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Abstract. Let D be a domain in C
n. We introduce a class of pluripolar sets in D

which is essentially contained in the class of complete pluripolar sets. An application of
this new class to the problem of approximation of holomorphic functions is also given.

I. Introduction. In [Sa] Sadullaev studied, among other things, the
question of rapid approximation of holomorphic functions by rational func-
tions. One of his main results says that if a closed set E is a countable union
of complex hypersurfaces then every holomorphic function on C

n \ E can
be approximated rapidly and uniformly on compact sets by a sequence of
rational functions. It should be mentioned that Sadullaev’s method yields a
stronger result, namely that the above theorem is still valid if E is complete
pluripolar (see Lemma 5 in [Sa]). Here by complete pluripolar, he means
a closed set E in C

n with the following properties: for any compact sets
K ⊂ C

n \ E and L ⊂ E, there are constants C, δ > 0 and a sequence {pm}
of polynomials of degree at most m such that infK m

−1 log |pm| > log δ,
supLm

−1 log |pm| < − logm, and sup∆n |pm| = 1, where ∆
n is the unit

polydisk in C
n. This concept, in higher dimensions, is formally quite differ-

ent from the usual definition of complete pluripolar set (being the singular
locus of some (non-trivial) global plurisubharmonic function). However, in
one dimension, every closed polar set is complete polar in the above sense,
since in this case pm can be chosen to be a Fekete polynomial of L times a
constant (see also Proposition 4.1).
The goal of this article is to study a class of pluripolar subsets of do-

mains in C
n which are reminiscent of complete pluripolar sets in the sense

of Sadullaev. We refer to them as S-complete pluripolar sets. Here is a brief
outline of the paper. In Section 2, we recall some elements of pluripoten-
tial theory pertaining to our work and introduce the concept of S-complete
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pluripolar sets. Section 3 contains basic properties of S-complete pluripo-
lar sets. Proposition 3.1 tells us that a Borel S-complete pluripolar set is
pluripolar in the usual sense. Moreover, if the domain D is pseudoconvex
and E is closed then E is in fact complete pluripolar, again in the usual
sense. It is perhaps a little surprising that complete pluripolarity is quite
close to S-complete pluripolarity. This fact is exhibited in Theorem 3.3. The
last result of the section is Proposition 3.6 which explains the motivation for
studying S-complete pluripolar sets. Namely we show that every holomor-
phic function on the complement of a closed S-complete pluripolar set in a
pseudoconvex domain D can be approximated locally uniformly by mero-
morphic functions on D. In the final section, we present explicit examples of
S-complete pluripolar sets. The simplest ones are Borel polar sets in one di-
mension and complex hypersurfaces which are defined by global holomorphic
functions. The paper ends up with more complicated examples of graphs of
holomorphic functions with closed S-complete pluripolar singularities. This
result is inspired by some recent work on pluripolar hulls of holomorphic
graphs (see [EW1], [EW2], [LNT], [N1]).

Acknowledgments. We would like to thank Professor Nguyen Van
Khue for his encouragement during the preparation of this paper. It will
be clear that we have profited very much from the fundamental paper [Sa].
This work is supported by the National Research Program in Natural Sci-
ences of Vietnam.

II. Preliminaries. An upper semicontinuous function u on a domain
D in C

n is called plurisubharmonic if the restriction of u to the intersection
of D with every complex line is subharmonic (we allow the function identi-
cally −∞ to be plurisubharmonic). The cone of plurisubharmonic functions
(resp. negative plurisubharmonic functions) is denoted by PSH(D) (resp.
PSH−(D)).

A subset E of C
n is called pluripolar if for every a ∈ A we can find a

neighbourhood Ua of a and u ∈ PSH(Ua) such that u ≡ −∞ on E∩Ua and
u 6≡ −∞ on any connected component of Ua. A basic theorem of Josefson
(see [Kl, Theorem 4.7.4]) asserts that if E is pluripolar in Ω then there exists
a plurisubharmonic function u on C

n such that u ≡ −∞ on E but u 6≡ −∞.

If E is pluripolar and contained in some domain Ω of C
n then we say

that E is complete pluripolar in D if there exists u ∈ PSH(D) such that
u−1(−∞) = E. Obviously every complete pluripolar set E ⊂ Ω is a Gδ,
it is also well known in one dimension that every Gδ polar set is complete
polar. However, the situation changes drastically in higher dimensions. The
analytic set {(z, 0) : |z| < 1} is complete pluripolar in the bidisk {(z, w) :
|z| < 1, |w| < 1} but not in any neigbourhood of the closed bidisk.
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A useful tool in studying complete pluripolar sets is pluripolar hulls
introduced by Levenberg and Poletsky in [LP]. More precisely, for a given
pluripolar subset E of a domain D in C

n, we define

E∗D =
⋂
{z ∈ D : u(z) = −∞, u ∈ PSH(D), u|E ≡ −∞},

E−D =
⋂
{z ∈ D : u(z) = −∞, u ∈ PSH−(D), u|E ≡ −∞}.

It is trivial that E ⊂ E∗D ⊂ E
−
D, and if E is complete pluripolar in D then

E∗D = E.

The following result of Levenberg and Poletsky (see [LP]) is very useful
when we want to “localize” E∗D.

Theorem 2.1. Let D be a pseudoconvex domain in C
n and {Dj}j≥1 be

an increasing sequence of relatively compact domains with
⋃
Dj = D. Then

for every pluripolar subset E of D we have

E∗D =
⋃

j≥1

(E ∩Dj)
−
Dj
.

Moreover , if D is hyperconvex , i.e., there exists a negative plurisubharmonic
exhaustion function on D, then E∗D = E

−
D.

The result below, due to Zeriahi (Proposition 2.1 in [Ze]), characterizes
complete pluripolarity of a set E in terms of pluripolar hulls.

Theorem 2.2. Let E be a pluripolar subset of a pseudoconvex domain
D in C

n. Then E is complete pluripolar in D if E∗D = E and E is an Fσ
and Gδ set.

Now we introduce the following concept which is an adaptation of the
concept of complete pluripolar in [Sa].

Definition 2.3. Let D be a domain in C
n and E be a subset of D. We

say that E is S-complete pluripolar in D if for every subdomain D′ ⊂⊂ D,
and any compact sets K ⊂ D′ \ E and L ⊂ D′ ∩ E, there are positive
constants C, δ, a sequence {pm}m≥1 of holomorphic functions on D and a
sequence of positive integers {am}m≥1 such that

(a) inf
K

1

am
log |pm| > log δ,

(b) sup
L

1

am
log |pm| < − logm,

(c) sup
D′

1

am
log |pm| < C.

Some remarks should be made at this point. First, it is enough to check
the conditions (a)–(c) for D′ running over an exhaustion of D by relatively
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compact subdomains. Second, (a)–(c) need to be satisfied only for sufficiently
large m. Third, if E is closed in D then (b) can be replaced by

(b′) sup
E∩D′

1

am
log |pm| < − logm.

Fourth, if D is pseudoconvex then pm has to be holomorphic only on D
′. To

see this, just consider a relatively compact subdomain D′′ of D such that
D′ ⊂⊂ D′′ and (D′′, D) is a Runge pair , i.e., every holomorphic function
on D′′ can be approximated uniformly on compact subsets by holomorphic
functions on D. Finally, if D = C

n and E is closed and complete pluripolar
in the sense of Sadullaev, then a direct application of Bernstein–Walsh’s
inequality shows that E is S-complete pluripolar. However, we do not know
if the converse implication is true.

III. Basics on S-complete pluripolar sets. We begin with the fol-
lowing

Proposition 3.1. Every K-analytic and S-complete pluripolar subset E
in a domain D is pluripolar. Moreover , if E is an Fσ and Gδ set and D is
pseudoconvex then E is complete pluripolar in D.

Here a set E ⊂ D is called K-analytic if it may be obtained by a Suslin
operation on compact subsets of D. In particular, every Borel subset of D
is K-analytic.

The following simple fact is needed in the proof.

Lemma 3.2. Let Ω be a pseudoconvex domain in C
n and Ej , j=1, 2, . . . ,

be pluripolar subsets of Ω. Set E =
⋃∞
j=1Ej . Then

(1) E∗Ω =
∞⋃

j=1

(Ej)
∗
Ω.

In particular , if Ej is complete pluripolar in Ω for each j ≥ 1 and E is an
Fσ and Gδ set then E is complete pluripolar.

Proof. We first assume that Ω is bounded hyperconvex, i.e., there exists
a negative continuous plurisubharmonic exhaustion function for Ω. It is clear
that
⋃∞
j=1(Ej)

∗
Ω ⊂ E

∗
Ω . Pick z0 /∈

⋃∞
j=1(Ej)

∗
Ω. Since Ω is hyperconvex, it

follows from Theorem 2.1 that (Ej)
∗
Ω = (Ej)

−
Ω for all j ≥ 1, so there exists

uj ∈ PSH
−(Ω) such that uj ≡ −∞ onEj and uj(z0) > −∞. By multiplying

uj with a suitable positive constant we can achieve that uj(z0) > −2
−j .

Set u(z) =
∑∞
j=1 uj(z). Then u < 0, u ∈ PSH

−(Ω), u(z0) > −1, and
u|E ≡ −∞. This implies that z0 /∈ E

∗
Ω. Thus the equality (1) holds in case

Ω is hyperconvex.
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Next, suppose that Ω is an arbitrary pseudoconvex domain. Let {Ωk} be
an increasing sequence of bounded hyperconvex domains with Ωk ⊂⊂ Ωk+1
and
⋃∞
j=1Ωk = Ω. In view of Theorem 2.1 and the above we have

E∗Ω =
∞⋃

k=1

(E ∩Ωk)
−
Ωk
=
∞⋃

k=1

(( ∞⋃

j=1

Ej

)
∩Ωk
)−
Ωk
=
∞⋃

k=1

( ∞⋃

j=1

(Ej ∩Ωk)
)−
Ωk

=
∞⋃

k=1

∞⋃

j=1

(Ej ∩Ωk)
−
Ωk
=
∞⋃

j=1

∞⋃

k=1

(Ej ∩Ωk)
−
Ωk
=
∞⋃

j=1

(Ej)
∗
Ω.

If the Ej are complete pluripolar then E = E
∗
Ω, and applying Theorem 2.2

we deduce that E is complete pluripolar in Ω.

Proof of Proposition 3.1. Fix a domain D′ ⊂⊂ D, a compact L ⊂ D′∩E
and an arbitrary point z0 in D

′ \ E. Then there exist C, δ > 0 such that
for each m ≥ 1, there exist a holomorphic function pm on D and am ≥ 1
satisfying
1

am
log |pm(z0)|> log δ, sup

L

1

am
log |pm|≤− logm, sup

D′

1

am
log |pm|<C.

Take a sequence of positive numbers bm such that
∑∞
m=1 bm < ∞ and∑∞

m=1 bm logm =∞. Set

u(z) =
∑

m≥2

bm

(
1

am
log |pm(z)| − C

)
.

It is clear that u is the decreasing limit of a sequence of negative plurisub-
harmonic functions on D′. Moreover, u(z0) > −∞ and u ≡ −∞ on L. This
implies that L is pluripolar for every compact L ⊂ E∩D′, hence by Theorem
8.3 in [BT], E ∩D′ is pluripolar and then so is E.
Now, assume that D is pseudoconvex. Let {Dj} be an increasing se-

quence of bounded hyperconvex subdomains of D such that Dj ⊂⊂ Dj+1
and
⋃
j≥1Dj = D. Since E is Fσ, take a sequence {Lk} of compact sub-

set of E such that
⋃
k≥1 Lk = E. It follows from the above proof that⋃∞

k=1(Lk ∩Dj)
−
Dj
= E ∩Dj . Applying Lemma 3.2 we get

(E ∩Dj)
−
Dj
=
⋃

k≥1

(Lk ∩Dj)
−
Dj
= E ∩Dj .

Combining this with Theorem 2.1 one obtains

E∗D =
⋃

j≥1

(E ∩Dj)
−
Dj
= E.

Now the conclusion follows from Theorem 2.2.

The main result of this section is the following theorem which establishes
connections between S-complete pluripolarity and complete pluripolarity in
the usual sense.
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Theorem 3.3. Let D be a pseudoconvex domain in C
n and E be closed

subset of D. Then:

(a) If E is S-complete pluripolar in D then D \ E is pseudoconvex and
E is complete pluripolar.

(b) If E is complete pluripolar in D then for every relatively compact
subdomain D′ ⊂ D, any compact set K ⊂ D′ \ E with λ(K) > 0
(λ denotes the Lebesgue measure in C

n), every finite set A ⊂ K and
every ε > 0 there exist constants C > 0, 0 < δ < 1, a compact K ′,
a sequence {pm} of holomorphic functions on D and a sequence of
positive integers am ≥ 1 that satisfy

(i) A ⊂ K ′ ⊂ K, λ(K ′) > λ(K)− ε,

(ii) inf
K′

1

am
log |pm| > log δ, sup

D′∩E

1

am
log |pm| ≤ − logm,

sup
D′

1

am
log |pm| < C.

Proof. (a) Since a closed subset of D is an Fσ and Gδ set, Proposition 3.2
shows that E is complete pluripolar in D. Fix a pseudoconvex relatively
compact domain D′ in D. It suffices to show that D′ \ E is pseudoconvex.
Let {Km} and {Lm} be increasing sequences of compact subsets of D

′ \ E
and D′ ∩ E respectively such that

⋃
Km = D

′ \E and
⋃
Lm = D

′ ∩ E.
It follows from S-complete pluripolarity of E that there are sequences {δm},
{pm}, {am} where δm ↓ 0, am ≥ 1 and pm is holomorphic on D such that

(2) inf
Km

1

am
log |pm| > log δm, sup

Lm

1

am
log |pm| < log(δm/2).

Set

D′m =

{
z ∈ D :

1

am
log |pm(z)| > log δm

}
.

As D is pseudoconvex and pm is holomorphic on D it follows that D
′
m is an

open pseudoconvex set. Oka’s theorem (see [Hö]) shows that the function
− log d(z, ∂D′m) is plurisubharmonic on D

′
m, where d(z, ∂Ω) denotes the

Euclidean distance from z to ∂Ω. Now we infer from (2) that− log d(z, ∂D′m)
converges pointwise to− log d(z, ∂(D\E)). Thus, Oka’s theorem implies that
D \E is pseudoconvex, completing the proof.

(b) Since E is closed complete pluripolar in D, according to Lemma 2.1
in [Ze] (see also Lemma 4.2 in [EW2] and Proposition 3.1 in [LNT]), we
can find ϕ ∈ PSH(D) such that eϕ is continuous on D and ϕ = −∞ pre-
cisely on E. Using the approximation theorem of Fornæss and Narasimhan
(see Theorem 5.5 in [FN]) we get a sequence {ϕm} of C

∞ smooth strictly
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plurisubharmonic functions on D such that ϕm ↓ ϕ on D. Set

C = sup
D′
ϕ+ 1, α = inf

K
ϕ− 1 > −∞.

By passing to a subsequence we may achieve that ϕm ≤ − log(m + 1) on
D′∩E and ϕm < C−1/2 on K for all m ≥ 1. Next by the proof of Theorem
4.2.13 in [Hö] we get a sequence {pj,m} of holomorphic functions on D and a
sequence {aj,m} of positive integers such that the sequence (1/aj,m) log |pj,m|
is locally uniformly upper bounded, (1/aj,m) log |pj,m| → ϕm in L

1
loc(D) and

(1/aj,m) log |pj,m(z)| → ϕm(z) for every z ∈ A. It follows that

lim sup
j→∞

1

aj,m
log |pj,m(z)| = ϕm(z), ∀z ∈ C

n.

Using Hartogs’ lemma, for every m ≥ 1 there is jm so large that

‖pjm,m‖D′∩E ≤ (1/m)
ajm,m , ‖pjm,m‖D′ < C

am ,

|pjm,m(z)| > e
−ajm,m(|α|+1), ∀z ∈ A,

and \
K

∣∣∣∣
1

ajm,m
log |pjm,m| − ϕ

∣∣∣∣ dλ <
1

m2
.

For m ≥ 1 we set

Am =

{
z ∈ K :

1

ajm,m
log |pjm,m(z)| < −|α| − 2/ε

}
.

It follows that λ(Am) < ε/2m
2 for all m ≥ 1. Thus we have

λ
( ⋃

m≥1

Am

)
≤
∑

m≥1

λ(Am) < ε.

Set K ′ := K \
⋃
Am. Then λ(K

′) > λ(K)− ε. Obviously we also have

1

ajm,m
log |pjm,m(z)| ≥ −|α| − 2/ε, ∀m ≥ 1, ∀z ∈ K ′.

The proof of this part is accomplished by setting

δ := e−|α|−2/ε, am := ajm,m, pm := pjm,m.

To finish this section we make some conjectures.

Conjecture 3.4. If E is a complex hypersurface of a pseudoconvex
domain D then E is S-complete pluripolar in D.

Conjecture 3.5. If E is a closed complete pluripolar subset of a pseu-
doconvex domain D and if D \ E is pseudoconvex then E is S-complete
pluripolar in D.
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According to Proposition 9.1 in [Sk], every complex subvariety of a pseu-
doconvex domain D in C

n is the common zero set of n+1 holomorphic func-
tions on D, in particular it is complete pluripolar in D. Thus Conjecture 3.5
implies Conjecture 3.4.
The interest in S-complete pluripolar sets stems from the following ap-

proximation result, which is implicitly contained in Section 3 of [Sa]. For an
analogous result for complete pluripolar sets see Proposition 3.2 in [N2].

Proposition 3.6. Let E be a closed S-complete pluripolar subset of a
pseudoconvex domain D in C

n and f be a holomorphic function on D \ E.
Then for every compact K ⊂ D \ E and ε > 0 there are holomorphic func-
tions p, q on D such that ‖f − p/q‖K < ε.

Proof. We will use a method devised by Chirka and Sadullaev in [Ch]
and [Sa]. Pick a relatively compact pseudoconvex domain D′ of D such that
K ⊂ D′ and (D′, D) is a Runge pair. Since E is closed S-complete pluripolar,
there are a sequence {pm} of holomorphic functions on D and a sequence
{am} of positive integers such that

(3) inf
K
|pm| > δ

am , ‖pm‖E∩D′ < (1/m)
am .

For eachm ≥ 1, consider the pseudoconvex domain Um = D
′×{w : |w| <

mam} with the complex hypersurface Am = {(z, w) ∈ Um : pm(z)w = 1}. It

follows from (3) that the function f̂(z, w) equal to f(z) on Am is holomorphic
on Am. By Cartan’s theorem, there exists a holomorphic function Fm on Um
such that Fm|A = f̂ . Expanding F in Hartogs series we get

Fm(z, w) =

∞∑

j=0

fj,m(z)w
j ,

where the fj,m are holomorphic functions on D
′, and the series converges

locally uniformly on Um. Substituting w = 1/pm(z) we obtain

f(z) =
∞∑

j=0

fj,m(z)

pjm(z)
,

where the series converges locally uniformly onD′∩{z : |pm(z)| > (1/m)
am}.

In particular, it converges uniformly on K if m ≥ m1 := [1/δ] + 1, where [x]
denotes the largest integer not exceeding x. Now the conclusion follows as
we can approximate fj,m uniformly on K by holomorphic functions on D.

IV. Examples of S-complete pluripolar sets. We start with the
following simple facts:

Proposition 4.1. Let E be a Borel subset of a domain D in C
n. Then

E is S-complete pluripolar in each of the following cases.
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(i) n = 1 and E is polar in D.
(ii) E is the zero set of a holomorphic function f on D, f 6≡ 0.

Proof. (i) This result follows almost immediately from classical facts
of potential theory. However, for the reader’s convenience we recall some
details. Assume that E is a Borel polar set in C and D is a domain contain-
ing E. Let D′ be a relatively compact subdomain of D, and let K ⊂ D′ \E
and L ⊂ D′ ∩E be compact. Let pm be a Fekete polynomial for L of degree
m, i.e., pm(z) =

∏m
j=1(z − wi), where {w1, . . . , wm} is a Fekete m-tuple for

L (see Definition 5.5.3 in [Ra]). Then by Theorem 5.5.4 in [Ra],

sup
L

1

m
log |pm| ≤ log(δm(L)),

where δm(L) is the mth diameter of L (see Definition 5.5.1 in [Ra]). Now, by
Theorem 5.5.2 in [Ra] we have limm→∞ δm(L) = 0. Thus, supLm

−1 log |pm|
≤ − logm for m sufficiently large. Moreover, for z ∈ K we have

1

m
log |pm(z)| =

1

m

m∑

j=1

log |z − wj | ≥ log δ

where δ = dist(K,L) > 0. This implies that infKm
−1 log |pm| ≥ log δ.

Finally, on D′ we have m−1 log |pm(z)| ≤ log(δ1(D
′)). Thus E is S-complete

polar in D.
(ii) Let D′ be a relatively compact subdomain of D. If K and L are

compact subsets of D′ \ E and D′ ∩ E respectively, then for m ≥ 1 we
choose C, δ, pm, am such that

logC = sup
D′
log |f |+ 1, log δ = inf

K
log |f | − 1, am = 1, pm = f.

It is clear that these choices satisfy (a)–(c) of Definition 2.3. Thus E is
S-complete pluripolar in D.

Remark. Proposition 4.1(i) is not true when n ≥ 2. Indeed, from The-
orem 3.3 and the Hartogs extension theorem we infer that no compact
pluripolar subset of a pseudoconvex domain D ⊂ C

n is S-complete pluripo-
lar in D.

It is easy to see that if f : D1 → D2 is an open holomorphic mapping
between domains in C

n and C
m then f−1(E) is S-complete pluripolar in

D1 for every S-complete pluripolar subset E in D2. The following result
shows that S-complete pluripolarity is invariant under proper holomorphic
transformations.

Proposition 4.2. Let f : D1 → D2 be a proper holomorphic mapping
between domains in C

n and let E be an S-complete pluripolar subset in D1.
Then f(E) is S-complete pluripolar in D2.
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Proof. Since f is proper, there is k ≥ 1 and a complex subvariety V
(possibly empty) of D1 such that f is a local biholomorphism on D1 \ V
and f−1(z) consists of exactly k distinct points for z ∈ D2 \ f(V ). Let D

′

be a relatively compact subdomain of D2, and let K and L be compact
subsets of D′ \f(E) and f(E)∩D′ respectively. We have to show that there
are positive constants C, δ and a sequence {pm} of holomorphic functions
satisfying the conditions (a)–(c) of Definition 2.3. Since f(V ) is a complex
subvariety of D2, enlarging K we may assume that f(V ) is nowhere dense
in K. Now we apply the S-complete pluripolarity of E in D1 to the open set
D′′ = f−1(D′) and the compact sets K ′ := f−1(K), L′ := f−1(L) to obtain
a sequence {qm} of holomorphic functions on D1 and positive constants C, δ
such that

1

am
log |qm| > log δ on K ′,(4)

1

am
log |qm| < C on D′′,(5)

1

am
log |qm| < − logm on L′.(6)

Now we define on D2 \ f(V ) the function

pm(z) =
∏

f(ξ)=z

qm(ξ).

It is holomorphic, since it is locally a product of k holomorphic functions.
Observe that pm is locally bounded near every point of the complex sub-
variety f(V ), so by Riemann’s extension theorem we can extend pm to a
holomorphic function, still denoted by pm, on D2. It follows from (4)–(6)
that

1

kam
log |pm| > log δ on K \ f(V ),(7)

1

kam
log |pm| < C on D′ \ f(V ),(8)

1

kam
log |pm| < − logm on L \ f(V ).(9)

As f(V ) is nowhere dense in K, we infer that the inequalities in (7) and
(8) hold throughout K and D′ respectively. It remains to show that (9) is
also true on L. For this we let {Vj} be a sequence of open subsets of D2
decreasing to L. Choose ε > 0 so small that (1/am) log |qm| < − logm − ε
on L′. Since f is proper, in view of (4) we can choose j(ε) so large that

1

am
log |qm| < − logm− ε/2 on f

−1(Vj(ε)).
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This implies that

1

kam
log |pm| < − logm− ε/2 on Vj(ε) \ f(V ).

Hence this inequality holds on Vj(ε), in particular on L. We are done.

The next result should be compared to Proposition 2 in [Sa].

Proposition 4.3. A countable union of closed S-complete pluripolar
sets in a domain D is S-complete pluripolar in D.

Proof. The proof proceeds in two steps.

Step 1. We prove that the union of two closed S-complete pluripolar
sets E1, E2 is also S-complete pluripolar. Let D

′ ⊂⊂ D, and let K ⊂ D′ \E
and L ⊂ E∩D′ be compact sets. Since E1, E2 are closed, L∩E1 and L∩E2
are compact in E1 ∩ D

′ and E2 ∩ D
′ respectively. Since E1 and E2 are

S-complete pluripolar, there are constants C1, C2, δ1, δ2 > 0 such that for
every m ≥ 1 there are sequences {p1,m}, {p2,m}, {am}, {bm} where pm, qm
are holomorphic on D and am, bm are positive integers satisfying

inf
K

1

am
log |p1,m| > log δ1, inf

K

1

bm
log |p2,m| > log δ2,(10)

sup
L∩E1

1

am
log |p1,m| < − logm, sup

L∩E2

1

bm
log |p2,m| < − logm,(11)

sup
D′

1

am
log |p1,m| < C1, sup

D′

1

bm
log |p2,m| < C2.(12)

Set C = C1 + C2, δ = δ1δ2 and pm(z) = (p1,m(z))
bm(p2,m(z))

am for z ∈ D.
Then it follows from (10)–(12) that

inf
K

1

ambm
log |pm| > log δ, sup

L

1

ambm
log |pm| < − logm,

sup
D′

1

ambm
log |pm| < C.

This implies that E is S-complete pluripolar.

Step 2. We move to the general case. Let D′ ⊂⊂ D, and let K ⊂ D′\E

and L ⊂ E ∩D′ be compact sets. By Step 1, after replacing Ek by
⋃k
j=1Ej ,

we can assume that Ek is an increasing sequence. Since Ek is S-complete
pluripolar, there are Ck > log k, 0 < δk < k, a sequence {pk,m}m≥1 of
holomorphic functions on D and a sequence {ak,m}m≥1 of positive integers
such that

inf
K

1

ak,m
log |pk,m| > log δk, sup

L∩Ek

1

ak,m
log |pk,m| < − logm,

sup
D′

1

ak,m
log |pk,m| < Ck.
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Choose a sequence {bk,m} of positive numbers such that

∞∑

m=1

bk,m = αk <∞,
∞∑

m=1

bk,m logm =∞,
∞∑

k=1

αk(Ck − log δk) <∞.

For instance, we can take

bk,m :=
1

2k(Ck − log δk)m(logm)2
.

Perturbing bk,m slightly, we can achieve that the bk,m are positive rational
numbers. For each k ≥ 1, consider the function

uk(z) =
∞∑

m=1

bk,m

(
1

ak,m
log |pk,m(z)| − Ck

)
.

Then uk ∈ PSH
−(D′), uk ≡ −∞ on L ∩Ek and

uk(z) ≥
∞∑

m=1

bk,m(log δk − Ck) = αk(log δk − Ck), ∀z ∈ K.

Observe that for z0 ∈ L we have
∑
k≥1 uk(z0) = −∞, so for every l ≥ 1

there exists kl sufficiently large such that
∑kl
k=1 uk(z0) < − log l. It follows

that
∞∑

m=1

( kl∑

k=1

bk,m

(
1

ak,m
log |pk,m(z0)| − Ck

))
< − log l.

So there exists ml large enough such that

(13)

ml∑

m=1

( kl∑

k=1

bk,m

(
1

ak,m
log |pk,m(z0)| − Ck

))
< − log l.

Thus there is an open neighbourhood G of z0 in D such that (13) holds for
all z ∈ G ∩ L. Since L is compact, we may cover it with a finite number of
such neighbourhoods to conclude that there are two numbers, which we also
denote by kl and ml, such that (13) holds for all z ∈ L. Finally, we write
bk,m = rk,m/sk,m, where rk,m and sk,m are positive integers, and define for
l ≥ 1 the following function on D:

pl(z) =

kl∏

k=1

ml∏

m=1

(pk,m(z))
Mlbk,m/ak,m

eMlCkbk,m
,

where

Ml =
∏

1≤m≤ml
1≤k≤kl

sk,mak,m.
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It is clear that pl is holomorphic on D; further we deduce from (13) that

sup
D′

1

Ml
log |pl| ≤ 0, sup

L

1

Ml
log |pl(z)| ≤ − log l.

On the other hand, for z ∈ K one has

1

Ml
log |pl(z)| >

∞∑

k=1

αk(log δk − Ck) > −∞.

The proof is completed by taking log δ =
∑∞
k=1 αk(log δk − Ck).

As a simple consequence of the above result we see that a countable union
of complex hypersurfaces which are defined by global holomorphic functions
is S-complete pluripolar. The following class of S-complete pluripolar sets
is a little more sophisticated.

Theorem 4.4. Let D be a domain in C
n and E be a closed subset of D.

Assume that f is a holomorphic function on D \E. Let Γf denote the graph
of f over D \ E, i.e.,

Γf := {(z, w) : z ∈ D \E, w = f(z)}.

Then Γf ∪ (E × C) is S-complete pluripolar in D × C if and only if E is
S-complete pluripolar in D.

We showed in Theorem 3.1 of [N1] an analogous result which says that
if E is complete pluripolar in D then Γf ∪ (E×C) is complete pluripolar in
D × C.

Proof. We use the same ideas as in the proof of Theorem 3.1 in [N1].
First we assume that Γf ∪ (E × C) is S-complete pluripolar in D × C. Let
D′ be a relatively compact subdomain of D, and let K and L be compact
subsets of D′ \E and E ∩D′ respectively. Then f(K) is compact in C. Pick
w0 ∈ C \ f(K) and a small neighbourhood U of w0 in C \ f(K). Using the
S-complete pluripolarity of Γf ∪ (E×C), for D′×U,K×{w0} and L×{w0}
we can find C, δ > 0, a sequence of holomorphic functions qm(z, w) in D×C

and a sequence {am} of positive integers such that

1

am
log |qm| > log δ on K × {w0},(14)

1

am
log |qm| < − logm on L× {w0},(15)

1

am
log |qm| < C on D′ × {w0}.(16)

Let pm(z) = qm(z, w0) for z ∈ D. Then {pm} satisfies all the required
conditions on D′,K and L. Hence E is S-complete pluripolar in D.
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For the converse, take pseudoconvex relatively compact subdomains
D′ ⊂⊂ D′′ ⊂⊂ D, a disk U ⊂ C of radius R centred at 0, and compact
sets K,L such that

K ⊂ (D′ × U) \ (Γf ∪ (E × U), L ⊂ (Γf ∪ (E × C)) ∩ (D′ × U).

Write L = L1∪L2 where L1 = L∩Γf∩(D
′×U) and L2 = (E×C)∩(D′×U).

Then L1 ∩ L2 = ∅ and L1 ∪ L2 = L. Let π : C
n+1 → C

n, π(z, w) = z. Then
π(L2) ⊂ E∩D

′ is compact. Since E is S-complete pluripolar in D, there are
constants C1, δ1 > 0 and two sequences {qm}, {bm} where qm is holomorphic
on D and bm is a positive integer such that

inf
π(K)

1

bm
log |qm| > log δ1,(17)

sup
D′∩E

1

bm
log |qm| < − logm,(18)

sup
D′

1

bm
log |qm| < C1.(19)

As in the proof of Proposition 3.6, we set

Um := D
′′ × {w : |w| < mbm}, Am := {(z, w) ∈ Um : pm(z)w = 1}.

Then Um is pseudoconvex and Am is a complex hypersurface of Um. By an
argument similar to the one given in the proof of Proposition 3.6, we may
expand

f(z) =
∞∑

j=0

fj,m(z)

qjm(z)
.

where fj,m are holomorphic functions on D
′′ and the series converges locally

uniformly on D′′ ∩ {z : |qm(z)| > (1/m)
bm}. In particular, it converges

uniformly on π(K) if m ≥ m1 := [1/δ] + 1. Moreover, applying Cauchy’s
inequalities we also get for each m the following estimate:

(20) ‖fj,m‖D′ ≤ αm

(
2

mbm

)j
, ∀j ≥ 0,

where αm is some positive constant independent of j. Now for each m ≥ m1,
we define on D′ × C the holomorphic function

pm(z, w) =

(
w −

λm∑

j=0

fj,m(z)

qjm(z)

)
q2λmm (z),

where {λm} is an increasing sequence satisfying

2 log(2αm) < bmλm, R < 2λmαm,(21)

4αm

(
2

mbmδbm1

)λm+1
< inf
K
|w − f(z)| =: δ2.(22)
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If (z, w) ∈ K then z ∈ π(K) and from (17), (20) and (22) we deduce

2

bmλm
log |pm(z, w)|

=
2

bmλm
log

∣∣∣∣(w − f(z)) +
∑

j≥λm+1

fj,m(z)

qjm(z)

∣∣∣∣+
4 log |qm(z)|

bm

>
2

bmλm
log

∣∣∣∣δ2 −
∑

j≥λm+1

∣∣∣∣
fj,m(z)

qjm(z)

∣∣∣∣

∣∣∣∣+ 4 log δ1

≥
2

bmλm
log

∣∣∣∣δ2 − αm
∑

j≥λm+1

(
2

mbmδbm1

)j∣∣∣∣+ 4 log δ1

≥
2

bmλm
log

∣∣∣∣δ2 − 2αm
(

2

mbmδbm1

)λm+1∣∣∣∣+ 4 log δ1

≥
2

bmλm
log

(
δ2
2

)
+ 4 log δ1 > 4 log δ1 − 1

for every m sufficiently large .
Next we need a uniform upper bound for (2/bmλm) log |pm| on D

′ × U .
For this, let C2 = max(e

C1 , 4). We deduce from (19) that ‖qm‖D′ ≤ C
bm
2 .

For (z, w) ∈ D′ × U , using (20) we obtain

2

bmλm
log |pm(z, w)| ≤

2

bmλm
log
(
|wq2λmm (z)|+

λm∑

j=0

|fj,m(z)q
2λm−j
m (z)|

)

≤
2

bmλm
log

(
RC2bmλm2 +αmC

2λmbm
2

∑

j≥0

(
2

(mC2)bm

)j)

≤
2

bmλm
log(RC2bmλm2 + 2αmC

2λmbm
2 ) < C,

where C > 0 is some large constant depending only on C2, R, δ1 but not
on m.
Now we will make some estimates on L. If (z, w) ∈ L2 then z ∈ π(L2),

thus by (18),
1

bm
log |qm(z)| < − logm.

So as in the previous estimates we get
2

bmλm
log |pm(z, w)|

≤
2

bmλm
log

(
|wqλmm (z)|+

λm∑

j=0

|fj,m(z)q
λm−j
m (z)|

)
+
2 log |qm(z)|

bm

≤ C − 2 logm < − logm

for every m sufficiently large.
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Finally, we deal with L1. Split the set π(L1) into two parts,

Lm = {z ∈ π(L1) : |qm(z)| > 4/m
bm},

L′m = {z ∈ π(L1) : |qm(z)| ≤ 4/m
bm}.

For w = f(z) with z ∈ Lm, we apply (20) and (21) to get

2

bmλm
log |pm(z, f(z))| ≤

2

bmλm
log

( ∑

j≥λm+1

∣∣∣∣
fj,m(z)

qjm(z)

∣∣∣∣|qm(z)|
2λm

)

≤
2

bmλm
log

( ∑

j≥λm+1

∣∣∣∣αm
(

2

mbmqm(z)

)j∣∣∣∣|qm(z)|
2λm

)

=
2

bmλm
log

(
αm

(
2

mbm |qm(z)|

)λm+1
|qm(z)|

2λm
∑

j≥0

∣∣∣∣

(
2

mbmqm(z)

)j∣∣∣∣

)

=
2

bmλm
log

(
2αm

(
2|qm(z)|

mbm

)λm 1

mbm |qm(z)| − 2

)

<
2

bmλm
log(2αm) +

2 log(2|qm(z)|)

bm
−
2

bmλm
log

(
1

mbm

)λm

< 3 + 2C1 − 2 logm < − logm

for m sufficiently large. If w = f(z) with z ∈ L′m, from (21) we have

2

bmλm
log |pm(z, f(z))|

≤
2

bmλm
log

(
R

(
4

mbm

)2λm
+ αm|qm(z)|

λm

λm∑

j=0

(
4

mbm

)j
|qm(z)|

λm−j

)

<
2

bmλm
log

(
R

(
4

mbm

)2λm
+

(
4

mbm

)λm
αm

(
4

mbm
+
4

mbm

)λm)

≤
2

bmλm
max

{
log

(
2R

(
4

mbm

)2λm)
, log

(
2αm2

λm

(
4

mbm

)2λm)}

≤
2

bmλm
log(2αm2

λm) +
2 log 4

bm
− 4 logm < − logm

for m sufficiently large. The proof is thereby completed.
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