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Complex surfaes in C
4 with reurrent shape operatorsby Paweł Witowicz (Rzeszów)Abstrat. We study omplex a�ne surfaes in C

4 with the transversal bundle de�nedby Nomizu and Vranken. We lassify the surfaes that have reurrent shape operatorsand parallel transversal metri.1. Preliminaries. The purpose of this paper is to haraterize a lassof omplex surfaes holomorphially immersed in four-dimensional a�nespae C
4. An equia�ne struture for real surfaes in R

4 was found by Nomizuand Vranken ([NV℄) and further investigations showed that the onstrutionleads to natural geometri properties. In [W℄ a unique equia�ne transver-sal bundle is also obtained in the omplex ase. It has the same propertiesas the bundle onstruted in [NV℄ and is holomorphi. There are three lo-al pseudometris in this bundle and we denote eah of them by g⊥. Theydi�er only by a onstant fator. A given g⊥-null transversal frame {ξ1, ξ2}determines shape operators S1 and S2 whih are loal endomorphisms of thetangent bundle. Let ∇ and ∇⊥ be the onnetions in the tangent and normalbundles, respetively.We reall that the shape operators are reurrent if there exist 1-forms
α1 and α2 suh that ∇Sj = αj ⊗ Sj . We, however, onsider a speial ase
∇Sj = (−1)j−1df ⊗Sj beause this ondition does not depend on the frame
{ξ1, ξ2}. We prove a lassi�ation theorem under the additional ondition
∇⊥g⊥ = 0.We now state the main theorem of the paper.
Theorem 1.1. Let M be a non-degenerate omplex surfae in C

4 satis-fying the onditions:
1) in a neighbourhood of an arbitrary point p of the surfae, for everyholomorphi null normal frame {ξ1, ξ2} there is a loal funtion f suh2000 Mathematis Subjet Classi�ation: Primary 53A15.Key words and phrases: a�ne immersion, surfae, shape operator.Supported by the KBN grant 1P03A03426.[265℄ © Instytut Matematyzny PAN, 2007



266 P. Witowizthat
∇S1 = df ⊗ S1, ∇S2 = −df ⊗ S2,

2) ∇⊥g⊥ = 0.Then there exists an open and dense set U in M whih is loally a�nelyequivalent to one of the following surfaes:
x(u, v) = (u, v, u2, v2),(a)

x(u, v) = u · (1, v, v2, u2),(b)

x(u, v) = (u3 + 3u2v, v3 + 3uv2, u − v, uv),(c)

x(u, v) = (coshu)2/3 ·
(
1, v, v2,

u\
(cosh s)−5/3 ds

)
,(d)

x(u, v) = u−2 ·
(

1, u5, v,
1

2
v2

)
.(e)

x(u, v) = (sinh(u), cosh(u), sinh(v), cosh(v)),(f)

x(u, v) =

(
v,

1

2
v2, f1(u), f1(u)

u\ ds

(f ′
1(s))

2
−

u\f1(s) ds

(f ′
1(s))

2

)
,(g)where f1 is an arbitrary holomorphi funtion de�ned in a neighbourhood ofzero and suh that f ′

1(0) 6= 0 and f (3)(0) 6= 0. Conversely , all these surfaessatisfy onditions 1) and 2).Let M be a two-dimensional omplex submanifold of C
4. This means thatthere exists an immersion f : M → C

4 whih is holomorphi in the sensethat f∗JX = Jf∗X for the omplex struture J . Eah tangent spae TxMhas a natural struture of a omplex vetor spae with the multipliation by
i given by J . Let the vetor �elds, onnetions, bilinear and linear forms andfuntions used in the paper be of lass C∞

R
unless otherwise stated (see [OI℄,[OII℄, ompare also another approah in [A℄, [DVV℄). Sine our onsiderationsare loal and we an identify the omplex strutures on M and on C

4, wean also identify M , as a omplex manifold, with its image in C
4.Let σ denote a transversal omplex plane bundle, that is, C

4 = σx⊕TxMover C. Let ξ1, ξ2 be transversal vetor �elds that span σ loally over C.Capital letters X, Y, Z et. will denote tangent vetor �elds. If D denotesthe standard a�ne onnetion on C
4, then we have

DXY = ∇XY + h1(X, Y )ξ1 + h2(X, Y )ξ2,(1.1)

DXξj = −Sj(X) + τ1
j (X)ξ1 + τ2

j (X)ξ2,(1.2)for j = 1, 2, where the onnetion ∇ is determined by the ondition
∇XY ∈ TM and the shape operators Sj by the ondition Sj(X) ∈ TM .Then ∇ is a torsion-free linear onnetion ompatible with J (and there-fore alled a omplex onnetion). We an also see that both hj are C-valued and C-bilinear 2-forms, alled the seond fundamental forms, Sj



Complex surfaes 267are (1, 1)-R-linear tensors and τ
j
k are C-valued, R-linear 1-forms (see [KN℄,[OI℄, [OII℄). We also de�ne a omplex-valued C-linear skew-symmetri 2-form

θ by θ(X, Y ) = Det[X, Y, ξ1, ξ2], where Det denotes the usual determinantin C
4. Just as in real geometry ([NV℄) we have the following equations ofGauss (1.3), Codazzi ((1.4)�(1.7)) and Rii ((1.8)�(1.11)):

(1.3) R(X, Y )Z = h1(Y, Z)S1X + h2(Y, Z)S2X

− h1(X, Z)S1Y − h2(X, Z)S2Y,

(1.4) (∇Xh1)(Y, Z) + τ1
1 (X)h1(Y, Z) + τ1

2 (X)h2(Y, Z)is symmetri in X, Y and Z,
(1.5) (∇Xh2)(Y, Z) + τ2

1 (X)h1(Y, Z) + τ2
2 (X)h2(Y, Z)is symmetri in X, Y and Z,

(1.6) (∇XS1)Y − (∇Y S1)X

= −τ1
1 (Y )S1X + τ1

1 (X)S1Y − τ2
1 (Y )S2X + τ2

1 (X)S2Y,

(1.7) (∇XS2)Y − (∇Y S2)X

= −τ1
2 (Y )S1X + τ1

2 (X)S1Y − τ2
2 (Y )S2X + τ2

2 (X)S2Y,

(1.8) h1(X, S1Y ) − h1(Y, S1X)

= dτ1
1 (X, Y ) + τ2

1 (Y )τ1
2 (X) − τ1

2 (Y )τ2
1 (X),

(1.9) h2(X, S1Y ) − h2(Y, S1X)

= dτ2
1 (X, Y ) + τ1

1 (Y )τ2
1 (X) − τ2

1 (Y )τ1
1 (X)

+ τ2
1 (Y )τ2

2 (X) − τ2
2 (Y )τ2

1 (X),

(1.10) h2(X, S2Y ) − h2(Y, S2X)

= dτ2
2 (X, Y ) + τ1

2 (Y )τ2
1 (X) − τ2

1 (Y )τ1
2 (X),

(1.11) h1(X, S2Y ) − h1(Y, S2X)

= dτ1
2 (X, Y ) + τ1

1 (X)τ1
2 (Y ) − τ1

2 (X)τ1
1 (Y )

+ τ1
2 (X)τ2

2 (Y ) − τ2
2 (X)τ1

2 (Y )Let u = {X1, X2} be a loal frame of lass C∞

R
on a neighbourhood U of apoint p ∈ M . De�ne a symmetri bilinear form Gu by

(1.12) 2Gu(Y, Z)

= Det[X1, X2, DY X1, DZX2] + Det[X1, X2, DZX1, DY X2].We all a surfae non-degenerate if the form Gu is non-degenerate (whihdoes not depend on the hoie of u; see [W℄). From now on we will assumethat the surfae is non-degenerate. In a su�iently small neighbourhood ofeah point we an de�ne three branhes of a C-valued, C-bilinear symmetriform
gu(Y, Z) = Gu(Y, Z)(detu Gu)−1/3.



268 P. WitowizThe set of three branhes of gu is independent of the hoie of u. In this waywe get loally three omplex-valued metris whih we denote by g. We alleah of them an a�ne metri on M . From now on we �x an a�ne metriin a su�iently small neighbourhood of a given point. We will work withnull frames with respet to the a�ne metri g, that is, the frames {X1, X2}satisfying g(X1, X2) = 1 and g(Xj, Xj) = 0 for j = 1, 2. The followingtheorem assoiates a unique transversal frame to eah null tangent frame(see [NV℄, [W℄).
Theorem 1.2. Let σ be a transversal plane bundle and {X1, X2} be anull tangent frame. Then there exists a unique loal transversal frame {ξ1, ξ2}in σ suh that

(1.13) Det[X1, X2, ξ1, ξ2] = −2,and the seond fundamental forms have the following matries in the basis
{X1, X2}:
(1.14) h1 =

[
1 0
0 0

]
, h2 =

[
0 0
0 1

]
.From now on we will all the frame {ξ1, ξ2} determined by the last the-orem the transversal frame assoiated to the null tangent frame {X1, X2}.Notie that if we interhange the �elds X1 and X2, then the �elds ξ1, ξ2 inthe assoiated frame also interhange.The following lemma gives the transformation rules for the assoiatedframes.

Lemma 1.3. Let {X1, X2} and {Y1, Y2} be two null tangent frames. Let
{ξ1, ξ2} and {η1, η2} be the respetive assoiated transversal frames. Thenthere exists a C-valued non-zero funtion γ suh that

Y1 = γX1, Y2 = γ−1X2,(1.15)

η1 = γ2ξ1, η2 = γ−2ξ2,(1.16)after possibly interhanging X1 and X2, as well as ξ1 and ξ2, if neessary.Assume that an a�ne metri g is loally �xed. A omplex-valued metrion an arbitrary transversal plane bundle σ is de�ned in the following way.Let u = {X1, X2} be a null frame and {ξ1, ξ2} the assoiated transversalframe in σ. We de�ne a metri g⊥u on σ by
(1.17) g⊥u (ξ1, ξ1) = g⊥u (ξ2, ξ2) = 0, g⊥u (ξ1, ξ2) = −2and extend it to a C-bilinear symmetri form.It turns out that g⊥u is independent of the tangent frame u. Therefore wewill denote it by g⊥. Lemma 1.3 shows that for every g⊥-null frame {ξ1, ξ2}satisfying (1.17) there is a unique tangent g-null frame {X1, X2} suh that
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{ξ1, ξ2} is assoiated to it. Therefore we will all both frames assoiated toeah other.The following theorem holds ([W℄, f. [NV℄):
Theorem 1.5. For every omplex , non-degenerate surfae M in C

4 thereis a unique equia�ne transversal bundle σ suh that ∇⊥g⊥ is symmetri,where g⊥ is an arbitrary transversal metri.
Corollary 1.6. A transversal bundle σ is the a�ne normal bundle ifand only if the following equations hold :

(1.18)
∇g(X1, X2, X1) = ∇g(X2, X1, X2) = 0,

∇g(X1, X1, X1) = ∇g(X2, X2, X2) = 0,where ∇ is the onnetion indued by σ, {X1, X2} is a holomorphi nulltangent frame and g is the a�ne metri on the surfae.
Corollary 1.7. Let σ be a transversal bundle, {X1, X2} a holomorphinull tangent frame, and {ξ1, ξ2} the assoiated transversal frame. Then σ isthe a�ne normal bundle if and only if

(1.19) τ1
1 + τ2

2 = 0, τ1
2 (X1) = τ2

1 (X2) = 0.2. The proof of the main theorem. First we prove the followinglemma:
Lemma 2.1. If the surfae M satis�es assumption 1) of Theorem 1.1,then for every point of M there exists a neighbourhood and a null transver-sal frame {ξ1, ξ2} suh that the indued shape operators have the followingproperties:

(2.1) ∇S1 = 0, ∇S2 = 0.Proof. It su�es to de�ne a new transversal frame {ξ̃1, ξ̃2} by (1.15)and (1.16) with γ = e−
1

2
f .In what follows we will use the transversal frame obtained in the previouslemma and the assoiated tangent frame {X1, X2}. Introdue loal funtions

a1 to a8 by
(2.2)

∇X1
X1 = a1X1 + a2X2, ∇X1

X2 = a3X1 + a4X2,

∇X2
X1 = a5X1 + a6X2, ∇X2

X2 = a7X1 + a8X2.Using Corollary 1.6 we obtain
(2.3) a4 = −a1, a5 = −a8, a2 = 0, a7 = 0.The fat that ∇⊥g⊥ = 0 implies that
(2.4) τ1

2 = 0 and τ2
1 = 0



270 P. Witowizidentially. If we de�ne
(2.5) a = τ1

1 (X1), b = τ1
1 (X2),we also have

(2.6) −a = τ2
2 (X1), −b = τ2

2 (X2),using Corollary 1.7. The Codazzi equations (1.4) and (1.5) lead to
(2.7) a3 = −(b + 2a8), a6 = a − 2a1.We introdue funtions c1 to c4 as well as k1 to k4 suh that
(2.8)

S1X1 = c1X1 + c2X2, S1X2 = c3X1 + c4X2,

S2X1 = k1X1 + k2X2, S2X2 = k3X1 + k4X2.In the next three lemmas we give some properties of these funtions.
Lemma 2.2. The funtions c2 and k3 vanish identially and c3 = k2.Proof. Sine τ2

1 = 0, by (1.9) and (1.14) we have 0 = −h2(X2, S1X1) =
−h2(X2, c1X1 +c2X2) = −c2. Moreover (1.11), (1.14) and τ1

2 = 0 imply that
0 = h1(X1, S2X2) = h1(X1, k3X1 + k4X2) = k3. Using Corollary 1.7 andadding (1.8) and (1.10) we obtain 0 = h1(X1, S1X2)−h2(X2, S2X1) = c3−k2,whih ompletes the proof.
Lemma 2.3. The following equations hold :

(2.9) bc1 = ac3, ac4 = 0, bk1 = 0, bk2 = ak4.Proof. Sine ∇Sj = 0, the Codazzi equations (1.6) and (1.7) imply
0 = −bS1X1 + aS1X2 = (−bc1 + ac3)X1 + (−bc2 + ac4)X2,

0 = bS2X1 − aS2X2 = (bk1 − ak3)X1 + (bk2 − ak4)X2,and, by the previous lemma, we obtain (2.9).
Lemma 2.4. The oe�ients cj and kj , where j = 1, 2, satisfy

X1(c1) = 0,(2.10)

X1(c3) + 2a1c3 − a3(c1 − c4) = 0,(2.11)

X1(c4) = 0,(2.12)

X2(c1) − a6c3 = 0,(2.13)

a6(c1 − c4) = 0,(2.14)

X2(c3) − 2a8c3 = 0,(2.15)

X2(c4) + a6c3 = 0,(2.16)

X1(k1) + a3k2 = 0,(2.17)

X1(k2) − 2a1k2 = 0,(2.18)

−a3(k4 − k1) = 0,(2.19)

X1(k4) − a3k2 = 0,(2.20)
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X2(k2) + 2a8k2 + a6(k1 − k4) = 0,(2.21)

X2(k1) = 0,(2.22)

X2(k4) = 0.(2.23)Proof. The equations are onsequenes of the onditions ∇Sj = 0, ap-plied to all possible pairs of the vetor �elds Xk, Xl, for j, k, l = 1, 2.Substituting the triples (X1, X2, X1) and (X1, X2, X2) in the Gauss equa-tion (1.3) and using Lemma 2.2 we obtain the following lemma.
Lemma 2.5. The funtions a1, a3, a6 and a8 satisfy

X1(a8) + X2(a1) = c3 − a6a8 − a1a3 − 2a1a8 + a3a6,(2.24)

X1(a6) = −c4 + a6(a1 − a6),(2.25)

X2(a3) = −k1 + a3(a8 − a3).(2.26)We now de�ne an open and dense subset of M and we restrit our las-si�ation to this set. From the proof of Lemma 2.1 it follows that the framede�ned there was de�ned up to onstant non-zero fators. Thus the funtions
aj are also determined up to onstant fators. Therefore the following de�-nitions make sense on the whole surfae, although they use loal funtions.Set
(2.27) U1 = {p ∈ M a3 6= 0 or a6 6= 0}, U2 = U \ U1.Then U1 ∪ U2 is an open and dense subset of M . We onsider two ases.
Lemma 2.6. Any p ∈ U1 has a neighbourhood Up in whih k2 = c3 = 0identially , the funtions c1, c4, k1 and k4 are onstant , c1 = c4 and k1 = k4.Proof. Let Up be ontained in the domain of the frame with respet towhih the funtions cj and kj are de�ned. From the de�nitions of U1 and theholomorphy of the funtions onsidered it follows that c1 = c4 or k1 = k4 onthe whole Up.We �rst assume that c1 = c4. After adding (2.13) and (2.16) we have

X2(c1) = X2(c4) = 0 on Up. Taking into aount (2.10) and (2.12) weonlude that c1 and c4 are onstant. Now (2.13) implies that c3 = 0, andLemma 2.2 gives k2 = 0. If we onsider the system (2.19), (2.21), then by theassumptions we have k1 = k4. Using this fat and adding (2.17) and (2.20),we obtain X1(k1) = X1(k2) = 0. Taking into aount (2.22) and (2.23) nowshows that k1 and k4 are onstant. This ompletes the proof for c1 = c4. Theargument in the ase when k1 = k4 is analogous.
Lemma 2.7. There exists an open and dense subset V of U2 suh thatfor every p ∈ V there is a neighbourhood of p that is a�nely equivalent to



272 P. Witowizone of the following surfaes:
x(u, v) = (u, v, u2, v2),(2.28a)

x(u, v) = u · (1, v, v2, u2),(2.28b)

x(u, v) = (u3 + 3u2v, v3 + 3uv2, u − v, uv),(2.28c)

x(u, v) = (sinh(u), cosh(u), sinh(v), cosh(v)),(2.28d)

x(u, v) =

(
v,

1

2
v2, f1(u), f1(u)

u\ ds

(f ′
1(s))

2
−

u\f1(s) ds

(f ′
1(s))

2

)
,(2.28e)where f1 is an arbitrary holomorphi funtion of one variable de�ned in aneighbourhood of zero suh that f ′

1 6= 0 and f (3)(0) 6= 0.Proof. By de�nition of U2, a3 = a6 = 0 identially. Using (2.10), (2.12),(2.13), (2.16), (2.17), (2.20), (2.22) and (2.23) we �nd that c1, c4, k1 and k4are onstant. By (2.25) and (2.26) we immediately obtain
c4 = k1 = 0.We next use the Rii equation (1.8) keeping the notation (2.5):

c3 = X1(b) − X2(a) − τ1
1 ([X1, X2]).The Poisson braket [X1, X2] is equal to ∇X1
X2−∇X2

X1 = −a1X2 +a8X1,and the last equation is equivalent to
(2.29) c3 = X1(b) − X2(a) + a1b − a8a.Considering the equation (2.7), we rewrite (2.29) as
(2.30) c3 = −2X1(a8) − 2X2(a1) − 4a1a8.Next we onsider the equation (2.24), whih now has the form
(2.31) c3 = X1(a8) + X2(a1) + 2a1a8.Considering the system (2.30), (2.31), as well as Lemma 2.2, we obtain
(2.32) c3 = k2 = 0.We notie that the system (2.9) now has the form
(2.33) bc1 = 0, ak4 = 0.We de�ne the following open subsets of U2:
(2.34)

V1 = {p ∈ U2 c1k4 6= 0},
V2 = (U2 \ V 1) ∩ {c1 6= 0 or k1 6= 0},
V3 = U2 \ (V 1 ∪ V 2).Then V1∪V2∪V3 is an open and dense subset of U2. We notie that in V3 bothshape operators S1 and S2 are zero, so it is an umbilial surfae onsideredin [VVW℄ in the real inde�nite ase. Sine the argument and omputations



Complex surfaes 273are very similar in our ase, we onlude that there is an open and densesubset W of V3 whih is a�nely equivalent to one of the surfaes (2.28a�).Now, V1∪V2∪W is also an open and dense subset of U2. Let p ∈ V1. Thenin a neighbourhood of p we have a = b = 0, by (2.33) and the de�nition of
V1. This implies
(2.35) a1 = a8 = 0.In this ase we have ∇Xj

Xk = 0 for j, k = 1, 2, whene [X1, X2] = 0. Thereare loal omplex oordinates u and v suh that for the immersion x thefollowing equations hold:
xu = X1, xv = X2.By the Gauss formula (1.1) we obtain

(2.36) xuu = ξ1, xuv = 0, xvv = ξ2.This implies that xu depends only on u, and xv only on v. By the Weingartenformula we immediately obtain
(2.37)

(ξ1)u = −c1xu,

(ξ1)v = (ξ2)u = 0,

(ξ2)v = −k4xv.Combining (2.36) with (2.37) we obtain two di�erential equations:
(2.38) xuuu = −c1xu, xvvv = −k4xv.Integrating them we have

xu = cosh(
√
−c1u)A + sinh(

√
−c1u)B,

xv = cosh(
√
−k1v)C + sinh(

√
−k1v)D,where A, B, C and D are onstant vetors in C
4. Up to an a�ne transfor-mation we obtain the parametri equation

x(u, v) = (sinh(
√
−c1u), cosh(

√
−c1u), sinh(

√
−k1v), cosh(

√
−k1v)).If we treat x as a funtion of the variables √−c1u and √−c1v, we �nally getthe surfae (2.28d).We onsider the remaining ase. Let p ∈ V2. Let c1 6= 0 �rst. Whenwe hange the null frame {X1, X2} putting a onstant funtion γ suh that

γ2 = c1 in (1.15), the funtions a and b de�ned in (2.5) do not hange. Thuswe an assume that c1 = 1. By de�nition of V1, k4 is equal to 0. The �rstequation of (2.33) gives b = 0, whene a8 = 0. The equation (2.31) gives
X2(a1) = 0. Consider the system of di�erential equations
(2.39) X1(̺) = a1̺, X2(̺) = 0for an unknown funtion ̺ with ̺(p) 6= 0. It is easy to see that the systemsatis�es the integrability onditions, so it has a solution. We de�ne the vetor



274 P. Witowiz�elds X̃1 and X̃2 by the following formulas:
(2.40) X̃1 =

1

̺
X1, X̃2 = ̺X2.We then have ∇

X̃1

X̃2 = ̺−1X1(̺)X2 + ∇X1
X2 = ̺−1a1̺X2 − a1X2 = 0and, similarly, ∇

X̃2

X̃1 = 0. Thus there exist loal oordinates u and v in aneighbourhood of zero suh that x(0, 0) = p and
(2.41) xu =

1

̺
X1, xv = ̺X2.The frame {X̃1, X̃2} is a null frame. The assoiated transversal frame {ξ̃1, ξ̃2}is given by

(2.42) ξ̃1 =
1

̺2
ξ1, ξ̃2 = ̺2ξ2.To use the Gauss formula (1.1), we ompute

∇
X̃1

X̃1 =
1

̺
∇X1

(
1

̺
X1

)
= −1

̺

X1(̺)

̺2
X1 +

1

̺2
a1X1 = 0.Similarly, ∇X̃1

X̃2 = 0 and ∇X̃2
X̃2 = 0. Thus we have

(2.43) xuu = ξ̃1, xuv = 0, xvv = ξ̃2.The Weingarten formula implies
(ξ̃1)u = D̺−1X1

(
1

̺2
ξ1

)
=

1

̺

−2X1(̺)

̺3
ξ1 +

1

̺3
(−S1X1 +τ1

1 (X1)ξ1)(2.44)

=
−2a1

̺3
ξ1 −

1

̺3
X1 +

2a1

̺3
ξ1 = − 1

̺2
X̃1,

(ξ̃1)v = D̺X2

(
1

̺2
ξ1

)
= ̺

−2X2(̺)

̺3
ξ1 +

1

̺
(−S1X2 + τ1

1 (X2)ξ1)(2.45)

=
2a8

̺
ξ1 = 0,

(ξ̃2)u = D̺−1X1
(̺2ξ2) =

1

̺
2X1(̺)̺ξ2 + ̺(−S2X1 + τ2

2 (X1)ξ2)(2.46)

= 2a1̺ξ2 − 2̺a1ξ2 = 0,

(ξ̃2)v = D̺X2
(̺2ξ2) = ̺ · 2X2(̺)̺ξ2 + ̺(−S2X2 + τ2

2 (X2)ξ2) = 0.(2.47)The equations (2.46), (2.47) and (2.43) imply that xvv is a onstant vetor.Hene
(2.48) xv = v · A + Bfor onstant vetors A, B ∈ C4. By (2.42), (2.43), (2.45) and (2.46) we have
(2.49) xuuu = −̺−2xu.



Complex surfaes 275We an treat (2.49) as a one-variable di�erential equation, homogeneous oforder two. Its solution is of the form
(2.50) xu = g1(u)C + g2(u)E,where C and E are elements of C

4, and the funtions g1 and g2 are linearlyindependent solutions of the di�erential equation
(2.51) y′′ + ̺−2y = 0.We an always hoose g1 and g2 so that they are loally di�erent fromzero, whih implies that the surfae obtained by (2.48) and (2.49) is non-degenerate. (2.51) implies that their seond derivatives are also di�erent fromzero. By the assumption, a1 an be any funtion of u. Thus the funtion ̺(u)given by the equation ̺′ = a1 is arbitrary and non-zero in a neighbourhoodof zero. Let f1 and f2 be inde�nite integrals of g1 and g2, respetively. Sine
xu and xuu are linearly independent, the determinant ∣∣∣∣

f ′
1 f ′

2

f ′′
1 f ′′

2

∣∣∣∣ is di�erentfrom zero.On the other hand, f ′
1 and f ′

2 satisfy (2.51) and are non-zero, so
(2.52) f ′′′

1 f ′

2 − f ′

1f
′′′

2 = 0.Using this equation, we ompute
(f ′

1f
′′

2 − f ′

2f
′′

1 )′ = f ′′

1 f ′′

2 + f ′

1f
′′′

2 − f ′′

1 f ′′

2 − f ′′′

1 f ′

2 = 0,whene
(2.53) r := f ′

1f
′′

2 − f ′

2f
′′

1is a non-zero onstant. We an see that eah hoie of f1 with f ′
1(0) 6= 0 and

f
(3)
1 6= 0 leads to an equation of a desired surfae. Fix suh an f1. Then (2.51)de�nes the funtion ̺ expliitly. By (2.53), whih we treat as a �rst orderequation with respet to f ′

2, we obtain this funtion and its integral up to aonstant. It has the form
(2.54) f2(u) = rf1(u)

u\ ds

(f ′
1(s))

2
− r

u\f1(s) ds

(f ′
1(s))

2
.Then by (2.48) and (2.50) and after applying an a�ne transformation we getthe parametri equation (g) from the main theorem. The last ase, c1 = 0and k4 6= 0, an be redued to the previous one by interhanging X1 and X2.Notie that the surfaes we have obtained are essentially di�erent, thatis, not a�nely equivalent. In the ase of the umbilial surfaes this followsfrom the explanation given in [VVW℄. For the other surfaes it follows fromthe fat that the shape operators are di�erent and annot oinide afteradmissible transformations of the null frames.



276 P. WitowizProof of Theorem 1.1. By (2.27) the set U = U1 ∪ U2 is open and densein M . If p ∈ U1, then by Lemma 2.6 it follows that there is a neighbourhoodof p whih is an umbilial surfae. Then from [VVW℄ (the real inde�niteumbilial ase) it follows that the neighbourhood is one of the surfaes (a)to (e). On the other hand, we an hoose a transversal frame for whih theshape operators satisfy ∇S1 = 0, ∇S2 = 0.If p ∈ U2, then Lemma 2.7 gives surfaes (a), (b), (), (f) and (g). Toprove the onverse in this ase it is enough to verify that the surfaes (f)and (g) satisfy assumption 1) of the theorem. For (f) we an see that theshape operators have onstant oe�ients with respet to the assoiatednull tangent frame. This implies ∇S1 = ∇S2 = 0. For (g) we hoose a frame
{X̃1, X̃2} suh that ∇X̃j

X̃k = 0 for all j, k. From (2.44)�(2.47), we see thatonly S̃1X̃1 is non-zero and it is equal to −̺−3X̃1. The equations (2.1) arenow satis�ed with f = −̺−3. This ompletes the proof of the theorem.
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