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Fun
tional di�erential inequalities with unbounded delayby Z. Kamont and S. Kozieł (Gda«sk)Abstra
t. Classi
al solutions of fun
tional partial di�erential inequalities with initialboundary 
onditions are estimated by maximal solutions of suitable problems for ordinaryfun
tional di�erential equations. Uniqueness of solutions and 
ontinuous dependen
e ongiven fun
tions are obtained as appli
ations of the 
omparison result. A theorem on weakfun
tional di�erential inequalities generated by mixed problems is proved. Our method isbased on an axiomati
 approa
h to equations with unbounded delay. Examples of phasespa
es are given.1. Introdu
tion. The papers of Haar [6℄ and Wa»ewski [20℄ initiatedthe theory of �rst order partial di�erential inequalities. The fundamentalresult, known as the Haar�Wa»ewski inequality, shows that a fun
tion ofseveral variables whi
h is of 
lass C1 on the Haar pyramid and satis�es alinear di�erential inequality 
an be estimated by a solution of a suitableinitial value problem for an ordinary di�erential equation.There exist many generalizations of the above 
lassi
al result. We listsome of them below.The di�erential inequality may be nonlinear with respe
t to the unknownfun
tion and 
onsequently, the 
omparison problem may be nonlinear. Theassumptions on the regularity of the unknown fun
tion 
onsidered on theHaar pyramid may be weakened. Ve
tor-valued fun
tions satisfying systemsof partial di�erential inequalities 
an be estimated by solutions of ordinarydi�erential problems ([13, Vol. II℄ and [14℄).The Haar�Wa»ewski inequality has been extended to semi
lassi
al solu-tions of nonlinear di�erential inequalities ([5℄, [17℄, [18℄). Comparison resultsfor generalized entropy solutions of nonlinear di�erential or fun
tional di�er-ential problems are dis
ussed in [11℄ and [12℄. The results of those two papersare lo
al with respe
t to spatial variables. Di�erential inequalities and suit-able 
omparison results for initial boundary value problems are given in [4℄.2000 Mathemati
s Subje
t Classi�
ation: 35R10, 34K12.Key words and phrases: unbounded delay, initial boundary problems, phase spa
es,fun
tional di�erential inequalities. [19℄



20 Z. Kamont and S. KozieªComparison theorems global with respe
t to spatial variables are presentedin [2℄ for 
lassi
al solutions and in [19, Chapter VIII℄ for semi
lassi
al solu-tions. Di�erential inequalities with Kamke type 
omparison problems 
an befound in [1℄, [14℄. An interesting result on the global uniqueness of the Cau
hyproblem when the right hand side of the equation satis�es the Hölder 
ondi-tion 
an be found in [3℄. In�nite systems of fun
tional di�erential inequalitiesare studied in [15℄. Vis
osity solutions of fun
tional di�erential inequalitiesare studied in [16℄. Fun
tional di�erential versions of the Haar�Wa»ewskiinequality 
an be found in [8℄.The monographs [8℄ and [19℄ 
ontain an exposition of re
ent developmentson hyperboli
 di�erential and fun
tional di�erential inequalities.The aim of this paper is to add a new element to the above sequen
eof generalizations of the Haar�Wa»ewski inequality. We prove 
omparisonresults for fun
tional di�erential inequalities with unbounded delay.Di�erential inequalities �nd numerous appli
ations in the theory of �rstorder partial di�erential or fun
tional di�erential equations, in
luding ques-tions su
h as: estimates of solutions of initial or initial boundary value prob-lems, estimates of domains of solutions, estimates of the di�eren
e betweensolutions of two problems, 
riterions of uniqueness and 
ontinuous depen-den
e of solutions on given fun
tions.We now formulate our fun
tional di�erential problem. We use ve
torialinequalities with the understanding that the same inequalities hold betweenthe 
orresponding 
omponents. Set R+ = [0,∞) and R− = (−∞, 0].Let a > 0, r = (r1, . . . , rn) ∈ R
n
+, and b = (b1, . . . , bn) ∈ R

n, where
bi > 0 for 1 ≤ i ≤ n, be given. Fix an integer κ, 0 ≤ κ ≤ n. For ea
h
x = (x1, . . . , xn) ∈ R

n we write x = (x′, x′′), where x′ = (x1, . . . , xκ) and
x′′ = (xκ+1, . . . , xn). We have x′ = x if κ = n and x′′ = x if κ = 0. Write
c = b + r and de�ne

E = [0, a] × [−b′, b′) × (−b′′, b′′],

E0 = (−∞, 0] × [−b′, c′] × [−c′′, b′′],

∂0E = (0, a] × ([−b′, c′] \ [−b′, b′)) × ([−c′′, b′′] \ (−b′′, b′′]),

Ω = E ∪ E0 ∪ ∂0E,

D = R− × [0, r′] × [−r′′, 0].For a fun
tion z : Ω → R and a point (t, x) ∈ E we de�ne a fun
tion
z(t,x) : D → R as follows:

z(t,x)(τ, s) = z(t + τ, x + s), (τ, s) ∈ D.The fun
tion z(t,x) is the restri
tion of z to the set R− × [x′, x′ + r′] ×
[x′′ − r′′, x′′] and this restri
tion is shifted to the set D. We 
onsider the
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tional di�erential inequalities 21nonlinear fun
tional di�erential equation with unbounded delay(1) ∂tz(t, x) = f(t, x, z(t,x), ∂xz(t, x))together with the initial boundary 
ondition(2) z(t, x) = ϕ(t, x) for (t, x) ∈ E0 ∪ ∂0E,where ∂xz=(∂x1
z, . . . , ∂xn

z) and ϕ : E0 ∪ ∂0E → R and f : E × Y ×R
n→Rare given fun
tions. Here Y denotes an abstra
t linear spa
e satisfying suit-able axioms. Elements of Y are fun
tions from D into R, and Y is 
alled aphase spa
e for (1).Further assumptions on Y are given in Se
tion 3. The set D is su
h thatthe fun
tional dependen
e in (1) is of the Volterra type.A fun
tion u : Ω → R is 
alled a 
lassi
al solution of (1), (2) if(i) u is 
ontinuous on E ∪ ∂0E and u(0,x) ∈ Y for x ∈ [−b, b],(ii) the partial derivatives ∂tu, ∂xu exist on E,(iii) u satis�es (1) on E and the initial boundary 
ondition (2) holds.Existen
e results for hyperboli
 fun
tional di�erential equations with un-bounded delay 
an be found in [9℄, [10℄.The paper is organized as follows. In Se
tion 2 we prove that undernatural assumptions on given fun
tions there is a maximal solution of aninitial value problem for an ordinary fun
tional di�erential equation withunbounded delay and it depends 
ontinuously on the given fun
tions. A
omparison result for �rst order fun
tional di�erential inequalities with un-bounded delay is presented in Se
tion 3. It is the main result of the paper.Uniqueness of 
lassi
al solutions of problem (1), (2) and 
ontinuous depen-den
e on given fun
tions are obtained as appli
ations of the 
omparisonresult. Examples of phase spa
es are given in Se
tion 3. A theorem on weakfun
tional di�erential inequalities generated by (1), (2) is presented in Se
-tion 4.Our method is based on an axiomati
 approa
h to equations with un-bounded delay.2. Extremal solutions of initial value problems. For any metri
spa
es U and W we denote by C(U, W ) the 
lass of all 
ontinuous fun
tionsde�ned on U and taking values on W.For a fun
tion y : (−∞, a] → R, a > 0, and t ∈ (−∞, a] we de�ne

yt : R− → R by yt(τ) = y(t + τ), τ ∈ R−.In this se
tion we 
onsider 
lassi
al solutions of the Cau
hy problem forordinary fun
tional di�erential equations with unbounded delay
y′(t) = g(t, yt),(3)
y(t) = η(t) for t ∈ R−.(4)



22 Z. Kamont and S. Kozieªwhere g : [0, a] × X → R and η : R− → R are given fun
tions and X is anabstra
t linear spa
e satisfying suitable axioms. Elements of X are fun
tionsmapping R− into R, and it is 
alled a phase spa
e for (3).Set
X+ = {η ∈ X : η(t) ≥ 0 for t ∈ R−}.The axioms on X are the following ([7℄).

Assumption H[X]. X is a normed linear spa
e with the norm ‖ · ‖Xwhi
h satis�es the 
onditions:1) if y : (−∞, a] → R, a > 0, is a fun
tion su
h that y0 ∈ X and
y|[0,a] ∈ C([0, a], R) then(i) yt ∈ X for t ∈ (0, a],(ii) there are 
onstants H, K, L ∈ R+ independent of y su
h that for

t ∈ [0, a],
|y(t)| ≤ H‖yt‖X ,

‖yt‖X ≤ K max{|y(τ)| : τ ∈ [0, t]} + L‖y0‖X ,(iii) the mapping t 7→ yt is 
ontinuous from [0, a] to X,2) (X, ‖ · ‖X) is a Bana
h spa
e.We say that the fun
tion g satis�es the monotoni
ity 
ondition W+ iffor any (t, w), (t, w) ∈ [0, a] × X su
h that w(τ) ≤ w(τ) for τ ∈ R− and
w(0) = w(0) we have g(t, w) ≤ g(t, w).Given w ∈ X, let sw : (−∞, a] → R be de�ned by

sw(t) = w(t) for t ∈ R− and sw(t) = w(0) for t ∈ [0, a],and write stw = (sw)t where t ∈ (−∞, a]. Denote by ‖ · ‖[0,τ ] the supremumnorm in the spa
e C([0, τ ], R) where τ ∈ R+.The aim of this se
tion is to prove that under natural assumptions on gand η there is a lo
al maximal solution of problem (3), (4). We also provethat the maximal solutions depend 
ontinuously on given fun
tions. To thisend, we also 
onsider the following initial value problem:
y′(t) = g(t, yt) + ε,(5)
y(t) = η(t) + η(t, ε) for t ∈ R−,(6)where ε ≥ 0 and η(·, ε) ∈ X for ε ≥ 0.

Assumption H[η(·, ε)]. The family of fun
tions {η(·, ε)}ε≥0 satis�es the
onditions:1) η(·, ε) ∈ X and η(t, ε) ≥ 0 for t ∈ R− and η(0, ε) = ε,2) η(t, 0) = 0 for t ∈ R− and(7) lim
ε→0

‖η(·, ε)‖X = 0.
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1) Assumptions H[X] and H[η(·, ε)] hold ,
2) g ∈ C([0, a] × X, R) satis�es the monotoni
ity 
ondition W+,
3) the 
onstants α, M, d > 0 are de�ned by the relations

|g(t, stη)| ≤ M for t ∈ [0, a],

|g(t, w) − g(t, stη)| ≤ 1 for ‖w − stη‖X ≤ d, t ∈ [0, a],and
α = min

{
a,

d

2K(M + 1 + 0.5d)

}
,

4) the parameter ε satis�es the 
onditions(8) 0 ≤ ε ≤ d/4, Kε + L‖η(·, ε)‖X ≤ d/4.Then the Cau
hy problem (5), (6) has the maximal solution ω(·, ε) on theinterval (−∞, α],(9) lim
ε→0

ω(t, ε) = ω(t) uniformly on [0, α],and ω(·) is the maximal solution of (3), (4) on (−∞, α].Proof. De�ne χ ∈ X by
χ(t) =

{
0 for t ∈ (−∞,−1],

t + 1 for t ∈ (−1, 0].We 
onsider the Cau
hy problem
y′(t) = g(t, yt) + ε + ξ,(10)
y(t) = η(t) + η(t, ε) + ξχ(t) for t ∈ R−.(11)Suppose that(12) 0 < ξ ≤ d/4 and Kξ + Lξ‖χ‖X ≤ d/4.We prove that for ξ satisfying (12) there is a solution ω(·, ε, ξ) of (10), (11)on (−∞, α]. Let B denote the spa
e of all fun
tions y : (−∞, α] → R su
hthat y0 ∈ X and y|[0,α] ∈ C([0, α], R). For y ∈ B we de�ne

‖y‖B = ‖y0‖X + ‖y‖[0,α].Then (B, ‖ · ‖B) is a Bana
h spa
e. Let U ⊂ B denote the set of fun
tions
y : (−∞, α] → R su
h that(i) y(t) = η(t) + η(t, ε) + ξχ(t) for t ∈ R−,(ii) |y(t) − y(t)| ≤ (M + 1 + 0.5d)|t − t| for t, t ∈ [0, α].De�ne a mapping T : U → B by setting, for y ∈ U ,

T [y](t) =





η(t) + η(t, ε) + ξχ(t) for t ∈ R−,

η(0) + ε + ξ +

t\
0

[g(τ, yτ ) + ε + ξ] dτ for t ∈ [0, α].



24 Z. Kamont and S. KozieªIt follows from 
ondition 1) of Assumption H[X] that yt ∈ X for t ∈ [0, α]so T is well de�ned on U . Suppose that w ∈ X and(13) ‖w − st(η + η(·, ε) + ξχ)‖X ≤ d/2.Then
‖w − stη‖X ≤ 0.5d + ‖stη(·, ε)‖X + ‖st(ξχ)‖X

≤ 0.5d + Kε + L‖η(·, ε)‖X + Kξ + Lξ‖χ‖X ≤ d, t ∈ [0, α].We thus get, for w ∈ X satisfying (13),
|g(t, w)| ≤ M + 1, t ∈ [0, α].It follows that for y ∈ U and t ∈ [0, α] we have

‖yt − st(η + η(·, ε) + ξχ)‖X

≤ K max{|y(τ) − (η(0) + ε + ξ)| : τ ∈ [0, α]} ≤ K(M + 1 + 0.5d)α ≤ 0.5dand 
onsequently
|T [y](t) − T [y](t)| ≤

∣∣∣
t\
t

[g(τ, yτ ) + ε + ξ] dτ
∣∣∣ ≤ (M + 1 + 0.5d)|t − t|for all t, t ∈ [0, α]. Thus, T maps U into itself. The 
ontinuity of g showsthat T is 
ontinuous on U . Now, an appli
ation of the S
hauder �xed pointtheorem yields the existen
e of at least one solution ω(·, ε, ξ) of the equation

y = T [y]. The solution is de�ned on (−∞, α] for ea
h ε and ξ satisfying (8)and (12) respe
tively. It is easily seen that ω(·, ε, ξ) is a 
lassi
al solution of(10), (11).Now we prove that for ξ1 < ξ2 satisfying (12) we have(14) ω(t, ε, ξ1) < ω(t, ε, ξ2) for t ∈ (0, α].Suppose not. Then the set
I+ = {t ∈ [0, α] : ω(t, ε, ξ1) ≥ ω(t, ε, ξ2)}is not empty. If we put t̃ = min I+, it is 
lear that t̃ > 0 and(15) ω′(t̃, ε, ξ1) ≥ ω′(t̃, ε, ξ2).It follows from the monotoni
ity 
ondition W+ and from (10) that

ω′(t, ε, ξ1) − ω′(t, ε, ξ2) < g(t̃, ωt̃(·, ε, ξ1)) − g(t̃, ωt̃(·, ε, ξ2)) ≤ 0,whi
h 
ontradi
ts (15). Hen
e I+ is empty and the statement follows.Consider now a sequen
e {ξm}∞m=0 of numbers su
h that(i) ξm satis�es (12) for m ≥ 0,(ii) ξm+1 < ξm for m ≥ 0 and limm→∞ ξm = 0.Then the sequen
e {ω(·, ε, ξm)}∞m=0 is uniformly 
onvergent on [0, α] and
lim

m→∞
‖ξmχ‖X = 0.
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tional di�erential inequalities 25Moreover we have(16) ω(t, ε, ξm) = η(0) + ε + ξm +

t\
0

[g(τ, ωτ (·, ε, ξm)) + ε + ξm] dτfor all t ∈ [0, α]. Write(17) ω(t, ε) = lim
m→∞

ω(t, ε, ξm), t ∈ (−∞, α].Letting m → ∞ in (16) shows that ω(·, ε) is a 
lassi
al solution of (5), (6).It remains to show that it is the maximal solution on (−∞, α]. Let ω̃(·, ε) :
(−∞, α̃] → R be a solution of (5), (6) and α0 = min(α, α̃). Then

ω̃′(t, ε) < g(t, ωt(·, ε)) + ε + ξm,

ω′(t, ε, ξm) = g(t, ωt(·, ε, ξm)) + ε + ξm, t ∈ [0, α0],and 
onsequently ω̃(t, ε) < ω(t, ε, ξm) for t ∈ [0, α0] and m ≥ 0. It followsfrom (17) that ω̃(t, ε) ≤ ω(t, ε) for t ∈ [0, α0]. Thus ω(·, ε) is the maximalsolution of (5), (6).Let ω(·) denote the maximal solution of (3), (4). It follows easily that for
ε satisfying (8) we have

ω(t) ≤ ω(t, ε), t ∈ [0, α].The fun
tions {ω(·, ε)|[0,α]} are uniformly bounded and equi
ontinuous. Itfollows from assumption (7) and from the As
oli�Arzelà theorem that asser-tion (9) holds. This 
ompletes the proof.Remark 2.1. Suppose that 0 ≤ ε ≤ d/4 and1) the fun
tion η 7→ ‖η(· ε)‖X is nonde
reasing,2) K < 1 and the 
onstant d satis�es the 
ondition
L‖η(· , d/4)‖X ≤ (1 − K)d/4.Then the se
ond inequality in (8) is satis�ed.Now we prove a theorem on the 
ontinuous dependen
e of maximal so-lutions of (3), (4) on initial fun
tions.

Assumption Hc[X]. Assumption H[X] is ful�lled and if y : (−∞, a]→Ris su
h that y0 ∈ X and y|[0,a] ∈ C([0, a], R) then the mapping (τ, t) 7→ styτis 
ontinuous for (τ, t) ∈ [0, a] × [0, a], t ≥ τ.Theorem 2.2. Suppose that
1) Assumptions Hc[X] and H[η(·, ε)] hold and η ∈ X,
2) 
ondition 2) of Theorem 2.1 is satis�ed and ω is the maximal solutionof (3), (4) existing on the interval (−∞, a].



26 Z. Kamont and S. KozieªThen for any 0 < a0 < a there is ε0 > 0 su
h that for ea
h 0 < ε ≤ ε0 themaximal solution ω(·, ε) of problem (5), (6) exists on (−∞, a0] and
lim
ε→0

ω(t, ε) = ω(t) uniformly on [0, a0].Proof. Let 0 < a0 < a be �xed. The proof will be divided into 2 steps.I. We �rst prove the following property of equations with unboundeddelay. Suppose that τ ∈ [0, a0] and that the family of fun
tions
γ(·, ε) : (−∞, τ ] → R+, ε > 0,satis�es the 
onditions(i) γ0(·, ε) ∈ X and γ(τ, ε) = ε for ε ≥ 0,(ii) γ(·, ε)|[0,τ ] is 
ontinuous for ea
h ε ≥ 0 and

lim
ε→0

[ ‖γ0(·, ε)‖X + ‖γ(·, ε)‖[0,τ ] ] = 0.Consider the Cau
hy problem
y′(t) = g(t, yt) + ε,(18)
y(t) = ω(t) + γ(t, ε) for t ∈ (−∞, τ ].(19)We prove that there are ε̃ > 0 and α̃ > 0 (independent of τ) su
h that for

0 < ε ≤ ε̃ there is the maximal solution ω̃(·, ε, τ) of (18), (19) de�ned on
(−∞, τ + α̃] and

lim
ε→0

ω̃(t, ε, τ) = ω(t) uniformly on [τ, τ + α̃].It is easily seen that problem (18), (19) is equivalent to
y′(t) = g(t + τ, yt) + ε,(20)
y(t) = ωτ (t) + γτ (t, ε) for t ∈ R−.(21)More pre
isely, a fun
tion ỹ : (−∞, τ + α̃] → R satis�es (18), (19) if andonly if the fun
tion y : (−∞, τ ] → R given by y(t) = ỹ(t + τ) satis�es (20),(21). It follows from Assumption Hc[X] that there are M̃, b̃ > 0 su
h that

|g(t + τ, stωτ )| ≤ M̃, τ ∈ [0, a0], t ∈ [τ, a],and
|g(t + τ, w) − g(t + τ, stωτ )| ≤ 1 for ‖w − stωτ‖X ≤ b̃,for all τ ∈ (0, a0] and t ∈ [τ, a]. Suppose that ε satis�es(22) 0 < ε ≤ b̃/4,

Kε + L‖γ0(·, ε)‖X + K max{|γ(ξ, ε)| : ξ ∈ [0, τ ]} ≤ b̃/4.Write
α̃ = min

{
a − a0,

b̃

2K(M̃ + 1 + 0.5b̃)

}
.
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tional di�erential inequalities 27It follows from Theorem 2.1 that the maximal solution ω̃(·, ε, τ) of (20), (21)exists on (−∞, α̃] and
lim
ε→0

ω̃(t, ε, τ) = ωτ (t) uniformly on [0, α̃].A

ording to the above 
onsiderations, for ε satisfying (22) there exists themaximal solution ω(·, ε, τ) of problem (18), (19). The solution is de�ned on
(−∞, τ + α̃] and

lim
ε→0

ω(t, ε, τ) = ω(t) uniformly on [τ, τ + α̃].II. Fix ε > 0. We will prove that there is ε̃ > 0 su
h that for 0 < ε ≤ ε̃we have:(i) the maximal solution ω(·, ε) of (5), (6) exists on (−∞, a0],(ii) ω(t, ε) − ω(t) < ε for t ∈ [0, a0].Consider the Cau
hy problem (18), (19) with τ = 0 and γ(·, ε) = η(·, ε) for
ε > 0. A

ording to step I, we �nd ε1 > 0 su
h that for 0 < ε ≤ ε1 thereexists the maximal solution ω(·, ε) of (5), (6). The fun
tion ω(·, ε) is de�nedon (−∞, α̃] and ω(t, ε) − ω(t) < ε for t ∈ [0, α̃].Now 
onsider the fun
tional di�erential problem

y′(t) = g(t, yt) + ε,(23)
y(t) = ω(t, ε) for t ∈ (−∞, α̃],(24)where 0 < ε < ε1. It follows that there is ε̃2 > 0 su
h that for 0 < ε ≤ ε2 wehave:(i) the maximal solution ω2(·, ε) of (23), (24) is de�ned on (−∞, 2α̃],(ii) ω2(t, ε) − ω(t) < ε for t ∈ [α̃, 2α̃].Thus, the maximal solution ω(·, ε) of (5), (6) for 0 < ε ≤ ε2 is de�ned on

(−∞, 2α̃] and
ω(t, ε) − ω(t) < ε for t ∈ [0, 2α̃].The above pro
edure 
an be repeated k times until kα̃ > a0, whi
h gives theexisten
e of εk > 0 su
h that for any 0 < ε ≤ εk, the maximal solution ω(·, ε)of problem (5), (6) is de�ned on (−∞, a0] ⊂ (−∞, kα̃] and ω(t, ε)−ω(t) < εfor t ∈ [0, a0]. This 
ompletes the proof.3. Comparison theorems for mixed problems. We formulate as-sumptions on the spa
e Y . Write I = [0, r′] × [−r′′, 0]. Assume that c > 0,

w : (−∞, c] × I → R and t ∈ (−∞, c]. De�ne a fun
tion w(t) : D → R by
w(t)(τ, s) = w(t + τ, s), (τ, s) ∈ D. If w : (−∞, c] × I → R, c > 0, and
w|[0,a]×I ∈ C([0, a] × I, R) then we write

‖w‖[0,t]×I = max{|w(τ, s)| : (τ, s) ∈ [0, t] × I}, 0 ≤ t ≤ c.The axioms on Y are the following.
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Assumption H[Y ]. Y is a normed linear spa
e with the norm ‖ · ‖Ywhi
h satis�es the 
onditions:1) there is ξ ∈ R+ su
h that for all w ∈ Y we have

|w(0, x)| ≤ ξ‖w‖Y , x ∈ I,2) if w : (−∞, c] × I → R, c > 0, is a fun
tion su
h that w(0) ∈ Y and
w|[0,c]×I ∈ C([0, c] × I, R) then w(t) ∈ Y for t ∈ (0, c] and(i) the mapping t 7→ w(t) is 
ontinuous from [0, c] to Y ,(ii) there are K, K0 ∈ R+ independent of w su
h that

‖w(t)‖Y ≤ K‖w‖[0,t]×I + K0‖w(0)‖Y , t ∈ [0, c].3) (Y, ‖ · ‖Y ) is a Bana
h spa
e.In order to get 
omparison results based on ordinary fun
tional di�erentialequations, it is ne
essary to formulate some relations between the spa
es Yand X.For a fun
tion w : (−∞, 0] × I → R we de�ne V [w] : R− → R+ by
V [w](t) = sup{|w(t, x)| : x ∈ I}, t ∈ R−;the value V [w](t) = ∞ is not ex
luded. For z : Ω → R and (t, x) ∈ E wewrite V z(t,x) instead of V [z(t,x)].

Assumption H[X, Y ]. Assumptions Hc[X] and H[Y ] hold and if w ∈ Ythen V [w] ∈ X.Examples of spa
es Y and X satisfying Assumption H[X, Y ] are givenbelow. Note that Assumption H[Y ] and all the spa
es Y given in this se
-tion appear in the papers on the existen
e of solutions for equations withunbounded delay [9℄, [10℄.Example 3.1. Let Y be the 
lass of all fun
tions w : D → R whi
h areuniformly 
ontinuous and bounded on D. For w ∈ Y we put(25) ‖w‖Y = sup{|w(τ, s)| : (τ, s) ∈ D}.Let X be the spa
e of all η : R− → R whi
h are uniformly 
ontinuous andbounded on R−. Write(26) ‖η‖X = sup{|η(τ)| : τ ∈ R−}.Then Assumption H[X, Y ] holds.Example 3.2. Let Y be the 
lass of all w : D → R su
h that w ∈
C(D, R) and the limit

lim
t→−∞

w(t, x) = w0(x) exists uniformly with respe
t to x ∈ I.The norm in Y is de�ned by (25). Let X be the spa
e of all η : R− → Rsu
h that η ∈ C(R−, R) and the limit limt→−∞ η(t) exists. The norm in Xis de�ned by (26). Then Assumption H[X, Y ] is satis�ed.
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tional di�erential inequalities 29Example 3.3. Let γ : R− → (0,∞) be a 
ontinuous nonin
reasing fun
-tion. Let Y be the spa
e of all 
ontinuous fun
tions w : D → R su
h that
lim

t→−∞
w(t, x)/γ(t) = 0, x ∈ I.Put

‖w‖Y = sup{|w(t, x)|/γ(t) : (t, x) ∈ D}.Let X be the 
lass of all 
ontinuous fun
tions η : R− → R su
h that
lim

t→−∞
η(t)/γ(t) = 0.Put

‖η‖X = sup{|η(t)|/γ(t) : t ∈ R−}.Then Assumption H[X, Y ] is satis�ed.Example 3.4. Fix p ≥ 1. Denote by Y the 
lass of all w : D → R su
hthat(i) for ea
h t ∈ R− the fun
tion w(t, ·) : I → R is 
ontinuous,(ii) for x ∈ I we have
0\

−∞

|w(τ, x)|p dτ < ∞.We de�ne the norm in Y by
‖w‖Y = max{|w(t, x)| : (t, x) ∈ {0} × I}

+

0\
−∞

[max{|w(τ, x)|p : x ∈ I}] dτ.Let X be the spa
e of all η : R− → R su
h that
η is 
ontinuous at 0 and 0\

−∞

|η(τ)|p dτ < ∞.Write
‖η‖X =

( 0\
−∞

|η(τ)|p dτ
)1/p

.Then Assumption H[X, Y ] holds.Example 3.5. Denote by Y the set of all fun
tions w : D → R whi
hare bounded and(i) for ea
h t ∈ R− the fun
tion w(t, ·) : I → R is 
ontinuous,(ii) w is 
ontinuous on {0} × I and for x ∈ I we have
W (x) = sup

{ −m\
−(m+1)

|w(τ, x)| dτ : m ∈ N

}
< ∞.
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‖w‖Y = max{|w(t, x)| : (t, x) ∈ {0} × I} + sup{W (x) : x ∈ I}.Let X be the 
lass of all η : R− → R whi
h are bounded and

‖η‖0 = sup
{ −m\

−(m+1)

|η(τ)| dτ : n ∈ N

}
< ∞.

We also assume that η is 
ontinuous at 0. Write
‖η‖X = |η(0)| + ‖η‖0.Then Assumption H[X, Y ] is satis�ed.Suppose that

σ : [0, a] × X+ → R+ and λ : E → R
n, λ = (λ1, . . . , λn),are given fun
tions. We 
onsider fun
tional di�erential inequalities of theform(27) ∣∣∣∂tz(t, x) −

n∑

i=1

λi(t, x)∂xi
z(t, x)

∣∣∣ ≤ σ(t, V z(t,x)).We prove that a fun
tion u : Ω → R satisfying (27) 
an be estimated by amaximal solution of a suitable initial value problem for an ordinary fun
tionaldi�erential equation.
Assumption H[σ, λ]. The fun
tions σ ∈ C([0, a] × X+, R+) and λ ∈

C(E, Rκ
+ × R

n−κ
− ) satisfy the 
onditions:1) σ satis�es the monotoni
ity 
ondition W+,2) for any fun
tion η ∈ X+ the maximal solution of the initial problem(28) y′(t) = σ(t, yt), y0 = η,is de�ned on (−∞, a].We 
an now formulate the main result in this se
tion.Theorem 3.1. Suppose that Assumptions H[X, Y ] and H[σ, λ] are sat-is�ed and

1) u : Ω → R is 
ontinuous on E ∪ ∂0E and u(0,x) ∈ Y for x ∈ [−b, b],
2) there is η ∈ X+ su
h that η(t) ≤ η(0) for t ∈ R− and

|u(t, x)| ≤ η(t) for (t, x) ∈ E0,

|u(t, x)| ≤ η(0) for (t, x) ∈ ∂0E,

3) u satis�es (27) on E.Under the above assumptions we have(29) |u(t, x)| ≤ ω(t, η) for (t, x) ∈ E,where ω(·, η) is the maximal solution of (28).
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ω̃(t) = sup{|u(t, x)| : x ∈ [−b′, c′] × [−c′′, b′′]}, t ∈ (−∞, a].Then estimate (29) is equivalent to(30) ω̃(t) ≤ ω(t, η), t ∈ (−∞, a].Fix a0 ∈ (0, a). Consider the Cau
hy problem

y′(t) = σ(t, yt) + ε,(31)
y(t) = η(t) + h(t, ε), t ∈ R−,(32)where(33) h(t, ε) =

{
0 for t ∈ (−∞,−ε],

t + ε for t ∈ (−ε, 0].It follows that there is ε0 > 0 su
h that for 0 < ε ≤ ε0 there is the maximalsolution ω(·, η, ε) of (31), (32). The fun
tion ω(·, η, ε) is de�ned on (−∞, a0]and
lim
ε→0

ω(t, η, ε) = ω(t, η) uniformly on [0, a0].We prove that(34) ω̃(t) < ω(t, η, ε) for t ∈ [0, a0],where 0 < ε ≤ ε0. Suppose this is not true. Then the set
I+ = {t ∈ [0, a0] : ω̃(t) ≥ ω(t, η, ε)}is not empty. If we put t̃ = min I+ it is 
lear that t̃ > 0 and

ω̃(τ) < ω(τ, η, ε) for τ ∈ [0, t̃),

ω̃(t̃) = ω(t̃, η, ε).This gives(35) D−ω̃(t̃) ≥ ω′(t̃, η, ε)where D− is the left-hand lower Dini derivative. There is x̃ ∈ [−b′, c′] ×
[−c′′, b′′], x̃ = (x̃1, . . . , x̃n), su
h that ω̃(t̃) = |u(t̃, x̃)|. Let I(+), I(−), I(0) bethe sets of integers (possibly empty) su
h that I(+)∪ I(−)∪ I(0) = {1, . . . , n}and

x̃i ≥ bi for i ∈ I(+), x̃i ≤ −bi for i ∈ I(−),

−bi < x̃i < bi for i ∈ I(0).Sin
e (t̃, x̃) /∈ ∂0E, we have
{1, . . . , κ} ∩ I(+) = ∅ and {κ + 1, . . . , n} ∩ I(−) = ∅.



32 Z. Kamont and S. KozieªIt follows that either (i) ω̃(t̃) = u(t̃, x̃) or (ii) ω̃(t̃) = −u(t̃, x̃). If (i) holds,then
∂xi

u(t̃, x̃) ≥ 0 for i ∈ I(+), ∂xi
u(t̃, x̃) ≤ 0 for i ∈ I(−),

∂xi
u(t̃, x̃) = 0 for i ∈ I(0).It follows from Assumption H[σ, λ] and from (27) that

D−ω̃(t̃) ≤ ∂tu(t̃, x̃) ≤ σ(t̃, V u(t̃,x̃)) +
n∑

i=1

λi(t̃, x̃)∂xi
u(t̃, x̃)

< σ(t̃, ωt̃(·, η, ε)) + ε = ω′(t̃, η, ε),whi
h 
ontradi
ts (35).Similar 
onsiderations apply if 
ase (ii) holds. Then the set I+ is emptyand estimate (34) follows.Letting ε tend to 0 in (34), we obtain inequality (30) on [0, a0]. By thearbitrariness of a0 ∈ (0, a), the assertion follows.Remark 3.1. Assumption 2) of Theorem 3.1 
an be repla
ed by
2′) there is η ∈ X+ su
h that |u(t, x)| ≤ η(t) for (t, x) ∈ E0 and

|u(t, x)| ≤ ω(t, η) for (t, x) ∈ ∂0E where ω(·, η) is the maximal solu-tion of (28).Let us now 
onsider two problems: problem (1), (2) and the followingone:
∂tz(t, x) = f̃(t, x, z(t,x), ∂xz(t, x)),(36)

z(t, x) = ϕ̃(t, x) for (t, x) ∈ E0 ∪ ∂0E,(37)where f̃ : E × Y × R
n → R and ϕ̃ : E0 ∪ ∂0E → R are given fun
tions. Let

u, ũ : Ω → R denote 
lassi
al solutions of (1), (2) and (36), (37) respe
tively.Now we are going to give an estimate of u − ũ on E.

Assumption H[f ]. Assumption H[X, Y ] is satis�ed and1) the fun
tion f : E×Y ×R
n → R of the variables (t, x, w, q) is 
ontin-uous and the derivatives (∂q1

f, . . . , ∂qn
f) = ∂qf exist on E × Y × R

nand ∂qf ∈ C(E × Y × R
n, Rn),2) for (t, x, w, q) ∈ E × Y × R

n we have
∂qi

f(t, x, w, q) ≥ 0 for 1 ≤ i ≤ κ,

∂qi
f(t, x, w, q) ≤ 0 for κ + 1 ≤ i ≤ n,3) there is σ ∈ C([0, a] × X+, R+) su
h that(i) σ satis�es the monotoni
ity 
ondition W+ and for ea
h η ∈ X+and γ ∈ C([0, a], R+) the maximal solution of the problem



Fun
tional di�erential inequalities 33(38) y′(t) = σ(t, yt) + γ(t), y0 = η,exists on (−∞, a],(ii) the estimate
|f(t, x, w, q) − f(t, x,w, q)| ≤ σ(t, V [w − w])is satis�ed on E × Y × R

n.Theorem 3.2. Suppose that Assumption H[f ] is satis�ed and
1) the fun
tions ϕ, ϕ̃ : E0 ∪ ∂0E → R are 
ontinuous on ∂0E and satisfy

ϕ(0,x) ∈ Y , ϕ̃(0,x) ∈ Y for x ∈ [−b, b],
2) there is η ∈ X+ su
h that η(t) ≤ η(0) for t ∈ R− and

|ϕ(t, x) − ϕ̃(t, x)| ≤ η(t) for (t, x) ∈ E0,

|ϕ(t, x) − ϕ̃(t, x)| ≤ η(0) for (t, x) ∈ ∂0E,

3) f̃ : E ×Y ×R
n → R is 
ontinuous and there is γ ∈ C([0, a], R+) su
hthat

|f(t, x, w, q) − f̃(t, x, w, q)| ≤ γ(t) on E × Y × R
n,

4) u, ũ : Ω → R
n are 
lassi
al solutions of (1), (2) and (36), (37), respe
-tively.Under these assumptions we have(39) |u(t, x) − ũ(t, x)| ≤ ω(t, η, γ) for (t, x) ∈ E,where ω(·, η, γ) is the maximal solution of (38).Proof. The fun
tion z̃(t, x) = (u − ũ)(t, x) for (t, x) ∈ Ω satis�es theinitial boundary estimates
|z̃(t, x)| ≤ η(t) for (t, x) ∈ E0,

|z̃(t, x)| ≤ η(0) for (t, x) ∈ ∂0E.Moreover,
∣∣∣∂tz̃(t, x) −

n∑

i=1

1\
0

∂qi
f(P (t, x, τ)) dτ∂xi

z̃(t, x)
∣∣∣ ≤ σ(t, V z̃(t,x)) + γ(t),where (t, x) ∈ E and

P (t, x, τ) = (t, x, u(t,x), ∂xu(t, x) + τ∂x(ũ − u)(t, x)).Hen
e, (39) follows by applying Theorem 3.1 to z̃.The following uniqueness and 
ontinuous dependen
e results are imme-diate 
onsequen
es of Theorem 3.2.Theorem 3.3. Suppose that Assumption H[f ] is satis�ed and the fun
-tion y(t) = 0, t ∈ (−∞, a], is the maximal solution of (28) 
orresponding



34 Z. Kamont and S. Kozieªto η(t) = 0, t ∈ R−. Then the mixed problem (1), (2) admits at most one
lassi
al solution. Moreover , for every ε > 0 there exists δ > 0 su
h that if
|f(t, x, w, q) − f̃(t, x, w, q)| < δ on E × Y × R

nand
|ϕ(t, x) − ϕ̃(t, x)| < δ on E0 ∪ ∂0Ethen(40) |u(t, x) − ũ(t, x)| < ε on E,where u and ũ are the solutions of (1), (2) and (36), (37), respe
tively.Proof. Uniqueness of 
lassi
al solutions of (1), (2) is a 
onsequen
e ofTheorem 3.2 with f̃ = f , γ(t) = 0 for t ∈ [0, a] and η(t) = 0 for t ∈ R−.For ε > 0 we 
an 
hoose δ > 0 so that the maximal solution ω(·, η, γ) of(38), where γ ∈ C([0, a], R+), η ∈ X+ and γ(t) ≤ δ on [0, a], η(t) ≤ η(0) = δfor t ∈ R−, satis�es the 
ondition ω(t, η, γ) < ε for t ∈ [0, a]. Now, assertion(40) follows from Theorem 3.2.4. Fun
tional di�erential inequalities. We now prove a theorem onweak fun
tional di�erential inequalities generated by the mixed problem(1), (2).Let θ : E → R

n be the zero fun
tion.
Assumption H0[f ]. Assumption H[X, Y ] is satis�ed and1) 
onditions 1), 2) of Assumption H[f ] hold,2) f satis�es the following monotoni
ity 
ondition: if w, w ∈ Y and

w(τ, s) ≤ w(τ, s) for (τ, s) ∈ D and w(0, 0) = w(0, 0) then f(t, x, w, q)
≤ f(t, x,w, q) for all (t, x, q) ∈ E × R

n,3) there exists σ su
h that H[σ, θ] holds with y(t) ≡ 0 being the maximalsolution of (28) for η(t) = 0, t ∈ R−, and the estimate(41) f(t, x, w, q) − f(t, x,w, q) ≤ σ(t, V [w − w])is satis�ed for (t, x, q) ∈ E ×R
n and for w, w ∈ Y su
h that w(τ, s) ≥

w(τ, s) on D.Denote by F the Nemytski�� operator 
orresponding to (1), i.e.
F [z](t, x) = f(t, x, z(t,x), ∂xz(t, x)).Theorem 4.1. Suppose that Assumption H0[f ] is satis�ed and the fun
-tions u, v : Ω → R are su
h that

1) u|E∪∂0E and v|E∪∂0E are 
ontinuous and the partial derivatives
∂tu(t, x), ∂tv(t, x), ∂xu(t, x), ∂xv(t, x)exist on E,
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2) u(0,x), v(0,x) ∈ Y for x ∈ [−b, b] and the initial boundary inequality

u(t, x) ≤ v(t, x), (t, x) ∈ E0 ∪ ∂0E,is satis�ed ,
3) the di�erential fun
tional inequality(42) ∂tu(t, x) − F [u](t, x] ≤ ∂tv(t, x) − F [v](t, x)holds on E.Under these assumptions we have u(t, x) ≤ v(t, x) on E.Proof. Fix a0 ∈ (0, a). We will prove that(43) u(t, x) ≤ v(t, x) for (t, x) ∈ E ∩ ([0, a0] × R

n).Consider the Cau
hy problem(44) y′(t) = σ(t, yt) + ε, y(t) = h(t, ε) for t ∈ R−,where h(·, ε) is given by (33). It follows that there is ε0 > 0 su
h that for
0 < ε ≤ ε0 there is the maximal solution ω̃(·, ε) of (44). The fun
tion ω̃(·, ε)is de�ned on (−∞, a0] and

lim
ε→0

ω̃(t, ε) = 0 uniformly on [0, a0].Write
ṽ(t, x) = v(t, x) + ω̃(t, ε) for (t, x) ∈ Ω ∩ ((−∞, a0] × R

n]).We prove that(45) u(t, x) < v(t, x) for (t, x) ∈ E ∩ ([0, a0] × R
n).Suppose otherwise. Then the set

J+ = {t ∈ [0, a0] : (u − ṽ)(t, x) ≥ 0 for some x ∈ [−b, b]}is not empty. If we put t̃ = minJ+, it is 
lear that t̃ > 0 and there exists
x̃ = (x̃1, . . . , x̃n) ∈ [−b, b] su
h that

u(t, x) < ṽ(t, x) for (t, x) ∈ [0, t̃) × R
nand u(t̃, x̃) = ṽ(t̃, x̃). Then we have(46) u(t̃,x̃)(τ, s) ≤ ṽ(t̃,x̃(τ, s) for (τ, s) ∈ D, u(t̃,x̃)(0, 0) = ṽ(t̃,x̃)(0, 0).It is easy to see that(47) ∂t(u − ṽ)(t̃, x̃) ≥ 0.There exist sets of integers I(+), I(−), I(0) (possibly empty) su
h that I(+)∪

I(−) ∪ I(0) = {1, . . . , n} and
x̃i = bi for i ∈ I(+), x̃i = −bi for i ∈ I(−),

−bi < x̃i < bi for i ∈ I(0).
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e (t̃, x̃) 6∈ ∂0E we have {1, . . . , κ}∩I(+) = ∅ and {κ+1, . . . , n}∩I(−) = ∅.We thus get(48) ∂xi
(u− ṽ)(t̃, x̃) ≥ 0 for i ∈ I(+), ∂xi

(u− ṽ)(t̃, x̃) ≤ 0 for i ∈ I(−)and(49) ∂xi
(u − ṽ)(t̃, x̃) = 0 for i ∈ I(0).From (41), (42), (46) it follows that

∂t(u − ṽ)(t̃, x̃) ≤ F [u](t̃, x̃) − F [v](t̃, x̃) − ω̃′(t̃, ε)

≤ [f(t̃, x̃, ṽ(t̃,x̃), ∂xu(t̃, x̃) ) − f( t̃, x̃, v(t̃,x̃), ∂xu(t̃, x̃))]

+ f(t̃, x̃, v(t̃,x̃), ∂xu(t̃, x̃))

− f(t̃, x̃, v(t̃,x̃), ∂xṽ(t̃, x̃)) − ω̃′(t̃, ε)

≤ σ(t̃, ω̃t̃(·, ε)) +
n∑

i=1

∂qi
f(Q)∂xi

(u − ṽ)(t̃, x̃) − ω̃′(t̃, ε),where Q ∈ E × Y × R
n is an intermediate point. From the above estimatesand from (48), (49) we dedu
e that ∂t(u − ṽ)(t̃, x̃) < 0, whi
h 
ontradi
ts(47). Thus estimate (45) is proved. Now, letting ε → 0 we obtain (43). Bythe arbitrariness of a0 ∈ (0, a) the assertion follows.Remark 4.1. Assumption 3) of Theorem 4.1 
an be repla
ed by thefollowing 
ondition: the di�erential fun
tional inequality (41) is satis�ed onthe set
{(t, x) ∈ E : u(t, x) > v(t, x)}.Remark 4.2. Suppose that Assumption H0[f ] is satis�ed. Then themixed problem (1), (2) admits at most one 
lassi
al solution.
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