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Complex surfa
es in C
4 with re
urrent shape operatorsby Paweł Witowicz (Rzeszów)Abstra
t. We study 
omplex a�ne surfa
es in C

4 with the transversal bundle de�nedby Nomizu and Vran
ken. We 
lassify the surfa
es that have re
urrent shape operatorsand parallel transversal metri
.1. Preliminaries. The purpose of this paper is to 
hara
terize a 
lassof 
omplex surfa
es holomorphi
ally immersed in four-dimensional a�nespa
e C
4. An equia�ne stru
ture for real surfa
es in R

4 was found by Nomizuand Vran
ken ([NV℄) and further investigations showed that the 
onstru
tionleads to natural geometri
 properties. In [W℄ a unique equia�ne transver-sal bundle is also obtained in the 
omplex 
ase. It has the same propertiesas the bundle 
onstru
ted in [NV℄ and is holomorphi
. There are three lo-
al pseudometri
s in this bundle and we denote ea
h of them by g⊥. Theydi�er only by a 
onstant fa
tor. A given g⊥-null transversal frame {ξ1, ξ2}determines shape operators S1 and S2 whi
h are lo
al endomorphisms of thetangent bundle. Let ∇ and ∇⊥ be the 
onne
tions in the tangent and normalbundles, respe
tively.We re
all that the shape operators are re
urrent if there exist 1-forms
α1 and α2 su
h that ∇Sj = αj ⊗ Sj . We, however, 
onsider a spe
ial 
ase
∇Sj = (−1)j−1df ⊗Sj be
ause this 
ondition does not depend on the frame
{ξ1, ξ2}. We prove a 
lassi�
ation theorem under the additional 
ondition
∇⊥g⊥ = 0.We now state the main theorem of the paper.
Theorem 1.1. Let M be a non-degenerate 
omplex surfa
e in C

4 satis-fying the 
onditions:
1) in a neighbourhood of an arbitrary point p of the surfa
e, for everyholomorphi
 null normal frame {ξ1, ξ2} there is a lo
al fun
tion f su
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zthat
∇S1 = df ⊗ S1, ∇S2 = −df ⊗ S2,

2) ∇⊥g⊥ = 0.Then there exists an open and dense set U in M whi
h is lo
ally a�nelyequivalent to one of the following surfa
es:
x(u, v) = (u, v, u2, v2),(a)

x(u, v) = u · (1, v, v2, u2),(b)

x(u, v) = (u3 + 3u2v, v3 + 3uv2, u − v, uv),(c)

x(u, v) = (coshu)2/3 ·
(
1, v, v2,

u\
(cosh s)−5/3 ds

)
,(d)

x(u, v) = u−2 ·
(

1, u5, v,
1

2
v2

)
.(e)

x(u, v) = (sinh(u), cosh(u), sinh(v), cosh(v)),(f)

x(u, v) =

(
v,

1

2
v2, f1(u), f1(u)

u\ ds

(f ′
1(s))

2
−

u\f1(s) ds

(f ′
1(s))

2

)
,(g)where f1 is an arbitrary holomorphi
 fun
tion de�ned in a neighbourhood ofzero and su
h that f ′

1(0) 6= 0 and f (3)(0) 6= 0. Conversely , all these surfa
essatisfy 
onditions 1) and 2).Let M be a two-dimensional 
omplex submanifold of C
4. This means thatthere exists an immersion f : M → C

4 whi
h is holomorphi
 in the sensethat f∗JX = Jf∗X for the 
omplex stru
ture J . Ea
h tangent spa
e TxMhas a natural stru
ture of a 
omplex ve
tor spa
e with the multipli
ation by
i given by J . Let the ve
tor �elds, 
onne
tions, bilinear and linear forms andfun
tions used in the paper be of 
lass C∞

R
unless otherwise stated (see [OI℄,[OII℄, 
ompare also another approa
h in [A℄, [DVV℄). Sin
e our 
onsiderationsare lo
al and we 
an identify the 
omplex stru
tures on M and on C

4, we
an also identify M , as a 
omplex manifold, with its image in C
4.Let σ denote a transversal 
omplex plane bundle, that is, C

4 = σx⊕TxMover C. Let ξ1, ξ2 be transversal ve
tor �elds that span σ lo
ally over C.Capital letters X, Y, Z et
. will denote tangent ve
tor �elds. If D denotesthe standard a�ne 
onne
tion on C
4, then we have

DXY = ∇XY + h1(X, Y )ξ1 + h2(X, Y )ξ2,(1.1)

DXξj = −Sj(X) + τ1
j (X)ξ1 + τ2

j (X)ξ2,(1.2)for j = 1, 2, where the 
onne
tion ∇ is determined by the 
ondition
∇XY ∈ TM and the shape operators Sj by the 
ondition Sj(X) ∈ TM .Then ∇ is a torsion-free linear 
onne
tion 
ompatible with J (and there-fore 
alled a 
omplex 
onne
tion). We 
an also see that both hj are C-valued and C-bilinear 2-forms, 
alled the se
ond fundamental forms, Sj
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es 267are (1, 1)-R-linear tensors and τ
j
k are C-valued, R-linear 1-forms (see [KN℄,[OI℄, [OII℄). We also de�ne a 
omplex-valued C-linear skew-symmetri
 2-form

θ by θ(X, Y ) = Det[X, Y, ξ1, ξ2], where Det denotes the usual determinantin C
4. Just as in real geometry ([NV℄) we have the following equations ofGauss (1.3), Codazzi ((1.4)�(1.7)) and Ri

i ((1.8)�(1.11)):

(1.3) R(X, Y )Z = h1(Y, Z)S1X + h2(Y, Z)S2X

− h1(X, Z)S1Y − h2(X, Z)S2Y,

(1.4) (∇Xh1)(Y, Z) + τ1
1 (X)h1(Y, Z) + τ1

2 (X)h2(Y, Z)is symmetri
 in X, Y and Z,
(1.5) (∇Xh2)(Y, Z) + τ2

1 (X)h1(Y, Z) + τ2
2 (X)h2(Y, Z)is symmetri
 in X, Y and Z,

(1.6) (∇XS1)Y − (∇Y S1)X

= −τ1
1 (Y )S1X + τ1

1 (X)S1Y − τ2
1 (Y )S2X + τ2

1 (X)S2Y,

(1.7) (∇XS2)Y − (∇Y S2)X

= −τ1
2 (Y )S1X + τ1

2 (X)S1Y − τ2
2 (Y )S2X + τ2

2 (X)S2Y,

(1.8) h1(X, S1Y ) − h1(Y, S1X)

= dτ1
1 (X, Y ) + τ2

1 (Y )τ1
2 (X) − τ1

2 (Y )τ2
1 (X),

(1.9) h2(X, S1Y ) − h2(Y, S1X)

= dτ2
1 (X, Y ) + τ1

1 (Y )τ2
1 (X) − τ2

1 (Y )τ1
1 (X)

+ τ2
1 (Y )τ2

2 (X) − τ2
2 (Y )τ2

1 (X),

(1.10) h2(X, S2Y ) − h2(Y, S2X)

= dτ2
2 (X, Y ) + τ1

2 (Y )τ2
1 (X) − τ2

1 (Y )τ1
2 (X),

(1.11) h1(X, S2Y ) − h1(Y, S2X)

= dτ1
2 (X, Y ) + τ1

1 (X)τ1
2 (Y ) − τ1

2 (X)τ1
1 (Y )

+ τ1
2 (X)τ2

2 (Y ) − τ2
2 (X)τ1

2 (Y )Let u = {X1, X2} be a lo
al frame of 
lass C∞

R
on a neighbourhood U of apoint p ∈ M . De�ne a symmetri
 bilinear form Gu by

(1.12) 2Gu(Y, Z)

= Det[X1, X2, DY X1, DZX2] + Det[X1, X2, DZX1, DY X2].We 
all a surfa
e non-degenerate if the form Gu is non-degenerate (whi
hdoes not depend on the 
hoi
e of u; see [W℄). From now on we will assumethat the surfa
e is non-degenerate. In a su�
iently small neighbourhood ofea
h point we 
an de�ne three bran
hes of a C-valued, C-bilinear symmetri
form
gu(Y, Z) = Gu(Y, Z)(detu Gu)−1/3.
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zThe set of three bran
hes of gu is independent of the 
hoi
e of u. In this waywe get lo
ally three 
omplex-valued metri
s whi
h we denote by g. We 
allea
h of them an a�ne metri
 on M . From now on we �x an a�ne metri
in a su�
iently small neighbourhood of a given point. We will work withnull frames with respe
t to the a�ne metri
 g, that is, the frames {X1, X2}satisfying g(X1, X2) = 1 and g(Xj, Xj) = 0 for j = 1, 2. The followingtheorem asso
iates a unique transversal frame to ea
h null tangent frame(see [NV℄, [W℄).
Theorem 1.2. Let σ be a transversal plane bundle and {X1, X2} be anull tangent frame. Then there exists a unique lo
al transversal frame {ξ1, ξ2}in σ su
h that

(1.13) Det[X1, X2, ξ1, ξ2] = −2,and the se
ond fundamental forms have the following matri
es in the basis
{X1, X2}:
(1.14) h1 =

[
1 0
0 0

]
, h2 =

[
0 0
0 1

]
.From now on we will 
all the frame {ξ1, ξ2} determined by the last the-orem the transversal frame asso
iated to the null tangent frame {X1, X2}.Noti
e that if we inter
hange the �elds X1 and X2, then the �elds ξ1, ξ2 inthe asso
iated frame also inter
hange.The following lemma gives the transformation rules for the asso
iatedframes.

Lemma 1.3. Let {X1, X2} and {Y1, Y2} be two null tangent frames. Let
{ξ1, ξ2} and {η1, η2} be the respe
tive asso
iated transversal frames. Thenthere exists a C-valued non-zero fun
tion γ su
h that

Y1 = γX1, Y2 = γ−1X2,(1.15)

η1 = γ2ξ1, η2 = γ−2ξ2,(1.16)after possibly inter
hanging X1 and X2, as well as ξ1 and ξ2, if ne
essary.Assume that an a�ne metri
 g is lo
ally �xed. A 
omplex-valued metri
on an arbitrary transversal plane bundle σ is de�ned in the following way.Let u = {X1, X2} be a null frame and {ξ1, ξ2} the asso
iated transversalframe in σ. We de�ne a metri
 g⊥u on σ by
(1.17) g⊥u (ξ1, ξ1) = g⊥u (ξ2, ξ2) = 0, g⊥u (ξ1, ξ2) = −2and extend it to a C-bilinear symmetri
 form.It turns out that g⊥u is independent of the tangent frame u. Therefore wewill denote it by g⊥. Lemma 1.3 shows that for every g⊥-null frame {ξ1, ξ2}satisfying (1.17) there is a unique tangent g-null frame {X1, X2} su
h that
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{ξ1, ξ2} is asso
iated to it. Therefore we will 
all both frames asso
iated toea
h other.The following theorem holds ([W℄, 
f. [NV℄):
Theorem 1.5. For every 
omplex , non-degenerate surfa
e M in C

4 thereis a unique equia�ne transversal bundle σ su
h that ∇⊥g⊥ is symmetri
,where g⊥ is an arbitrary transversal metri
.
Corollary 1.6. A transversal bundle σ is the a�ne normal bundle ifand only if the following equations hold :

(1.18)
∇g(X1, X2, X1) = ∇g(X2, X1, X2) = 0,

∇g(X1, X1, X1) = ∇g(X2, X2, X2) = 0,where ∇ is the 
onne
tion indu
ed by σ, {X1, X2} is a holomorphi
 nulltangent frame and g is the a�ne metri
 on the surfa
e.
Corollary 1.7. Let σ be a transversal bundle, {X1, X2} a holomorphi
null tangent frame, and {ξ1, ξ2} the asso
iated transversal frame. Then σ isthe a�ne normal bundle if and only if

(1.19) τ1
1 + τ2

2 = 0, τ1
2 (X1) = τ2

1 (X2) = 0.2. The proof of the main theorem. First we prove the followinglemma:
Lemma 2.1. If the surfa
e M satis�es assumption 1) of Theorem 1.1,then for every point of M there exists a neighbourhood and a null transver-sal frame {ξ1, ξ2} su
h that the indu
ed shape operators have the followingproperties:

(2.1) ∇S1 = 0, ∇S2 = 0.Proof. It su�
es to de�ne a new transversal frame {ξ̃1, ξ̃2} by (1.15)and (1.16) with γ = e−
1

2
f .In what follows we will use the transversal frame obtained in the previouslemma and the asso
iated tangent frame {X1, X2}. Introdu
e lo
al fun
tions

a1 to a8 by
(2.2)

∇X1
X1 = a1X1 + a2X2, ∇X1

X2 = a3X1 + a4X2,

∇X2
X1 = a5X1 + a6X2, ∇X2

X2 = a7X1 + a8X2.Using Corollary 1.6 we obtain
(2.3) a4 = −a1, a5 = −a8, a2 = 0, a7 = 0.The fa
t that ∇⊥g⊥ = 0 implies that
(2.4) τ1

2 = 0 and τ2
1 = 0
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zidenti
ally. If we de�ne
(2.5) a = τ1

1 (X1), b = τ1
1 (X2),we also have

(2.6) −a = τ2
2 (X1), −b = τ2

2 (X2),using Corollary 1.7. The Codazzi equations (1.4) and (1.5) lead to
(2.7) a3 = −(b + 2a8), a6 = a − 2a1.We introdu
e fun
tions c1 to c4 as well as k1 to k4 su
h that
(2.8)

S1X1 = c1X1 + c2X2, S1X2 = c3X1 + c4X2,

S2X1 = k1X1 + k2X2, S2X2 = k3X1 + k4X2.In the next three lemmas we give some properties of these fun
tions.
Lemma 2.2. The fun
tions c2 and k3 vanish identi
ally and c3 = k2.Proof. Sin
e τ2

1 = 0, by (1.9) and (1.14) we have 0 = −h2(X2, S1X1) =
−h2(X2, c1X1 +c2X2) = −c2. Moreover (1.11), (1.14) and τ1

2 = 0 imply that
0 = h1(X1, S2X2) = h1(X1, k3X1 + k4X2) = k3. Using Corollary 1.7 andadding (1.8) and (1.10) we obtain 0 = h1(X1, S1X2)−h2(X2, S2X1) = c3−k2,whi
h 
ompletes the proof.
Lemma 2.3. The following equations hold :

(2.9) bc1 = ac3, ac4 = 0, bk1 = 0, bk2 = ak4.Proof. Sin
e ∇Sj = 0, the Codazzi equations (1.6) and (1.7) imply
0 = −bS1X1 + aS1X2 = (−bc1 + ac3)X1 + (−bc2 + ac4)X2,

0 = bS2X1 − aS2X2 = (bk1 − ak3)X1 + (bk2 − ak4)X2,and, by the previous lemma, we obtain (2.9).
Lemma 2.4. The 
oe�
ients cj and kj , where j = 1, 2, satisfy

X1(c1) = 0,(2.10)

X1(c3) + 2a1c3 − a3(c1 − c4) = 0,(2.11)

X1(c4) = 0,(2.12)

X2(c1) − a6c3 = 0,(2.13)

a6(c1 − c4) = 0,(2.14)

X2(c3) − 2a8c3 = 0,(2.15)

X2(c4) + a6c3 = 0,(2.16)

X1(k1) + a3k2 = 0,(2.17)

X1(k2) − 2a1k2 = 0,(2.18)

−a3(k4 − k1) = 0,(2.19)

X1(k4) − a3k2 = 0,(2.20)
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X2(k2) + 2a8k2 + a6(k1 − k4) = 0,(2.21)

X2(k1) = 0,(2.22)

X2(k4) = 0.(2.23)Proof. The equations are 
onsequen
es of the 
onditions ∇Sj = 0, ap-plied to all possible pairs of the ve
tor �elds Xk, Xl, for j, k, l = 1, 2.Substituting the triples (X1, X2, X1) and (X1, X2, X2) in the Gauss equa-tion (1.3) and using Lemma 2.2 we obtain the following lemma.
Lemma 2.5. The fun
tions a1, a3, a6 and a8 satisfy

X1(a8) + X2(a1) = c3 − a6a8 − a1a3 − 2a1a8 + a3a6,(2.24)

X1(a6) = −c4 + a6(a1 − a6),(2.25)

X2(a3) = −k1 + a3(a8 − a3).(2.26)We now de�ne an open and dense subset of M and we restri
t our 
las-si�
ation to this set. From the proof of Lemma 2.1 it follows that the framede�ned there was de�ned up to 
onstant non-zero fa
tors. Thus the fun
tions
aj are also determined up to 
onstant fa
tors. Therefore the following de�-nitions make sense on the whole surfa
e, although they use lo
al fun
tions.Set
(2.27) U1 = {p ∈ M a3 6= 0 or a6 6= 0}, U2 = U \ U1.Then U1 ∪ U2 is an open and dense subset of M . We 
onsider two 
ases.
Lemma 2.6. Any p ∈ U1 has a neighbourhood Up in whi
h k2 = c3 = 0identi
ally , the fun
tions c1, c4, k1 and k4 are 
onstant , c1 = c4 and k1 = k4.Proof. Let Up be 
ontained in the domain of the frame with respe
t towhi
h the fun
tions cj and kj are de�ned. From the de�nitions of U1 and theholomorphy of the fun
tions 
onsidered it follows that c1 = c4 or k1 = k4 onthe whole Up.We �rst assume that c1 = c4. After adding (2.13) and (2.16) we have

X2(c1) = X2(c4) = 0 on Up. Taking into a

ount (2.10) and (2.12) we
on
lude that c1 and c4 are 
onstant. Now (2.13) implies that c3 = 0, andLemma 2.2 gives k2 = 0. If we 
onsider the system (2.19), (2.21), then by theassumptions we have k1 = k4. Using this fa
t and adding (2.17) and (2.20),we obtain X1(k1) = X1(k2) = 0. Taking into a

ount (2.22) and (2.23) nowshows that k1 and k4 are 
onstant. This 
ompletes the proof for c1 = c4. Theargument in the 
ase when k1 = k4 is analogous.
Lemma 2.7. There exists an open and dense subset V of U2 su
h thatfor every p ∈ V there is a neighbourhood of p that is a�nely equivalent to
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zone of the following surfa
es:
x(u, v) = (u, v, u2, v2),(2.28a)

x(u, v) = u · (1, v, v2, u2),(2.28b)

x(u, v) = (u3 + 3u2v, v3 + 3uv2, u − v, uv),(2.28c)

x(u, v) = (sinh(u), cosh(u), sinh(v), cosh(v)),(2.28d)

x(u, v) =

(
v,

1

2
v2, f1(u), f1(u)

u\ ds

(f ′
1(s))

2
−

u\f1(s) ds

(f ′
1(s))

2

)
,(2.28e)where f1 is an arbitrary holomorphi
 fun
tion of one variable de�ned in aneighbourhood of zero su
h that f ′

1 6= 0 and f (3)(0) 6= 0.Proof. By de�nition of U2, a3 = a6 = 0 identi
ally. Using (2.10), (2.12),(2.13), (2.16), (2.17), (2.20), (2.22) and (2.23) we �nd that c1, c4, k1 and k4are 
onstant. By (2.25) and (2.26) we immediately obtain
c4 = k1 = 0.We next use the Ri

i equation (1.8) keeping the notation (2.5):

c3 = X1(b) − X2(a) − τ1
1 ([X1, X2]).The Poisson bra
ket [X1, X2] is equal to ∇X1
X2−∇X2

X1 = −a1X2 +a8X1,and the last equation is equivalent to
(2.29) c3 = X1(b) − X2(a) + a1b − a8a.Considering the equation (2.7), we rewrite (2.29) as
(2.30) c3 = −2X1(a8) − 2X2(a1) − 4a1a8.Next we 
onsider the equation (2.24), whi
h now has the form
(2.31) c3 = X1(a8) + X2(a1) + 2a1a8.Considering the system (2.30), (2.31), as well as Lemma 2.2, we obtain
(2.32) c3 = k2 = 0.We noti
e that the system (2.9) now has the form
(2.33) bc1 = 0, ak4 = 0.We de�ne the following open subsets of U2:
(2.34)

V1 = {p ∈ U2 c1k4 6= 0},
V2 = (U2 \ V 1) ∩ {c1 6= 0 or k1 6= 0},
V3 = U2 \ (V 1 ∪ V 2).Then V1∪V2∪V3 is an open and dense subset of U2. We noti
e that in V3 bothshape operators S1 and S2 are zero, so it is an umbili
al surfa
e 
onsideredin [VVW℄ in the real inde�nite 
ase. Sin
e the argument and 
omputations
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es 273are very similar in our 
ase, we 
on
lude that there is an open and densesubset W of V3 whi
h is a�nely equivalent to one of the surfa
es (2.28a�
).Now, V1∪V2∪W is also an open and dense subset of U2. Let p ∈ V1. Thenin a neighbourhood of p we have a = b = 0, by (2.33) and the de�nition of
V1. This implies
(2.35) a1 = a8 = 0.In this 
ase we have ∇Xj

Xk = 0 for j, k = 1, 2, when
e [X1, X2] = 0. Thereare lo
al 
omplex 
oordinates u and v su
h that for the immersion x thefollowing equations hold:
xu = X1, xv = X2.By the Gauss formula (1.1) we obtain

(2.36) xuu = ξ1, xuv = 0, xvv = ξ2.This implies that xu depends only on u, and xv only on v. By the Weingartenformula we immediately obtain
(2.37)

(ξ1)u = −c1xu,

(ξ1)v = (ξ2)u = 0,

(ξ2)v = −k4xv.Combining (2.36) with (2.37) we obtain two di�erential equations:
(2.38) xuuu = −c1xu, xvvv = −k4xv.Integrating them we have

xu = cosh(
√
−c1u)A + sinh(

√
−c1u)B,

xv = cosh(
√
−k1v)C + sinh(

√
−k1v)D,where A, B, C and D are 
onstant ve
tors in C
4. Up to an a�ne transfor-mation we obtain the parametri
 equation

x(u, v) = (sinh(
√
−c1u), cosh(

√
−c1u), sinh(

√
−k1v), cosh(

√
−k1v)).If we treat x as a fun
tion of the variables √−c1u and √−c1v, we �nally getthe surfa
e (2.28d).We 
onsider the remaining 
ase. Let p ∈ V2. Let c1 6= 0 �rst. Whenwe 
hange the null frame {X1, X2} putting a 
onstant fun
tion γ su
h that

γ2 = c1 in (1.15), the fun
tions a and b de�ned in (2.5) do not 
hange. Thuswe 
an assume that c1 = 1. By de�nition of V1, k4 is equal to 0. The �rstequation of (2.33) gives b = 0, when
e a8 = 0. The equation (2.31) gives
X2(a1) = 0. Consider the system of di�erential equations
(2.39) X1(̺) = a1̺, X2(̺) = 0for an unknown fun
tion ̺ with ̺(p) 6= 0. It is easy to see that the systemsatis�es the integrability 
onditions, so it has a solution. We de�ne the ve
tor
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z�elds X̃1 and X̃2 by the following formulas:
(2.40) X̃1 =

1

̺
X1, X̃2 = ̺X2.We then have ∇

X̃1

X̃2 = ̺−1X1(̺)X2 + ∇X1
X2 = ̺−1a1̺X2 − a1X2 = 0and, similarly, ∇

X̃2

X̃1 = 0. Thus there exist lo
al 
oordinates u and v in aneighbourhood of zero su
h that x(0, 0) = p and
(2.41) xu =

1

̺
X1, xv = ̺X2.The frame {X̃1, X̃2} is a null frame. The asso
iated transversal frame {ξ̃1, ξ̃2}is given by

(2.42) ξ̃1 =
1

̺2
ξ1, ξ̃2 = ̺2ξ2.To use the Gauss formula (1.1), we 
ompute

∇
X̃1

X̃1 =
1

̺
∇X1

(
1

̺
X1

)
= −1

̺

X1(̺)

̺2
X1 +

1

̺2
a1X1 = 0.Similarly, ∇X̃1

X̃2 = 0 and ∇X̃2
X̃2 = 0. Thus we have

(2.43) xuu = ξ̃1, xuv = 0, xvv = ξ̃2.The Weingarten formula implies
(ξ̃1)u = D̺−1X1

(
1

̺2
ξ1

)
=

1

̺

−2X1(̺)

̺3
ξ1 +

1

̺3
(−S1X1 +τ1

1 (X1)ξ1)(2.44)

=
−2a1

̺3
ξ1 −

1

̺3
X1 +

2a1

̺3
ξ1 = − 1

̺2
X̃1,

(ξ̃1)v = D̺X2

(
1

̺2
ξ1

)
= ̺

−2X2(̺)

̺3
ξ1 +

1

̺
(−S1X2 + τ1

1 (X2)ξ1)(2.45)

=
2a8

̺
ξ1 = 0,

(ξ̃2)u = D̺−1X1
(̺2ξ2) =

1

̺
2X1(̺)̺ξ2 + ̺(−S2X1 + τ2

2 (X1)ξ2)(2.46)

= 2a1̺ξ2 − 2̺a1ξ2 = 0,

(ξ̃2)v = D̺X2
(̺2ξ2) = ̺ · 2X2(̺)̺ξ2 + ̺(−S2X2 + τ2

2 (X2)ξ2) = 0.(2.47)The equations (2.46), (2.47) and (2.43) imply that xvv is a 
onstant ve
tor.Hen
e
(2.48) xv = v · A + Bfor 
onstant ve
tors A, B ∈ C4. By (2.42), (2.43), (2.45) and (2.46) we have
(2.49) xuuu = −̺−2xu.



Complex surfa
es 275We 
an treat (2.49) as a one-variable di�erential equation, homogeneous oforder two. Its solution is of the form
(2.50) xu = g1(u)C + g2(u)E,where C and E are elements of C

4, and the fun
tions g1 and g2 are linearlyindependent solutions of the di�erential equation
(2.51) y′′ + ̺−2y = 0.We 
an always 
hoose g1 and g2 so that they are lo
ally di�erent fromzero, whi
h implies that the surfa
e obtained by (2.48) and (2.49) is non-degenerate. (2.51) implies that their se
ond derivatives are also di�erent fromzero. By the assumption, a1 
an be any fun
tion of u. Thus the fun
tion ̺(u)given by the equation ̺′ = a1 is arbitrary and non-zero in a neighbourhoodof zero. Let f1 and f2 be inde�nite integrals of g1 and g2, respe
tively. Sin
e
xu and xuu are linearly independent, the determinant ∣∣∣∣

f ′
1 f ′

2

f ′′
1 f ′′

2

∣∣∣∣ is di�erentfrom zero.On the other hand, f ′
1 and f ′

2 satisfy (2.51) and are non-zero, so
(2.52) f ′′′

1 f ′

2 − f ′

1f
′′′

2 = 0.Using this equation, we 
ompute
(f ′

1f
′′

2 − f ′

2f
′′

1 )′ = f ′′

1 f ′′

2 + f ′

1f
′′′

2 − f ′′

1 f ′′

2 − f ′′′

1 f ′

2 = 0,when
e
(2.53) r := f ′

1f
′′

2 − f ′

2f
′′

1is a non-zero 
onstant. We 
an see that ea
h 
hoi
e of f1 with f ′
1(0) 6= 0 and

f
(3)
1 6= 0 leads to an equation of a desired surfa
e. Fix su
h an f1. Then (2.51)de�nes the fun
tion ̺ expli
itly. By (2.53), whi
h we treat as a �rst orderequation with respe
t to f ′

2, we obtain this fun
tion and its integral up to a
onstant. It has the form
(2.54) f2(u) = rf1(u)

u\ ds

(f ′
1(s))

2
− r

u\f1(s) ds

(f ′
1(s))

2
.Then by (2.48) and (2.50) and after applying an a�ne transformation we getthe parametri
 equation (g) from the main theorem. The last 
ase, c1 = 0and k4 6= 0, 
an be redu
ed to the previous one by inter
hanging X1 and X2.Noti
e that the surfa
es we have obtained are essentially di�erent, thatis, not a�nely equivalent. In the 
ase of the umbili
al surfa
es this followsfrom the explanation given in [VVW℄. For the other surfa
es it follows fromthe fa
t that the shape operators are di�erent and 
annot 
oin
ide afteradmissible transformations of the null frames.



276 P. Witowi
zProof of Theorem 1.1. By (2.27) the set U = U1 ∪ U2 is open and densein M . If p ∈ U1, then by Lemma 2.6 it follows that there is a neighbourhoodof p whi
h is an umbili
al surfa
e. Then from [VVW℄ (the real inde�niteumbili
al 
ase) it follows that the neighbourhood is one of the surfa
es (a)to (e). On the other hand, we 
an 
hoose a transversal frame for whi
h theshape operators satisfy ∇S1 = 0, ∇S2 = 0.If p ∈ U2, then Lemma 2.7 gives surfa
es (a), (b), (
), (f) and (g). Toprove the 
onverse in this 
ase it is enough to verify that the surfa
es (f)and (g) satisfy assumption 1) of the theorem. For (f) we 
an see that theshape operators have 
onstant 
oe�
ients with respe
t to the asso
iatednull tangent frame. This implies ∇S1 = ∇S2 = 0. For (g) we 
hoose a frame
{X̃1, X̃2} su
h that ∇X̃j

X̃k = 0 for all j, k. From (2.44)�(2.47), we see thatonly S̃1X̃1 is non-zero and it is equal to −̺−3X̃1. The equations (2.1) arenow satis�ed with f = −̺−3. This 
ompletes the proof of the theorem.
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