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Funtional di�erential inequalities with unbounded delayby Z. Kamont and S. Kozieł (Gda«sk)Abstrat. Classial solutions of funtional partial di�erential inequalities with initialboundary onditions are estimated by maximal solutions of suitable problems for ordinaryfuntional di�erential equations. Uniqueness of solutions and ontinuous dependene ongiven funtions are obtained as appliations of the omparison result. A theorem on weakfuntional di�erential inequalities generated by mixed problems is proved. Our method isbased on an axiomati approah to equations with unbounded delay. Examples of phasespaes are given.1. Introdution. The papers of Haar [6℄ and Wa»ewski [20℄ initiatedthe theory of �rst order partial di�erential inequalities. The fundamentalresult, known as the Haar�Wa»ewski inequality, shows that a funtion ofseveral variables whih is of lass C1 on the Haar pyramid and satis�es alinear di�erential inequality an be estimated by a solution of a suitableinitial value problem for an ordinary di�erential equation.There exist many generalizations of the above lassial result. We listsome of them below.The di�erential inequality may be nonlinear with respet to the unknownfuntion and onsequently, the omparison problem may be nonlinear. Theassumptions on the regularity of the unknown funtion onsidered on theHaar pyramid may be weakened. Vetor-valued funtions satisfying systemsof partial di�erential inequalities an be estimated by solutions of ordinarydi�erential problems ([13, Vol. II℄ and [14℄).The Haar�Wa»ewski inequality has been extended to semilassial solu-tions of nonlinear di�erential inequalities ([5℄, [17℄, [18℄). Comparison resultsfor generalized entropy solutions of nonlinear di�erential or funtional di�er-ential problems are disussed in [11℄ and [12℄. The results of those two papersare loal with respet to spatial variables. Di�erential inequalities and suit-able omparison results for initial boundary value problems are given in [4℄.2000 Mathematis Subjet Classi�ation: 35R10, 34K12.Key words and phrases: unbounded delay, initial boundary problems, phase spaes,funtional di�erential inequalities. [19℄



20 Z. Kamont and S. KozieªComparison theorems global with respet to spatial variables are presentedin [2℄ for lassial solutions and in [19, Chapter VIII℄ for semilassial solu-tions. Di�erential inequalities with Kamke type omparison problems an befound in [1℄, [14℄. An interesting result on the global uniqueness of the Cauhyproblem when the right hand side of the equation satis�es the Hölder ondi-tion an be found in [3℄. In�nite systems of funtional di�erential inequalitiesare studied in [15℄. Visosity solutions of funtional di�erential inequalitiesare studied in [16℄. Funtional di�erential versions of the Haar�Wa»ewskiinequality an be found in [8℄.The monographs [8℄ and [19℄ ontain an exposition of reent developmentson hyperboli di�erential and funtional di�erential inequalities.The aim of this paper is to add a new element to the above sequeneof generalizations of the Haar�Wa»ewski inequality. We prove omparisonresults for funtional di�erential inequalities with unbounded delay.Di�erential inequalities �nd numerous appliations in the theory of �rstorder partial di�erential or funtional di�erential equations, inluding ques-tions suh as: estimates of solutions of initial or initial boundary value prob-lems, estimates of domains of solutions, estimates of the di�erene betweensolutions of two problems, riterions of uniqueness and ontinuous depen-dene of solutions on given funtions.We now formulate our funtional di�erential problem. We use vetorialinequalities with the understanding that the same inequalities hold betweenthe orresponding omponents. Set R+ = [0,∞) and R− = (−∞, 0].Let a > 0, r = (r1, . . . , rn) ∈ R
n
+, and b = (b1, . . . , bn) ∈ R

n, where
bi > 0 for 1 ≤ i ≤ n, be given. Fix an integer κ, 0 ≤ κ ≤ n. For eah
x = (x1, . . . , xn) ∈ R

n we write x = (x′, x′′), where x′ = (x1, . . . , xκ) and
x′′ = (xκ+1, . . . , xn). We have x′ = x if κ = n and x′′ = x if κ = 0. Write
c = b + r and de�ne

E = [0, a] × [−b′, b′) × (−b′′, b′′],

E0 = (−∞, 0] × [−b′, c′] × [−c′′, b′′],

∂0E = (0, a] × ([−b′, c′] \ [−b′, b′)) × ([−c′′, b′′] \ (−b′′, b′′]),

Ω = E ∪ E0 ∪ ∂0E,

D = R− × [0, r′] × [−r′′, 0].For a funtion z : Ω → R and a point (t, x) ∈ E we de�ne a funtion
z(t,x) : D → R as follows:

z(t,x)(τ, s) = z(t + τ, x + s), (τ, s) ∈ D.The funtion z(t,x) is the restrition of z to the set R− × [x′, x′ + r′] ×
[x′′ − r′′, x′′] and this restrition is shifted to the set D. We onsider the



Funtional di�erential inequalities 21nonlinear funtional di�erential equation with unbounded delay(1) ∂tz(t, x) = f(t, x, z(t,x), ∂xz(t, x))together with the initial boundary ondition(2) z(t, x) = ϕ(t, x) for (t, x) ∈ E0 ∪ ∂0E,where ∂xz=(∂x1
z, . . . , ∂xn

z) and ϕ : E0 ∪ ∂0E → R and f : E × Y ×R
n→Rare given funtions. Here Y denotes an abstrat linear spae satisfying suit-able axioms. Elements of Y are funtions from D into R, and Y is alled aphase spae for (1).Further assumptions on Y are given in Setion 3. The set D is suh thatthe funtional dependene in (1) is of the Volterra type.A funtion u : Ω → R is alled a lassial solution of (1), (2) if(i) u is ontinuous on E ∪ ∂0E and u(0,x) ∈ Y for x ∈ [−b, b],(ii) the partial derivatives ∂tu, ∂xu exist on E,(iii) u satis�es (1) on E and the initial boundary ondition (2) holds.Existene results for hyperboli funtional di�erential equations with un-bounded delay an be found in [9℄, [10℄.The paper is organized as follows. In Setion 2 we prove that undernatural assumptions on given funtions there is a maximal solution of aninitial value problem for an ordinary funtional di�erential equation withunbounded delay and it depends ontinuously on the given funtions. Aomparison result for �rst order funtional di�erential inequalities with un-bounded delay is presented in Setion 3. It is the main result of the paper.Uniqueness of lassial solutions of problem (1), (2) and ontinuous depen-dene on given funtions are obtained as appliations of the omparisonresult. Examples of phase spaes are given in Setion 3. A theorem on weakfuntional di�erential inequalities generated by (1), (2) is presented in Se-tion 4.Our method is based on an axiomati approah to equations with un-bounded delay.2. Extremal solutions of initial value problems. For any metrispaes U and W we denote by C(U, W ) the lass of all ontinuous funtionsde�ned on U and taking values on W.For a funtion y : (−∞, a] → R, a > 0, and t ∈ (−∞, a] we de�ne

yt : R− → R by yt(τ) = y(t + τ), τ ∈ R−.In this setion we onsider lassial solutions of the Cauhy problem forordinary funtional di�erential equations with unbounded delay
y′(t) = g(t, yt),(3)
y(t) = η(t) for t ∈ R−.(4)



22 Z. Kamont and S. Kozieªwhere g : [0, a] × X → R and η : R− → R are given funtions and X is anabstrat linear spae satisfying suitable axioms. Elements of X are funtionsmapping R− into R, and it is alled a phase spae for (3).Set
X+ = {η ∈ X : η(t) ≥ 0 for t ∈ R−}.The axioms on X are the following ([7℄).

Assumption H[X]. X is a normed linear spae with the norm ‖ · ‖Xwhih satis�es the onditions:1) if y : (−∞, a] → R, a > 0, is a funtion suh that y0 ∈ X and
y|[0,a] ∈ C([0, a], R) then(i) yt ∈ X for t ∈ (0, a],(ii) there are onstants H, K, L ∈ R+ independent of y suh that for

t ∈ [0, a],
|y(t)| ≤ H‖yt‖X ,

‖yt‖X ≤ K max{|y(τ)| : τ ∈ [0, t]} + L‖y0‖X ,(iii) the mapping t 7→ yt is ontinuous from [0, a] to X,2) (X, ‖ · ‖X) is a Banah spae.We say that the funtion g satis�es the monotoniity ondition W+ iffor any (t, w), (t, w) ∈ [0, a] × X suh that w(τ) ≤ w(τ) for τ ∈ R− and
w(0) = w(0) we have g(t, w) ≤ g(t, w).Given w ∈ X, let sw : (−∞, a] → R be de�ned by

sw(t) = w(t) for t ∈ R− and sw(t) = w(0) for t ∈ [0, a],and write stw = (sw)t where t ∈ (−∞, a]. Denote by ‖ · ‖[0,τ ] the supremumnorm in the spae C([0, τ ], R) where τ ∈ R+.The aim of this setion is to prove that under natural assumptions on gand η there is a loal maximal solution of problem (3), (4). We also provethat the maximal solutions depend ontinuously on given funtions. To thisend, we also onsider the following initial value problem:
y′(t) = g(t, yt) + ε,(5)
y(t) = η(t) + η(t, ε) for t ∈ R−,(6)where ε ≥ 0 and η(·, ε) ∈ X for ε ≥ 0.

Assumption H[η(·, ε)]. The family of funtions {η(·, ε)}ε≥0 satis�es theonditions:1) η(·, ε) ∈ X and η(t, ε) ≥ 0 for t ∈ R− and η(0, ε) = ε,2) η(t, 0) = 0 for t ∈ R− and(7) lim
ε→0

‖η(·, ε)‖X = 0.



Funtional di�erential inequalities 23Theorem 2.1. Suppose that
1) Assumptions H[X] and H[η(·, ε)] hold ,
2) g ∈ C([0, a] × X, R) satis�es the monotoniity ondition W+,
3) the onstants α, M, d > 0 are de�ned by the relations

|g(t, stη)| ≤ M for t ∈ [0, a],

|g(t, w) − g(t, stη)| ≤ 1 for ‖w − stη‖X ≤ d, t ∈ [0, a],and
α = min

{
a,

d

2K(M + 1 + 0.5d)

}
,

4) the parameter ε satis�es the onditions(8) 0 ≤ ε ≤ d/4, Kε + L‖η(·, ε)‖X ≤ d/4.Then the Cauhy problem (5), (6) has the maximal solution ω(·, ε) on theinterval (−∞, α],(9) lim
ε→0

ω(t, ε) = ω(t) uniformly on [0, α],and ω(·) is the maximal solution of (3), (4) on (−∞, α].Proof. De�ne χ ∈ X by
χ(t) =

{
0 for t ∈ (−∞,−1],

t + 1 for t ∈ (−1, 0].We onsider the Cauhy problem
y′(t) = g(t, yt) + ε + ξ,(10)
y(t) = η(t) + η(t, ε) + ξχ(t) for t ∈ R−.(11)Suppose that(12) 0 < ξ ≤ d/4 and Kξ + Lξ‖χ‖X ≤ d/4.We prove that for ξ satisfying (12) there is a solution ω(·, ε, ξ) of (10), (11)on (−∞, α]. Let B denote the spae of all funtions y : (−∞, α] → R suhthat y0 ∈ X and y|[0,α] ∈ C([0, α], R). For y ∈ B we de�ne

‖y‖B = ‖y0‖X + ‖y‖[0,α].Then (B, ‖ · ‖B) is a Banah spae. Let U ⊂ B denote the set of funtions
y : (−∞, α] → R suh that(i) y(t) = η(t) + η(t, ε) + ξχ(t) for t ∈ R−,(ii) |y(t) − y(t)| ≤ (M + 1 + 0.5d)|t − t| for t, t ∈ [0, α].De�ne a mapping T : U → B by setting, for y ∈ U ,

T [y](t) =





η(t) + η(t, ε) + ξχ(t) for t ∈ R−,

η(0) + ε + ξ +

t\
0

[g(τ, yτ ) + ε + ξ] dτ for t ∈ [0, α].



24 Z. Kamont and S. KozieªIt follows from ondition 1) of Assumption H[X] that yt ∈ X for t ∈ [0, α]so T is well de�ned on U . Suppose that w ∈ X and(13) ‖w − st(η + η(·, ε) + ξχ)‖X ≤ d/2.Then
‖w − stη‖X ≤ 0.5d + ‖stη(·, ε)‖X + ‖st(ξχ)‖X

≤ 0.5d + Kε + L‖η(·, ε)‖X + Kξ + Lξ‖χ‖X ≤ d, t ∈ [0, α].We thus get, for w ∈ X satisfying (13),
|g(t, w)| ≤ M + 1, t ∈ [0, α].It follows that for y ∈ U and t ∈ [0, α] we have

‖yt − st(η + η(·, ε) + ξχ)‖X

≤ K max{|y(τ) − (η(0) + ε + ξ)| : τ ∈ [0, α]} ≤ K(M + 1 + 0.5d)α ≤ 0.5dand onsequently
|T [y](t) − T [y](t)| ≤

∣∣∣
t\
t

[g(τ, yτ ) + ε + ξ] dτ
∣∣∣ ≤ (M + 1 + 0.5d)|t − t|for all t, t ∈ [0, α]. Thus, T maps U into itself. The ontinuity of g showsthat T is ontinuous on U . Now, an appliation of the Shauder �xed pointtheorem yields the existene of at least one solution ω(·, ε, ξ) of the equation

y = T [y]. The solution is de�ned on (−∞, α] for eah ε and ξ satisfying (8)and (12) respetively. It is easily seen that ω(·, ε, ξ) is a lassial solution of(10), (11).Now we prove that for ξ1 < ξ2 satisfying (12) we have(14) ω(t, ε, ξ1) < ω(t, ε, ξ2) for t ∈ (0, α].Suppose not. Then the set
I+ = {t ∈ [0, α] : ω(t, ε, ξ1) ≥ ω(t, ε, ξ2)}is not empty. If we put t̃ = min I+, it is lear that t̃ > 0 and(15) ω′(t̃, ε, ξ1) ≥ ω′(t̃, ε, ξ2).It follows from the monotoniity ondition W+ and from (10) that

ω′(t, ε, ξ1) − ω′(t, ε, ξ2) < g(t̃, ωt̃(·, ε, ξ1)) − g(t̃, ωt̃(·, ε, ξ2)) ≤ 0,whih ontradits (15). Hene I+ is empty and the statement follows.Consider now a sequene {ξm}∞m=0 of numbers suh that(i) ξm satis�es (12) for m ≥ 0,(ii) ξm+1 < ξm for m ≥ 0 and limm→∞ ξm = 0.Then the sequene {ω(·, ε, ξm)}∞m=0 is uniformly onvergent on [0, α] and
lim

m→∞
‖ξmχ‖X = 0.



Funtional di�erential inequalities 25Moreover we have(16) ω(t, ε, ξm) = η(0) + ε + ξm +

t\
0

[g(τ, ωτ (·, ε, ξm)) + ε + ξm] dτfor all t ∈ [0, α]. Write(17) ω(t, ε) = lim
m→∞

ω(t, ε, ξm), t ∈ (−∞, α].Letting m → ∞ in (16) shows that ω(·, ε) is a lassial solution of (5), (6).It remains to show that it is the maximal solution on (−∞, α]. Let ω̃(·, ε) :
(−∞, α̃] → R be a solution of (5), (6) and α0 = min(α, α̃). Then

ω̃′(t, ε) < g(t, ωt(·, ε)) + ε + ξm,

ω′(t, ε, ξm) = g(t, ωt(·, ε, ξm)) + ε + ξm, t ∈ [0, α0],and onsequently ω̃(t, ε) < ω(t, ε, ξm) for t ∈ [0, α0] and m ≥ 0. It followsfrom (17) that ω̃(t, ε) ≤ ω(t, ε) for t ∈ [0, α0]. Thus ω(·, ε) is the maximalsolution of (5), (6).Let ω(·) denote the maximal solution of (3), (4). It follows easily that for
ε satisfying (8) we have

ω(t) ≤ ω(t, ε), t ∈ [0, α].The funtions {ω(·, ε)|[0,α]} are uniformly bounded and equiontinuous. Itfollows from assumption (7) and from the Asoli�Arzelà theorem that asser-tion (9) holds. This ompletes the proof.Remark 2.1. Suppose that 0 ≤ ε ≤ d/4 and1) the funtion η 7→ ‖η(· ε)‖X is nondereasing,2) K < 1 and the onstant d satis�es the ondition
L‖η(· , d/4)‖X ≤ (1 − K)d/4.Then the seond inequality in (8) is satis�ed.Now we prove a theorem on the ontinuous dependene of maximal so-lutions of (3), (4) on initial funtions.

Assumption Hc[X]. Assumption H[X] is ful�lled and if y : (−∞, a]→Ris suh that y0 ∈ X and y|[0,a] ∈ C([0, a], R) then the mapping (τ, t) 7→ styτis ontinuous for (τ, t) ∈ [0, a] × [0, a], t ≥ τ.Theorem 2.2. Suppose that
1) Assumptions Hc[X] and H[η(·, ε)] hold and η ∈ X,
2) ondition 2) of Theorem 2.1 is satis�ed and ω is the maximal solutionof (3), (4) existing on the interval (−∞, a].



26 Z. Kamont and S. KozieªThen for any 0 < a0 < a there is ε0 > 0 suh that for eah 0 < ε ≤ ε0 themaximal solution ω(·, ε) of problem (5), (6) exists on (−∞, a0] and
lim
ε→0

ω(t, ε) = ω(t) uniformly on [0, a0].Proof. Let 0 < a0 < a be �xed. The proof will be divided into 2 steps.I. We �rst prove the following property of equations with unboundeddelay. Suppose that τ ∈ [0, a0] and that the family of funtions
γ(·, ε) : (−∞, τ ] → R+, ε > 0,satis�es the onditions(i) γ0(·, ε) ∈ X and γ(τ, ε) = ε for ε ≥ 0,(ii) γ(·, ε)|[0,τ ] is ontinuous for eah ε ≥ 0 and

lim
ε→0

[ ‖γ0(·, ε)‖X + ‖γ(·, ε)‖[0,τ ] ] = 0.Consider the Cauhy problem
y′(t) = g(t, yt) + ε,(18)
y(t) = ω(t) + γ(t, ε) for t ∈ (−∞, τ ].(19)We prove that there are ε̃ > 0 and α̃ > 0 (independent of τ) suh that for

0 < ε ≤ ε̃ there is the maximal solution ω̃(·, ε, τ) of (18), (19) de�ned on
(−∞, τ + α̃] and

lim
ε→0

ω̃(t, ε, τ) = ω(t) uniformly on [τ, τ + α̃].It is easily seen that problem (18), (19) is equivalent to
y′(t) = g(t + τ, yt) + ε,(20)
y(t) = ωτ (t) + γτ (t, ε) for t ∈ R−.(21)More preisely, a funtion ỹ : (−∞, τ + α̃] → R satis�es (18), (19) if andonly if the funtion y : (−∞, τ ] → R given by y(t) = ỹ(t + τ) satis�es (20),(21). It follows from Assumption Hc[X] that there are M̃, b̃ > 0 suh that

|g(t + τ, stωτ )| ≤ M̃, τ ∈ [0, a0], t ∈ [τ, a],and
|g(t + τ, w) − g(t + τ, stωτ )| ≤ 1 for ‖w − stωτ‖X ≤ b̃,for all τ ∈ (0, a0] and t ∈ [τ, a]. Suppose that ε satis�es(22) 0 < ε ≤ b̃/4,

Kε + L‖γ0(·, ε)‖X + K max{|γ(ξ, ε)| : ξ ∈ [0, τ ]} ≤ b̃/4.Write
α̃ = min

{
a − a0,

b̃

2K(M̃ + 1 + 0.5b̃)

}
.



Funtional di�erential inequalities 27It follows from Theorem 2.1 that the maximal solution ω̃(·, ε, τ) of (20), (21)exists on (−∞, α̃] and
lim
ε→0

ω̃(t, ε, τ) = ωτ (t) uniformly on [0, α̃].Aording to the above onsiderations, for ε satisfying (22) there exists themaximal solution ω(·, ε, τ) of problem (18), (19). The solution is de�ned on
(−∞, τ + α̃] and

lim
ε→0

ω(t, ε, τ) = ω(t) uniformly on [τ, τ + α̃].II. Fix ε > 0. We will prove that there is ε̃ > 0 suh that for 0 < ε ≤ ε̃we have:(i) the maximal solution ω(·, ε) of (5), (6) exists on (−∞, a0],(ii) ω(t, ε) − ω(t) < ε for t ∈ [0, a0].Consider the Cauhy problem (18), (19) with τ = 0 and γ(·, ε) = η(·, ε) for
ε > 0. Aording to step I, we �nd ε1 > 0 suh that for 0 < ε ≤ ε1 thereexists the maximal solution ω(·, ε) of (5), (6). The funtion ω(·, ε) is de�nedon (−∞, α̃] and ω(t, ε) − ω(t) < ε for t ∈ [0, α̃].Now onsider the funtional di�erential problem

y′(t) = g(t, yt) + ε,(23)
y(t) = ω(t, ε) for t ∈ (−∞, α̃],(24)where 0 < ε < ε1. It follows that there is ε̃2 > 0 suh that for 0 < ε ≤ ε2 wehave:(i) the maximal solution ω2(·, ε) of (23), (24) is de�ned on (−∞, 2α̃],(ii) ω2(t, ε) − ω(t) < ε for t ∈ [α̃, 2α̃].Thus, the maximal solution ω(·, ε) of (5), (6) for 0 < ε ≤ ε2 is de�ned on

(−∞, 2α̃] and
ω(t, ε) − ω(t) < ε for t ∈ [0, 2α̃].The above proedure an be repeated k times until kα̃ > a0, whih gives theexistene of εk > 0 suh that for any 0 < ε ≤ εk, the maximal solution ω(·, ε)of problem (5), (6) is de�ned on (−∞, a0] ⊂ (−∞, kα̃] and ω(t, ε)−ω(t) < εfor t ∈ [0, a0]. This ompletes the proof.3. Comparison theorems for mixed problems. We formulate as-sumptions on the spae Y . Write I = [0, r′] × [−r′′, 0]. Assume that c > 0,

w : (−∞, c] × I → R and t ∈ (−∞, c]. De�ne a funtion w(t) : D → R by
w(t)(τ, s) = w(t + τ, s), (τ, s) ∈ D. If w : (−∞, c] × I → R, c > 0, and
w|[0,a]×I ∈ C([0, a] × I, R) then we write

‖w‖[0,t]×I = max{|w(τ, s)| : (τ, s) ∈ [0, t] × I}, 0 ≤ t ≤ c.The axioms on Y are the following.



28 Z. Kamont and S. Kozieª
Assumption H[Y ]. Y is a normed linear spae with the norm ‖ · ‖Ywhih satis�es the onditions:1) there is ξ ∈ R+ suh that for all w ∈ Y we have

|w(0, x)| ≤ ξ‖w‖Y , x ∈ I,2) if w : (−∞, c] × I → R, c > 0, is a funtion suh that w(0) ∈ Y and
w|[0,c]×I ∈ C([0, c] × I, R) then w(t) ∈ Y for t ∈ (0, c] and(i) the mapping t 7→ w(t) is ontinuous from [0, c] to Y ,(ii) there are K, K0 ∈ R+ independent of w suh that

‖w(t)‖Y ≤ K‖w‖[0,t]×I + K0‖w(0)‖Y , t ∈ [0, c].3) (Y, ‖ · ‖Y ) is a Banah spae.In order to get omparison results based on ordinary funtional di�erentialequations, it is neessary to formulate some relations between the spaes Yand X.For a funtion w : (−∞, 0] × I → R we de�ne V [w] : R− → R+ by
V [w](t) = sup{|w(t, x)| : x ∈ I}, t ∈ R−;the value V [w](t) = ∞ is not exluded. For z : Ω → R and (t, x) ∈ E wewrite V z(t,x) instead of V [z(t,x)].

Assumption H[X, Y ]. Assumptions Hc[X] and H[Y ] hold and if w ∈ Ythen V [w] ∈ X.Examples of spaes Y and X satisfying Assumption H[X, Y ] are givenbelow. Note that Assumption H[Y ] and all the spaes Y given in this se-tion appear in the papers on the existene of solutions for equations withunbounded delay [9℄, [10℄.Example 3.1. Let Y be the lass of all funtions w : D → R whih areuniformly ontinuous and bounded on D. For w ∈ Y we put(25) ‖w‖Y = sup{|w(τ, s)| : (τ, s) ∈ D}.Let X be the spae of all η : R− → R whih are uniformly ontinuous andbounded on R−. Write(26) ‖η‖X = sup{|η(τ)| : τ ∈ R−}.Then Assumption H[X, Y ] holds.Example 3.2. Let Y be the lass of all w : D → R suh that w ∈
C(D, R) and the limit

lim
t→−∞

w(t, x) = w0(x) exists uniformly with respet to x ∈ I.The norm in Y is de�ned by (25). Let X be the spae of all η : R− → Rsuh that η ∈ C(R−, R) and the limit limt→−∞ η(t) exists. The norm in Xis de�ned by (26). Then Assumption H[X, Y ] is satis�ed.



Funtional di�erential inequalities 29Example 3.3. Let γ : R− → (0,∞) be a ontinuous noninreasing fun-tion. Let Y be the spae of all ontinuous funtions w : D → R suh that
lim

t→−∞
w(t, x)/γ(t) = 0, x ∈ I.Put

‖w‖Y = sup{|w(t, x)|/γ(t) : (t, x) ∈ D}.Let X be the lass of all ontinuous funtions η : R− → R suh that
lim

t→−∞
η(t)/γ(t) = 0.Put

‖η‖X = sup{|η(t)|/γ(t) : t ∈ R−}.Then Assumption H[X, Y ] is satis�ed.Example 3.4. Fix p ≥ 1. Denote by Y the lass of all w : D → R suhthat(i) for eah t ∈ R− the funtion w(t, ·) : I → R is ontinuous,(ii) for x ∈ I we have
0\

−∞

|w(τ, x)|p dτ < ∞.We de�ne the norm in Y by
‖w‖Y = max{|w(t, x)| : (t, x) ∈ {0} × I}

+

0\
−∞

[max{|w(τ, x)|p : x ∈ I}] dτ.Let X be the spae of all η : R− → R suh that
η is ontinuous at 0 and 0\

−∞

|η(τ)|p dτ < ∞.Write
‖η‖X =

( 0\
−∞

|η(τ)|p dτ
)1/p

.Then Assumption H[X, Y ] holds.Example 3.5. Denote by Y the set of all funtions w : D → R whihare bounded and(i) for eah t ∈ R− the funtion w(t, ·) : I → R is ontinuous,(ii) w is ontinuous on {0} × I and for x ∈ I we have
W (x) = sup

{ −m\
−(m+1)

|w(τ, x)| dτ : m ∈ N

}
< ∞.



30 Z. Kamont and S. KozieªHere N is the set of natural numbers. The norm in Y is de�ned by
‖w‖Y = max{|w(t, x)| : (t, x) ∈ {0} × I} + sup{W (x) : x ∈ I}.Let X be the lass of all η : R− → R whih are bounded and

‖η‖0 = sup
{ −m\

−(m+1)

|η(τ)| dτ : n ∈ N

}
< ∞.

We also assume that η is ontinuous at 0. Write
‖η‖X = |η(0)| + ‖η‖0.Then Assumption H[X, Y ] is satis�ed.Suppose that

σ : [0, a] × X+ → R+ and λ : E → R
n, λ = (λ1, . . . , λn),are given funtions. We onsider funtional di�erential inequalities of theform(27) ∣∣∣∂tz(t, x) −

n∑

i=1

λi(t, x)∂xi
z(t, x)

∣∣∣ ≤ σ(t, V z(t,x)).We prove that a funtion u : Ω → R satisfying (27) an be estimated by amaximal solution of a suitable initial value problem for an ordinary funtionaldi�erential equation.
Assumption H[σ, λ]. The funtions σ ∈ C([0, a] × X+, R+) and λ ∈

C(E, Rκ
+ × R

n−κ
− ) satisfy the onditions:1) σ satis�es the monotoniity ondition W+,2) for any funtion η ∈ X+ the maximal solution of the initial problem(28) y′(t) = σ(t, yt), y0 = η,is de�ned on (−∞, a].We an now formulate the main result in this setion.Theorem 3.1. Suppose that Assumptions H[X, Y ] and H[σ, λ] are sat-is�ed and

1) u : Ω → R is ontinuous on E ∪ ∂0E and u(0,x) ∈ Y for x ∈ [−b, b],
2) there is η ∈ X+ suh that η(t) ≤ η(0) for t ∈ R− and

|u(t, x)| ≤ η(t) for (t, x) ∈ E0,

|u(t, x)| ≤ η(0) for (t, x) ∈ ∂0E,

3) u satis�es (27) on E.Under the above assumptions we have(29) |u(t, x)| ≤ ω(t, η) for (t, x) ∈ E,where ω(·, η) is the maximal solution of (28).



Funtional di�erential inequalities 31Proof. De�ne
ω̃(t) = sup{|u(t, x)| : x ∈ [−b′, c′] × [−c′′, b′′]}, t ∈ (−∞, a].Then estimate (29) is equivalent to(30) ω̃(t) ≤ ω(t, η), t ∈ (−∞, a].Fix a0 ∈ (0, a). Consider the Cauhy problem

y′(t) = σ(t, yt) + ε,(31)
y(t) = η(t) + h(t, ε), t ∈ R−,(32)where(33) h(t, ε) =

{
0 for t ∈ (−∞,−ε],

t + ε for t ∈ (−ε, 0].It follows that there is ε0 > 0 suh that for 0 < ε ≤ ε0 there is the maximalsolution ω(·, η, ε) of (31), (32). The funtion ω(·, η, ε) is de�ned on (−∞, a0]and
lim
ε→0

ω(t, η, ε) = ω(t, η) uniformly on [0, a0].We prove that(34) ω̃(t) < ω(t, η, ε) for t ∈ [0, a0],where 0 < ε ≤ ε0. Suppose this is not true. Then the set
I+ = {t ∈ [0, a0] : ω̃(t) ≥ ω(t, η, ε)}is not empty. If we put t̃ = min I+ it is lear that t̃ > 0 and

ω̃(τ) < ω(τ, η, ε) for τ ∈ [0, t̃),

ω̃(t̃) = ω(t̃, η, ε).This gives(35) D−ω̃(t̃) ≥ ω′(t̃, η, ε)where D− is the left-hand lower Dini derivative. There is x̃ ∈ [−b′, c′] ×
[−c′′, b′′], x̃ = (x̃1, . . . , x̃n), suh that ω̃(t̃) = |u(t̃, x̃)|. Let I(+), I(−), I(0) bethe sets of integers (possibly empty) suh that I(+)∪ I(−)∪ I(0) = {1, . . . , n}and

x̃i ≥ bi for i ∈ I(+), x̃i ≤ −bi for i ∈ I(−),

−bi < x̃i < bi for i ∈ I(0).Sine (t̃, x̃) /∈ ∂0E, we have
{1, . . . , κ} ∩ I(+) = ∅ and {κ + 1, . . . , n} ∩ I(−) = ∅.



32 Z. Kamont and S. KozieªIt follows that either (i) ω̃(t̃) = u(t̃, x̃) or (ii) ω̃(t̃) = −u(t̃, x̃). If (i) holds,then
∂xi

u(t̃, x̃) ≥ 0 for i ∈ I(+), ∂xi
u(t̃, x̃) ≤ 0 for i ∈ I(−),

∂xi
u(t̃, x̃) = 0 for i ∈ I(0).It follows from Assumption H[σ, λ] and from (27) that

D−ω̃(t̃) ≤ ∂tu(t̃, x̃) ≤ σ(t̃, V u(t̃,x̃)) +
n∑

i=1

λi(t̃, x̃)∂xi
u(t̃, x̃)

< σ(t̃, ωt̃(·, η, ε)) + ε = ω′(t̃, η, ε),whih ontradits (35).Similar onsiderations apply if ase (ii) holds. Then the set I+ is emptyand estimate (34) follows.Letting ε tend to 0 in (34), we obtain inequality (30) on [0, a0]. By thearbitrariness of a0 ∈ (0, a), the assertion follows.Remark 3.1. Assumption 2) of Theorem 3.1 an be replaed by
2′) there is η ∈ X+ suh that |u(t, x)| ≤ η(t) for (t, x) ∈ E0 and

|u(t, x)| ≤ ω(t, η) for (t, x) ∈ ∂0E where ω(·, η) is the maximal solu-tion of (28).Let us now onsider two problems: problem (1), (2) and the followingone:
∂tz(t, x) = f̃(t, x, z(t,x), ∂xz(t, x)),(36)

z(t, x) = ϕ̃(t, x) for (t, x) ∈ E0 ∪ ∂0E,(37)where f̃ : E × Y × R
n → R and ϕ̃ : E0 ∪ ∂0E → R are given funtions. Let

u, ũ : Ω → R denote lassial solutions of (1), (2) and (36), (37) respetively.Now we are going to give an estimate of u − ũ on E.

Assumption H[f ]. Assumption H[X, Y ] is satis�ed and1) the funtion f : E×Y ×R
n → R of the variables (t, x, w, q) is ontin-uous and the derivatives (∂q1

f, . . . , ∂qn
f) = ∂qf exist on E × Y × R

nand ∂qf ∈ C(E × Y × R
n, Rn),2) for (t, x, w, q) ∈ E × Y × R

n we have
∂qi

f(t, x, w, q) ≥ 0 for 1 ≤ i ≤ κ,

∂qi
f(t, x, w, q) ≤ 0 for κ + 1 ≤ i ≤ n,3) there is σ ∈ C([0, a] × X+, R+) suh that(i) σ satis�es the monotoniity ondition W+ and for eah η ∈ X+and γ ∈ C([0, a], R+) the maximal solution of the problem



Funtional di�erential inequalities 33(38) y′(t) = σ(t, yt) + γ(t), y0 = η,exists on (−∞, a],(ii) the estimate
|f(t, x, w, q) − f(t, x,w, q)| ≤ σ(t, V [w − w])is satis�ed on E × Y × R

n.Theorem 3.2. Suppose that Assumption H[f ] is satis�ed and
1) the funtions ϕ, ϕ̃ : E0 ∪ ∂0E → R are ontinuous on ∂0E and satisfy

ϕ(0,x) ∈ Y , ϕ̃(0,x) ∈ Y for x ∈ [−b, b],
2) there is η ∈ X+ suh that η(t) ≤ η(0) for t ∈ R− and

|ϕ(t, x) − ϕ̃(t, x)| ≤ η(t) for (t, x) ∈ E0,

|ϕ(t, x) − ϕ̃(t, x)| ≤ η(0) for (t, x) ∈ ∂0E,

3) f̃ : E ×Y ×R
n → R is ontinuous and there is γ ∈ C([0, a], R+) suhthat

|f(t, x, w, q) − f̃(t, x, w, q)| ≤ γ(t) on E × Y × R
n,

4) u, ũ : Ω → R
n are lassial solutions of (1), (2) and (36), (37), respe-tively.Under these assumptions we have(39) |u(t, x) − ũ(t, x)| ≤ ω(t, η, γ) for (t, x) ∈ E,where ω(·, η, γ) is the maximal solution of (38).Proof. The funtion z̃(t, x) = (u − ũ)(t, x) for (t, x) ∈ Ω satis�es theinitial boundary estimates
|z̃(t, x)| ≤ η(t) for (t, x) ∈ E0,

|z̃(t, x)| ≤ η(0) for (t, x) ∈ ∂0E.Moreover,
∣∣∣∂tz̃(t, x) −

n∑

i=1

1\
0

∂qi
f(P (t, x, τ)) dτ∂xi

z̃(t, x)
∣∣∣ ≤ σ(t, V z̃(t,x)) + γ(t),where (t, x) ∈ E and

P (t, x, τ) = (t, x, u(t,x), ∂xu(t, x) + τ∂x(ũ − u)(t, x)).Hene, (39) follows by applying Theorem 3.1 to z̃.The following uniqueness and ontinuous dependene results are imme-diate onsequenes of Theorem 3.2.Theorem 3.3. Suppose that Assumption H[f ] is satis�ed and the fun-tion y(t) = 0, t ∈ (−∞, a], is the maximal solution of (28) orresponding



34 Z. Kamont and S. Kozieªto η(t) = 0, t ∈ R−. Then the mixed problem (1), (2) admits at most onelassial solution. Moreover , for every ε > 0 there exists δ > 0 suh that if
|f(t, x, w, q) − f̃(t, x, w, q)| < δ on E × Y × R

nand
|ϕ(t, x) − ϕ̃(t, x)| < δ on E0 ∪ ∂0Ethen(40) |u(t, x) − ũ(t, x)| < ε on E,where u and ũ are the solutions of (1), (2) and (36), (37), respetively.Proof. Uniqueness of lassial solutions of (1), (2) is a onsequene ofTheorem 3.2 with f̃ = f , γ(t) = 0 for t ∈ [0, a] and η(t) = 0 for t ∈ R−.For ε > 0 we an hoose δ > 0 so that the maximal solution ω(·, η, γ) of(38), where γ ∈ C([0, a], R+), η ∈ X+ and γ(t) ≤ δ on [0, a], η(t) ≤ η(0) = δfor t ∈ R−, satis�es the ondition ω(t, η, γ) < ε for t ∈ [0, a]. Now, assertion(40) follows from Theorem 3.2.4. Funtional di�erential inequalities. We now prove a theorem onweak funtional di�erential inequalities generated by the mixed problem(1), (2).Let θ : E → R

n be the zero funtion.
Assumption H0[f ]. Assumption H[X, Y ] is satis�ed and1) onditions 1), 2) of Assumption H[f ] hold,2) f satis�es the following monotoniity ondition: if w, w ∈ Y and

w(τ, s) ≤ w(τ, s) for (τ, s) ∈ D and w(0, 0) = w(0, 0) then f(t, x, w, q)
≤ f(t, x,w, q) for all (t, x, q) ∈ E × R

n,3) there exists σ suh that H[σ, θ] holds with y(t) ≡ 0 being the maximalsolution of (28) for η(t) = 0, t ∈ R−, and the estimate(41) f(t, x, w, q) − f(t, x,w, q) ≤ σ(t, V [w − w])is satis�ed for (t, x, q) ∈ E ×R
n and for w, w ∈ Y suh that w(τ, s) ≥

w(τ, s) on D.Denote by F the Nemytski�� operator orresponding to (1), i.e.
F [z](t, x) = f(t, x, z(t,x), ∂xz(t, x)).Theorem 4.1. Suppose that Assumption H0[f ] is satis�ed and the fun-tions u, v : Ω → R are suh that

1) u|E∪∂0E and v|E∪∂0E are ontinuous and the partial derivatives
∂tu(t, x), ∂tv(t, x), ∂xu(t, x), ∂xv(t, x)exist on E,
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2) u(0,x), v(0,x) ∈ Y for x ∈ [−b, b] and the initial boundary inequality

u(t, x) ≤ v(t, x), (t, x) ∈ E0 ∪ ∂0E,is satis�ed ,
3) the di�erential funtional inequality(42) ∂tu(t, x) − F [u](t, x] ≤ ∂tv(t, x) − F [v](t, x)holds on E.Under these assumptions we have u(t, x) ≤ v(t, x) on E.Proof. Fix a0 ∈ (0, a). We will prove that(43) u(t, x) ≤ v(t, x) for (t, x) ∈ E ∩ ([0, a0] × R

n).Consider the Cauhy problem(44) y′(t) = σ(t, yt) + ε, y(t) = h(t, ε) for t ∈ R−,where h(·, ε) is given by (33). It follows that there is ε0 > 0 suh that for
0 < ε ≤ ε0 there is the maximal solution ω̃(·, ε) of (44). The funtion ω̃(·, ε)is de�ned on (−∞, a0] and

lim
ε→0

ω̃(t, ε) = 0 uniformly on [0, a0].Write
ṽ(t, x) = v(t, x) + ω̃(t, ε) for (t, x) ∈ Ω ∩ ((−∞, a0] × R

n]).We prove that(45) u(t, x) < v(t, x) for (t, x) ∈ E ∩ ([0, a0] × R
n).Suppose otherwise. Then the set

J+ = {t ∈ [0, a0] : (u − ṽ)(t, x) ≥ 0 for some x ∈ [−b, b]}is not empty. If we put t̃ = minJ+, it is lear that t̃ > 0 and there exists
x̃ = (x̃1, . . . , x̃n) ∈ [−b, b] suh that

u(t, x) < ṽ(t, x) for (t, x) ∈ [0, t̃) × R
nand u(t̃, x̃) = ṽ(t̃, x̃). Then we have(46) u(t̃,x̃)(τ, s) ≤ ṽ(t̃,x̃(τ, s) for (τ, s) ∈ D, u(t̃,x̃)(0, 0) = ṽ(t̃,x̃)(0, 0).It is easy to see that(47) ∂t(u − ṽ)(t̃, x̃) ≥ 0.There exist sets of integers I(+), I(−), I(0) (possibly empty) suh that I(+)∪

I(−) ∪ I(0) = {1, . . . , n} and
x̃i = bi for i ∈ I(+), x̃i = −bi for i ∈ I(−),

−bi < x̃i < bi for i ∈ I(0).



36 Z. Kamont and S. KozieªSine (t̃, x̃) 6∈ ∂0E we have {1, . . . , κ}∩I(+) = ∅ and {κ+1, . . . , n}∩I(−) = ∅.We thus get(48) ∂xi
(u− ṽ)(t̃, x̃) ≥ 0 for i ∈ I(+), ∂xi

(u− ṽ)(t̃, x̃) ≤ 0 for i ∈ I(−)and(49) ∂xi
(u − ṽ)(t̃, x̃) = 0 for i ∈ I(0).From (41), (42), (46) it follows that

∂t(u − ṽ)(t̃, x̃) ≤ F [u](t̃, x̃) − F [v](t̃, x̃) − ω̃′(t̃, ε)

≤ [f(t̃, x̃, ṽ(t̃,x̃), ∂xu(t̃, x̃) ) − f( t̃, x̃, v(t̃,x̃), ∂xu(t̃, x̃))]

+ f(t̃, x̃, v(t̃,x̃), ∂xu(t̃, x̃))

− f(t̃, x̃, v(t̃,x̃), ∂xṽ(t̃, x̃)) − ω̃′(t̃, ε)

≤ σ(t̃, ω̃t̃(·, ε)) +
n∑

i=1

∂qi
f(Q)∂xi

(u − ṽ)(t̃, x̃) − ω̃′(t̃, ε),where Q ∈ E × Y × R
n is an intermediate point. From the above estimatesand from (48), (49) we dedue that ∂t(u − ṽ)(t̃, x̃) < 0, whih ontradits(47). Thus estimate (45) is proved. Now, letting ε → 0 we obtain (43). Bythe arbitrariness of a0 ∈ (0, a) the assertion follows.Remark 4.1. Assumption 3) of Theorem 4.1 an be replaed by thefollowing ondition: the di�erential funtional inequality (41) is satis�ed onthe set
{(t, x) ∈ E : u(t, x) > v(t, x)}.Remark 4.2. Suppose that Assumption H0[f ] is satis�ed. Then themixed problem (1), (2) admits at most one lassial solution.
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