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Complex surfaces in C* with recurrent shape operators

by PAwWEL. WiTowicz (Rzeszow)

Abstract. We study complex affine surfaces in C* with the transversal bundle defined
by Nomizu and Vrancken. We classify the surfaces that have recurrent shape operators
and parallel transversal metric.

1. Preliminaries. The purpose of this paper is to characterize a class
of complex surfaces holomorphically immersed in four-dimensional affine
space C*. An equiaffine structure for real surfaces in R* was found by Nomizu
and Vrancken ([NV]) and further investigations showed that the construction
leads to natural geometric properties. In [W]| a unique equiaffine transver-
sal bundle is also obtained in the complex case. It has the same properties
as the bundle constructed in [NV] and is holomorphic. There are three lo-
cal pseudometrics in this bundle and we denote each of them by g+. They
differ only by a constant factor. A given g*-null transversal frame {1, &2}
determines shape operators S; and S5 which are local endomorphisms of the
tangent bundle. Let V and V- be the connections in the tangent and normal
bundles, respectively.

We recall that the shape operators are recurrent if there exist 1-forms
aq and ap such that VS; = a; ® Sj. We, however, consider a special case
VS; = (—1)771df ® S; because this condition does not depend on the frame
{&1,&2}. We prove a classification theorem under the additional condition
Vigt=o.

We now state the main theorem of the paper.

THEOREM 1.1. Let M be a non-degenerate complex surface in C* satis-
fying the conditions:

1) in a neighbourhood of an arbitrary point p of the surface, for every

holomorphic null normal frame {£1,&2} there is a local function f such
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that
VS =df ® 51, VS =—df ® Sy,
2) Vigt=o.
Then there exists an open and dense set U in M which is locally affinely

equivalent to one of the following surfaces:

(a) z(u,v) = (u,v,u2,v2),
(b) z(u,v)=wu- (1,v,1}2,u2),

(¢) z(u,v) = (u? + 3u®v,v® + 3uv?, u — v, w),
u

(d) z(u,v) = (coshu)??. (1,1},1}2,8 (cosh s)™°/3 ds),

_ 1
(e) z(u,v)=u"2- (1,u5,v, 5112).
(f) x(u,v) = (sinh(u), cosh(u), sinh(v), cosh(v)),

B Ulvg " uu ds _ufl(s)ds
@) o) = (o527 000000 7 = 500 )

where f1 is an arbitrary holomorphic function defined in a neighbourhood of
zero and such that f1(0) # 0 and f©)(0) # 0. Conversely, all these surfaces
satisfy conditions 1) and 2).

Let M be a two-dimensional complex submanifold of C*. This means that
there exists an immersion f : M — C* which is holomorphic in the sense
that f.JX = Jf. X for the complex structure J. Each tangent space T, M
has a natural structure of a complex vector space with the multiplication by
1 given by J. Let the vector fields, connections, bilinear and linear forms and
functions used in the paper be of class C3° unless otherwise stated (see [OI],
[OII], compare also another approach in [A], [DVV]). Since our considerations
are local and we can identify the complex structures on M and on C*, we
can also identify M, as a complex manifold, with its image in C*.

Let o denote a transversal complex plane bundle, that is, C* = o, T, M
over C. Let &1,&9 be transversal vector fields that span o locally over C.
Capital letters X,Y, Z etc. will denote tangent vector fields. If D denotes
the standard affine connection on C*, then we have

(1.1) DxY =VxY +h(X,Y)& + A% (X, Y)E,
(1.2) Dx¢&; = —S8;(X) + 7} (X)é1 + 7 (X)&o,
for j = 1,2, where the connection V is determined by the condition

VxY € TM and the shape operators S; by the condition S;(X) € TM.
Then V is a torsion-free linear connection compatible with J (and there-
fore called a complex connection). We can also see that both h’/ are C-
valued and C-bilinear 2-forms, called the second fundamental forms, S;
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are (1,1)-R-linear tensors and le are C-valued, R-linear 1-forms (see [KN],
[O]], [OI1]). We also define a complex-valued C-linear skew-symmetric 2-form
0 by 0(X,Y) = Det[X,Y, &1, &], where Det denotes the usual determinant
in C*. Just as in real geometry ([NV]) we have the following equations of
Gauss (1.3), Codazzi ((1.4)—(1.7)) and Ricci ((1.8)—(1.11)):

(1.3)  R(X,Y)Z =h'(Y,2)$1 X + h*(Y, Z)S2 X
— WX, 2)S1Y — h3(X, Z)S5Y,
(14)  (Vxh')(Y.2) +1{ (X)R'(Y. Z) + 75 (X)h*(Y, 2)
is symmetric in X,Y and Z,
(1.5)  (Vxh)(Y,Z) + 72(X)hN(Y, Z) + m2(X)h2(Y, Z)
is symmetric in X, Y and Z,
(1.6)  (VxS1)Y — (VyS1)X
= 1 (V)S1X + 1(X)S1Y — 72(Y) S X 4+ 72(X)S:Y,
(1.7) (VxS2)Y — (VyS2)X
= 7 (V)S1X + 19 (X)S1Y — 13(Y)So X + 15(X)S:Y,
(1.8)  h'(X,S81Y) - hl(Y,5:X)
= dr (X,Y) + 7 (V)73 (X) — 7 (V)7 (X),
(1.9)  h*(X,81Y) — h*(Y, 51 X)
= drP(X,Y) + 7 (V)i (X) = (V) (X)
+ 1 (V)3 (X) = (V)i (X),
(1.10)  h%(X,S2Y) — h%(Y, 52 X)
= dm3(X,Y) + 1 (V)7 (X) = (V)2 (X),
(1.11)  AY(X,SY) — h(Y, S, X)
= dry (X,Y) + 7 (X)13 (V) = 7 (X)7 (V)

+ 7y (X)75(Y) — 75 (X)) (V)

Let u = {X1, X5} be a local frame of class Cg° on a neighbourhood U of a
point p € M. Define a symmetric bilinear form G, by

(112)  2Gu(Y,Z)
= Det[Xl,Xg, Dy X4, Dng] + Det[Xl,Xg, Dz X1, Dng].

We call a surface non-degenerate if the form G, is non-degenerate (which
does not depend on the choice of u; see [W]). From now on we will assume
that the surface is non-degenerate. In a sufficiently small neighbourhood of
each point we can define three branches of a C-valued, C-bilinear symmetric
form

Gu(Y, Z) = Gu(Y, Z)(det, Gy) /3.
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The set of three branches of g, is independent of the choice of u. In this way
we get locally three complex-valued metrics which we denote by g. We call
each of them an affine metric on M. From now on we fix an affine metric
in a sufficiently small neighbourhood of a given point. We will work with
null frames with respect to the affine metric g, that is, the frames { X1, Xo}
satisfying ¢(X1,X2) = 1 and g(X;,X;) = 0 for j = 1,2. The following
theorem associates a unique transversal frame to each null tangent frame

(see [NV], [W]).

THEOREM 1.2. Let o be a transversal plane bundle and {X1, X2} be a
null tangent frame. Then there ezists a unique local transversal frame {&1, &2}
in o such that

(113) Det[XhXQ:flan] = _27

and the second fundamental forms have the following matrices in the basis

{Xl,XQ}:

(1.14) hlz[(l) 8} h2:[8 2]

From now on we will call the frame {&;, &>} determined by the last the-
orem the transversal frame associated to the null tangent frame {X;, Xo}.
Notice that if we interchange the fields X; and X5, then the fields &1, &5 in
the associated frame also interchange.

The following lemma gives the transformation rules for the associated
frames.

LEMMA 1.3. Let {X1, X2} and {Y1,Ya} be two null tangent frames. Let
{&1,&2} and {n1,m2} be the respective associated transversal frames. Then
there exists a C-valued non-zero function v such that
(1.15) Y =X, Yo=~"1X,,

(1.16) m=7%, m=v"%,
after possibly interchanging X, and Xa, as well as & and o, if necessary.

Assume that an affine metric g is locally fixed. A complex-valued metric
on an arbitrary transversal plane bundle o is defined in the following way.
Let w = {X3, X5} be a null frame and {&;,£2} the associated transversal
frame in 0. We define a metric g;- on o by

(1.17) g (€1,61) = g (€2,62) =0,  gir(&1,6) = —2

and extend it to a C-bilinear symmetric form.

It turns out that g;- is independent of the tangent frame u. Therefore we
will denote it by g. Lemma 1.3 shows that for every g--null frame {£1, &}
satisfying (1.17) there is a unique tangent g-null frame {X;, X5} such that
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{&1,&2} is associated to it. Therefore we will call both frames associated to
each other.
The following theorem holds (W], cf. [NV]):

THEOREM 1.5. For every complex, non-degenerate surface M in C* there
is a unique equiaffine transversal bundle o such that V-1g* is symmetric,
where g is an arbitrary transversal metric.

COROLLARY 1.6. A transversal bundle o is the affine normal bundle if
and only if the following equations hold:
VQ(Xl, X27 Xl) — v.g(X27 le XQ) — 0)
Vg(X1, X1, X1) = Vg(X2, Xo, X2) = 0,

where YV is the connection induced by o, {X1, X2} is a holomorphic null
tangent frame and g is the affine metric on the surface.

(1.18)

COROLLARY 1.7. Let o be a transversal bundle, {X1, X2} a holomorphic
null tangent frame, and {&1,&2} the associated transversal frame. Then o is
the affine normal bundle if and only if

(1.19) 4T =0, 7(X1)="71(X3)=0.

2. The proof of the main theorem. First we prove the following
lemma:

LEMMA 2.1. If the surface M satisfies assumption 1) of Theorem 1.1,
then for every point of M there exists a neighbourhood and a null transver-
sal frame {&1,&2} such that the induced shape operators have the following
properties:

(2.1) VS =0, VS =0.

Proof. It suffices to define a new transversal frame {51, 52} by (1.15)
and (1.16) with v = eal,

In what follows we will use the transversal frame obtained in the previous
lemma and the associated tangent frame { X7, Xs}. Introduce local functions
ay to ag by
Vx, X1 =a1 X1 +aXs, Vx, Xo=a3X1+ asXo,

Vx, X1 =a5X1+asX2, Vx,Xo=a7X1+ agXs.

Using Corollary 1.6 we obtain

(2.2)

(2.3) a4 = —ajq, as = —as, as = 0, a7 = 0.
The fact that Vgt = 0 implies that
(2.4) =0 and 7£=0
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identically. If we define

(2.5) a=1(X1), b=1(Xa),

we also have

(2.6) —a=13(X1), —b=13(Xa),

using Corollary 1.7. The Codazzi equations (1.4) and (1.5) lead to
(2.7) a3 = —(b+2ag), ag=a—2a.

We introduce functions ¢; to ¢4 as well as k1 to k4 such that
S1X1 =1 X1 +c2Xo,  S1Xo = c3 Xy + 4 Xo,
SoX1 = kX1 4+ koXo, S9Xo = k3 X 4+ ks Xo.

In the next three lemmas we give some properties of these functions.

(2.8)

LEMMA 2.2. The functions co and ks vanish identically and c3 = ks.
Proof. Since 72 = 0, by (1.9) and (1.14) we have 0 = —h?(X2, S1X1) =
—h%(X2, 1 X1 +c2X2) = —ca. Moreover (1.11), (1.14) and 75 = 0 imply that
0 = h'(Xy, 82 X2) = h'(X1,ksX1 + ksX2) = ks. Using Corollary 1.7 and
adding (1.8) and (1.10) we obtain 0 = h'(X7, S1 X2)—h%(X2, 52 X1) = c3—k,
which completes the proof.
LEMMA 2.3. The following equations hold:
(2.9) bCl = acs, acy = O, bkl = O, ka = CLk4.
Proof. Since VS; = 0, the Codazzi equations (1.6) and (1.7) imply
0=—-bS1X1+ aS1Xs = (—bey + ac3) Xy + (—beg + acy) Xo,
0 =052X1 — aS2 X9 = (bky — aks) X1 + (bka — aks) X2,
and, by the previous lemma, we obtain (2.9).
LEMMA 2.4, The coefficients c¢; and kj, where j = 1,2, satisfy
(2.10) Xi(e1) =0,
(2.11) Xi(e3) + 2a1c3 — az(er — ca) = 0,
(2.12) Xi(ca) =0,
(2.13) Xa(e1) — ages = 0,
(2.14) ag(c1 —c4) =0,
(2.15) Xa(c3) — 2ages =0,
(2.16) Xa(ca) +ases =0,
(2.17) X1 (k1) + aszks = 0,
(2.18) Xi(k2) — 2a1ky =0,
(2.19) —a3(ky — k1) =0,
(2.20) Xi(ks) — agkz =0,
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(2.21) Xo (ko) + 2agks + ag(k1 — kq) =0,
(2.22) Xo(k1) =0,
(2.23) Xo(kg) = 0.

Proof. The equations are consequences of the conditions VS; = 0, ap-
plied to all possible pairs of the vector fields X, X, for j,k,l =1, 2.

Substituting the triples (X7, X2, X1) and (X1, X2, X2) in the Gauss equa-
tion (1.3) and using Lemma 2.2 we obtain the following lemma.

LEMMA 2.5. The functions a1, a3, ag and ag satisfy

(2.24) Xi(ag) + Xo(a1) = c3 — agag — ar1a3 — 2ajag + asag,
(2.25) Xi(ag) = —ca + ag(ar — ag),
(2.26) Xo(ag) = —k1 + as(as — a3).

We now define an open and dense subset of M and we restrict our clas-
sification to this set. From the proof of Lemma 2.1 it follows that the frame
defined there was defined up to constant non-zero factors. Thus the functions
a; are also determined up to constant factors. Therefore the following defi-
nitions make sense on the whole surface, although they use local functions.
Set

(2.27) Uy={peMl|az#0orag#0}, Us=U\U;.
Then U; U Us is an open and dense subset of M. We consider two cases.

LEMMA 2.6. Any p € Uy has a neighbourhood U, in which ko = c3 =0
identically, the functions c1, cq4, k1 and k4 are constant, ¢c1 = c4 and k1 = ky.

Proof. Let U, be contained in the domain of the frame with respect to
which the functions c¢; and k; are defined. From the definitions of U; and the
holomorphy of the functions considered it follows that ¢; = ¢4 or k1 = k4 on
the whole U,.

We first assume that ¢; = c4. After adding (2.13) and (2.16) we have
Xs(c1) = Xa(ca) = 0 on U,. Taking into account (2.10) and (2.12) we
conclude that ¢; and ¢4 are constant. Now (2.13) implies that ¢3 = 0, and
Lemma 2.2 gives ko = 0. If we consider the system (2.19), (2.21), then by the
assumptions we have k; = k4. Using this fact and adding (2.17) and (2.20),
we obtain X (k1) = X1(k2) = 0. Taking into account (2.22) and (2.23) now
shows that k1 and k4 are constant. This completes the proof for ¢; = ¢4. The
argument in the case when k; = k4 is analogous.

LEMMA 2.7. There exists an open and dense subset V of Us such that
for every p € V there is a neighbourhood of p that is affinely equivalent to
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one of the following surfaces:

(2.282)  x(u,v) = (u,v,u? v?),

(2.28b)  z(u,v) = u - (1,v,v%u?),
(2.28¢)  z(u,v) = (u® + 3uPv, v + 3uv?, u — v, u),
(2.28d)  z(u,v) = (sinh(u), cosh(u), sinh(v), cosh(v)),

= (v 11)2 U U [ ds _Ufl(S) i
(2.28¢)  z(u,v) = ( '3 s fi(u), fi )S (fi(s))2 S(f{(s))2>’

where f1 is an arbitrary holomorphic function of one variable defined in a

neighbourhood of zero such that f{ # 0 and f®)(0) £ 0.

Proof. By definition of Us, a3 = ag = 0 identically. Using (2.10), (2.12),
(2.13), (2.16), (2.17), (2.20), (2.22) and (2.23) we find that c1, ¢4, k1 and &y

3

are constant. By (2.25) and (2.26) we immediately obtain
cy = k1 =0.
We next use the Ricci equation (1.8) keeping the notation (2.5):
c3 = X1(b) — Xo(a) — 71 ([ X1, Xa)).

The Poisson bracket [X7, X2] is equal to Vx, Xo — Vx, X1 = —a1 X2+ ag X1,
and the last equation is equivalent to

(2.29) c3 = X1(b) — Xo(a) + a1b — aga.
Considering the equation (2.7), we rewrite (2.29) as
(2.30) c3 = —2X1(ag) — 2Xs(a1) — 4ajas.
Next we consider the equation (2.24), which now has the form
(2.31) c3 = X1(ag) + Xa(a1) + 2a;as.
Considering the system (2.30), (2.31), as well as Lemma 2.2, we obtain
(2.32) 3 = ko = 0.
We notice that the system (2.9) now has the form
(2.33) bcy =0, aks=0.

We define the following open subsets of Us:
Vi = {p € Us|c1ks # 0},

(2.34) Vo = (U \ V1) N{c1 # 0 or ky # 0},
Va=Us\ (V1UV>).

Then V1UV5UV3 is an open and dense subset of Us. We notice that in V3 both
shape operators S; and Sy are zero, so it is an umbilical surface considered
in [VVW] in the real indefinite case. Since the argument and computations
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are very similar in our case, we conclude that there is an open and dense

subset W of V3 which is affinely equivalent to one of the surfaces (2.28a-c).
Now, V1UVLUW is also an open and dense subset of Us. Let p € V3. Then

in a neighbourhood of p we have a = b = 0, by (2.33) and the definition of

V1. This implies

(2.35) a; — ag = 0.

In this case we have Vx, X = 0 for j,k = 1,2, whence [X1, X3] = 0. There

are local complex coordinates u and v such that for the immersion z the

following equations hold:

Ly = Xl, Ty = XQ.
By the Gauss formula (1.1) we obtain
(2'36) Tuu = &1, Ty = 0, Ty = &2.

This implies that x,, depends only on u, and x, only on v. By the Weingarten
formula we immediately obtain

(fl)u = —C1Ty,
(2.37) (€1)v = (&2)u =0,
(52)1) = —kyx,.

Combining (2.36) with (2.37) we obtain two differential equations:
(2.38) Tyuy = —ClTy,  Tyoy = —kaly.
Integrating them we have

&y, = cosh(v/—ciu)A + sinh(v/—ciu) B,

xy = cosh(y/—k1v)C + sinh(/—k1v)D,

where A, B, C and D are constant vectors in C*. Up to an affine transfor-
mation we obtain the parametric equation

z(u,v) = (sinh(v/—ciu), cosh(v/—ciu), sinh(y/—k1v), cosh(/ —k1v)).

If we treat x as a function of the variables /—cju and \/—cjv, we finally get
the surface (2.28d).

We consider the remaining case. Let p € V5. Let ¢1 # 0 first. When
we change the null frame {X;, X2} putting a constant function « such that
7? = ¢; in (1.15), the functions a and b defined in (2.5) do not change. Thus
we can assume that ¢; = 1. By definition of Vi, k4 is equal to 0. The first
equation of (2.33) gives b = 0, whence ag = 0. The equation (2.31) gives
X2(a1) = 0. Consider the system of differential equations

(2.39) X1(0) = a0, Xa2(p)=0

for an unknown function g with o(p) # 0. It is easy to see that the system
satisfies the integrability conditions, so it has a solution. We define the vector
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fields X; and X» by the following formulas:
~ 1 ~
(240) X1 = EXl, X2 = QXQ.
We then have VXIXQ = Q_le(Q)XQ + Vx, Xy = Q_langQ —a1 X9 =0

and, similarly, V )~(2X1 = 0. Thus there exist local coordinates u and v in a
neighbourhood of zero such that 2(0,0) = p and

1
(2.41) Ty =—X1, xy=0Xo.
1%

The frame { X1, X5} is a null frame. The associated transversal frame {1, &}
is given by

~ 1 ~
(2.42) G=56 &= 3
To use the Gauss formula (1.1), we compute
-1 1 1 X1(0) 1 B
v)?le:EVXI (EXl) :—5 Q2 Xl‘f—?ale—O.
Similarly, V % )Ai:g =0and V 5(25(:2 = (. Thus we have
(243) Lyu = gla Typ = 0, Tyy = 52

The Weingarten formula implies

(2.44) (gl)u =D,-1x, (% fl) _1 ~2X(0) & +% (=1 X1+ (X1)&)

o 0
—2@1 1 2@1 1 =
= S—=Xi+—=&=——= Xy,
@& o 0? 0?
- 1 —92X 1
(245) (&) = Dy, (Q— &) =02 g 1 L s v ()
2
_ a8 & =0,
0

(246)  (&2)u = Dyo1x, (0%62) = % 2X1(0)0é + 0(—S2 X1 + 75 (X1)&2)
= 2a1082 — 20a18§2 = 0,
(247) (&) = Dox,(0°&2) = 0 2Xa(0)0&2 + 0(—S2 X + 73 (X2)&2) = 0.

The equations (2.46), (2.47) and (2.43) imply that x,, is a constant vector.
Hence

(2.48) x,=v-A+B
for constant vectors A, B € C*. By (2.42), (2.43), (2.45) and (2.46) we have
(2.49) Ty = —0 2y,
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We can treat (2.49) as a one-variable differential equation, homogeneous of
order two. Its solution is of the form

(2.50) Ty = g1(u)C + g2(u)E,

where C' and E are elements of C*, and the functions ¢g; and g, are linearly
independent solutions of the differential equation

(2.51) y' + 0 %y =0.

We can always choose g1 and go so that they are locally different from
zero, which implies that the surface obtained by (2.48) and (2.49) is non-
degenerate. (2.51) implies that their second derivatives are also different from
zero. By the assumption, a; can be any function of u. Thus the function o(u)
given by the equation ¢’ = a; is arbitrary and non-zero in a neighbourhood
of zero. Let f1 and f> be indefinite integrals of g; and go, respectively. Since

/ !/
Ty, and x,,, are linearly independent, the determinant f,l, I 2 | is different
1 )2
from zero.
On the other hand, f{ and f; satisfy (2.51) and are non-zero, so
(2.52) 'fr = fifs' =0.

Using this equation, we compute
(FLIY — B0 = FLF + P — FE — g =0,

whence

(2.53) re=fifs — fof!
is a non-zero constant. We can see that each choice of f; with f](0) # 0 and

f1(3) # 0 leads to an equation of a desired surface. Fix such an f;. Then (2.51)
defines the function ¢ explicitly. By (2.53), which we treat as a first order
equation with respect to f5, we obtain this function and its integral up to a
constant. It has the form

u

(2.54) fow) = 7f1(u) S ds B TS fi(s)ds

(f1(s))? (f1(s))*
Then by (2.48) and (2.50) and after applying an affine transformation we get
the parametric equation (g) from the main theorem. The last case, ¢; = 0
and k4 # 0, can be reduced to the previous one by interchanging X; and Xbo.
Notice that the surfaces we have obtained are essentially different, that
is, not affinely equivalent. In the case of the umbilical surfaces this follows
from the explanation given in [VVW]. For the other surfaces it follows from
the fact that the shape operators are different and cannot coincide after
admissible transformations of the null frames.
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Proof of Theorem 1.1. By (2.27) the set U = Uy U Us is open and dense
in M. If p € Uy, then by Lemma 2.6 it follows that there is a neighbourhood
of p which is an umbilical surface. Then from [VVW] (the real indefinite
umbilical case) it follows that the neighbourhood is one of the surfaces (a)
to (e). On the other hand, we can choose a transversal frame for which the
shape operators satisfy V.S; =0, V.S, = 0.

If p € Uy, then Lemma 2.7 gives surfaces (a), (b), (c), (f) and (g). To
prove the converse in this case it is enough to verify that the surfaces (f)
and (g) satisfy assumption 1) of the theorem. For (f) we can see that the
shape operators have constant coefficients with respect to the associated
null tangent frame. This implies V.S; = V.S = 0. For (g) we choose a frame
{X1, X5} such that V)}j)?k = 0 for all j, k. From (2.44)-(2.47), we see that

only gl)?l is non-zero and it is equal to —9_3)?1. The equations (2.1) are
now satisfied with f = —p 3. This completes the proof of the theorem.
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