A vanishes, we have f ≡ 0 on



Nullstellensatz for -holomorphi funtions 227
Reg A. By the ontinuity of f and the density of regular points the assertionfollows.Using this lemma we obtainLemma 5.3. Let A be an irreduible k-dimensional analyti set in anopen set Ω ⊂ Cm and let f ∈ Oc(A) be non-onstant. Then f−1(0) is eitherempty or has pure dimension k − 1.Proof. If f−1(0) is not empty, then sine

f−1(0) × {0} = Γf ∩ (Ω × {0}) 6= A × {0},one learly has at eah point a ∈ f−1(0) the inequalities
k − 1 = k + m − (m + 1) ≤ dima f−1(0) < kand so dima f−1(0) = k − 1 (remember A is irreduible).Remark 5.4. It is worth noting that the above result does not hold inthe weakly holomorphi ase (the zero-set is then replaed by the intersetionof the losure of the graph with A × {0}). To see this onsider the funtion

g from Example 2.3.Proof of Proposition 5.1. In view of the upper semiontinuity of the di-mension it su�es to onsider the problem loally. Therefore we restritourselves to a point a ∈ ⋂n−1
j=1 f−1

j (0) and we may assume that a = 0.From now on we onsider the fj as funtion germs at zero. We put Zj :=
{fj = 0} (as germs at zero).Let A0 = A1 ∪ · · · ∪ Ar be the deomposition of the germ A0 into irre-duible omponents. If f1|Aj

6≡ 0 for all j then Z1 has pure dimension k − 1by Lemma 5.3. On the other hand, if f1|Aj
≡ 0 for some j, then Z1∩Aj = Ajand the dimension at zero of the zero-set of f2|Aj

is not less than k−1. Thus,the zero-set of f3|Z2∩Aj
has dimension at least k − 2 (sine the irreduibleomponents at zero of the analyti germ Z2∩Aj have dimension not smallerthan k − 1).Continuing this proedure we onlude that the dimension of the inter-setion germ Zn∩· · ·∩Z2∩Aj = Zn∩· · ·∩Z1∩Aj must be at least k−n+1,ontrary to our assumptions. Thus Z1 is of dimension k−1, i.e. Z1∩Aj ( Ajfor all j.We now repeat the argument for f2|Z1

and the irreduible omponentsof Z1 onluding that Z1 ∩ Z2 has dimension k − 2.
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