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Functional differential inequalities with unbounded delay

by Z. KAMONT and S. Kozt (Gdansk)

Abstract. Classical solutions of functional partial differential inequalities with initial
boundary conditions are estimated by maximal solutions of suitable problems for ordinary
functional differential equations. Uniqueness of solutions and continuous dependence on
given functions are obtained as applications of the comparison result. A theorem on weak
functional differential inequalities generated by mixed problems is proved. Our method is
based on an axiomatic approach to equations with unbounded delay. Examples of phase
spaces are given.

1. Introduction. The papers of Haar [6] and Wazewski [20] initiated
the theory of first order partial differential inequalities. The fundamental
result, known as the Haar—-Wazewski inequality, shows that a function of
several variables which is of class C' on the Haar pyramid and satisfies a
linear differential inequality can be estimated by a solution of a suitable
initial value problem for an ordinary differential equation.

There exist many generalizations of the above classical result. We list
some of them below.

The differential inequality may be nonlinear with respect to the unknown
function and consequently, the comparison problem may be nonlinear. The
assumptions on the regularity of the unknown function considered on the
Haar pyramid may be weakened. Vector-valued functions satisfying systems
of partial differential inequalities can be estimated by solutions of ordinary
differential problems ([13, Vol. II] and [14]).

The Haar-Wazewski inequality has been extended to semiclassical solu-
tions of nonlinear differential inequalities ([5], [17], [18]). Comparison results
for generalized entropy solutions of nonlinear differential or functional differ-
ential problems are discussed in [11] and [12]. The results of those two papers
are local with respect to spatial variables. Differential inequalities and suit-
able comparison results for initial boundary value problems are given in [4].
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Comparison theorems global with respect to spatial variables are presented
in [2] for classical solutions and in [19, Chapter VIII] for semiclassical solu-
tions. Differential inequalities with Kamke type comparison problems can be
found in [1], [14]. An interesting result on the global uniqueness of the Cauchy
problem when the right hand side of the equation satisfies the Holder condi-
tion can be found in [3]. Infinite systems of functional differential inequalities
are studied in [15]. Viscosity solutions of functional differential inequalities
are studied in [16]. Functional differential versions of the Haar-Wazewski
inequality can be found in [8].

The monographs [8] and [19] contain an exposition of recent developments
on hyperbolic differential and functional differential inequalities.

The aim of this paper is to add a new element to the above sequence
of generalizations of the Haar—Wazewski inequality. We prove comparison
results for functional differential inequalities with unbounded delay.

Differential inequalities find numerous applications in the theory of first
order partial differential or functional differential equations, including ques-
tions such as: estimates of solutions of initial or initial boundary value prob-
lems, estimates of domains of solutions, estimates of the difference between
solutions of two problems, criterions of uniqueness and continuous depen-
dence of solutions on given functions.

We now formulate our functional differential problem. We use vectorial
inequalities with the understanding that the same inequalities hold between
the corresponding components. Set Ry = [0, 00) and R_ = (—o0,0].

Let a > 0, r = (ry,...,7) € R, and b = (b1,...,b,) € R™, where
b; > 0 for 1 < i < n, be given. Fix an integer k, 0 < k < n. For each
x = (x1,...,2,) € R" we write © = (2/,2"), where 2’ = (x1,...,2z,) and
2" = (xg41,...,2n). We have 2/ = z if kK = n and 2" = z if Kk = 0. Write

¢ = b+ r and define

E =[0,a] x [-V,b) x (=b",b"],

EO = (_0070] X [_bl7cl] X [_Cllvb”]v

80E — (0’ a] X ([—b/,C/] \ [—b/,b/)) % ([_C//’b//] \ (—b//,b//]),

2=FUEyUOyF,

D=R_x[0,7] x [-r",0].
For a function z : 2 — R and a point (¢,z) € E we define a function
Z(t,2) : D — R as follows:

242)(T,8) = 2(t + 1,0+ 8), (7,5) €D.

The function 2, is the restriction of z to the set R_ x [2/,2" 4 1] x
[#” — 7" 2"] and this restriction is shifted to the set D. We consider the
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nonlinear functional differential equation with unbounded delay

(1) 8tz(ta$) = f(tvxaz(t,m)vaxz(tvx))
together with the initial boundary condition
(2) z2(t,z) = p(t,x) for (t,x) € Eg UE,

where 0,2=(04,2,...,05,2) and ¢ : EgUJHE — Rand f: Ex Y xR"—R
are given functions. Here Y denotes an abstract linear space satisfying suit-
able axioms. Elements of Y are functions from D into R, and Y is called a
phase space for (1).

Further assumptions on Y are given in Section 3. The set D is such that
the functional dependence in (1) is of the Volterra type.

A function u : 2 — R is called a classical solution of (1), (2) if

(i) u is continuous on E'UyE and w4 € Y for z € [~b,b],
(ii) the partial derivatives dyu, O, u exist on E,
(iii) u satisfies (1) on E and the initial boundary condition (2) holds.

Existence results for hyperbolic functional differential equations with un-
bounded delay can be found in [9], [10].

The paper is organized as follows. In Section 2 we prove that under
natural assumptions on given functions there is a maximal solution of an
initial value problem for an ordinary functional differential equation with
unbounded delay and it depends continuously on the given functions. A
comparison result for first order functional differential inequalities with un-
bounded delay is presented in Section 3. It is the main result of the paper.
Uniqueness of classical solutions of problem (1), (2) and continuous depen-
dence on given functions are obtained as applications of the comparison
result. Examples of phase spaces are given in Section 3. A theorem on weak
functional differential inequalities generated by (1), (2) is presented in Sec-
tion 4.

Our method is based on an axiomatic approach to equations with un-
bounded delay.

2. Extremal solutions of initial value problems. For any metric
spaces U and W we denote by C(U, W) the class of all continuous functions
defined on U and taking values on W.

For a function y : (—o0o,a] — R, a > 0, and ¢t € (—o0,a| we define
y RO —>Rby y(r) =yt +7), 7€ R_.

In this section we consider classical solutions of the Cauchy problem for
ordinary functional differential equations with unbounded delay

(3) y' () = g(t,m0),
(4) y(t) =n(t) forteR_.
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where g : [0,a] x X — R and n: R_ — R are given functions and X is an
abstract linear space satisfying suitable axioms. Elements of X are functions
mapping R_ into R, and it is called a phase space for (3).
Set
Xi={neX:nt)>0fortecR_}.

The axioms on X are the following ([7]).

ASSUMPTION H[X]. X is a normed linear space with the norm || - | x
which satisfies the conditions:

1) if y : (—o0,a] — R, a > 0, is a function such that yo € X and
y|[0,a} € C([Oaa]aR) then
(i) y € X for t € (0,a,
(ii) there are constants H, K, L € R, independent of y such that for
t €10,qa],
()] < Hl|ye x,
[yl x < Kmax{[y(7)[ : 7 € [0,¢]} + Lllyollx,
(iii) the mapping ¢ — y; is continuous from [0, a] to X,

2) (X, - |lx) is a Banach space.

We say that the function g satisfies the monotonicity condition W, if
for any (¢,w), (t,w) € [0,a] x X such that w(r) < @w(r) for 7 € R_ and
w(0) = w(0) we have g(t,w) < g(t, ).

Given w € X, let sw : (—o0, a] — R be defined by

sw(t)=w(t) forteR_ and sw(t)=w(0) fort e [0,al,

and write s;w = (sw); where ¢ € (—00, a]. Denote by || - [[p;] the supremum
norm in the space C ([0, 7],R) where 7 € R.

The aim of this section is to prove that under natural assumptions on g
and 7 there is a local maximal solution of problem (3), (4). We also prove
that the maximal solutions depend continuously on given functions. To this
end, we also consider the following initial value problem:

(5) y/(t) = g(ta yt) + g,
(6) y(t) =n(t) +nlt,e) forteR_,
where € > 0 and 7(-,e) € X for ¢ > 0.

ASSUMPTION H[n(-,¢)]. The family of functions {7(-, ) }c>0 satisfies the
conditions:

1) n(-,e) € X and n(t,e) > 0 for t € R_ and n(0,¢) = ¢,
2) n(t,0) =0 for t € R_ and

(7) lim [|n(-,€)[x = 0.
e—0
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THEOREM 2.1. Suppose that

1) Assumptions H[X] and H[n(-,€)] hold,
2) g € C([0,a] x X,R) satisfies the monotonicity condition W,
3) the constants oo, M,d > 0 are defined by the relations

|g(t75t77)| SM fO’I”tG [0,(1],
lg(t,w) —g(t,sm)| <1 for [lw—smlx <d, t €0,a],

and

. d
@ = {“’ 2K (M + 1+ 0.5d) }
4) the parameter ¢ satisfies the conditions
) 0<=<dfs, Ke+Lin(,o)llx < d/a
Then the Cauchy problem (5),(6) has the mazimal solution w(-,€) on the

interval (—oo, o]

9) lin% w(t,e) =w(t) wuniformly on [0, ],
E—>
and w(-) is the mazimal solution of (3),(4) on (—o0, a.
Proof. Define x € X by
0 for t € (—o0, —1],
x(t) =
t+1 forte (—1,0].
We consider the Cauchy problem

(10) y'(t) = g(t,ye) +e+¢,

(11) y(t) =n(t) +n(t,e) +Ex(t) forteR_.
Suppose that

(12) 0<&<d/d and Ké+Le[x|x < d/d

We prove that for € satisfying (12) there is a solution w(-, ¢,&) of (10), (11)
on (—o0,a]. Let B denote the space of all functions y : (—o0,a] — R such
that yo € X and yljp. € C([0,],R). For y € B we define

1yl = llyollx + llylljo.a)-

Then (B, || - ||p) is a Banach space. Let U C B denote the set of functions
y : (—o00,a] — R such that

(i) y(t) =n(t) +n(t,e) +&x(t) for t e R,

(i) |y(t) —y(®)| < (M +1+0.5d)|t —t| for t,t € [0, a].
Define a mapping 7' : U — B by setting, for y € U,

n(t) +n(t,e) +Ex(t) for t € R_,
¢

Tly)(t) = n(o)+€+§+S[g(7,y7)+6+§]d7 for ¢t € [0, a.
0
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It follows from condition 1) of Assumption H[X] that y; € X for t € [0, ]
so T' is well defined on U. Suppose that w € X and

(13) lw = se(n+ () + Ex)lx < d/2.
Then

lw = sinllx < 0.5d + [[sin(-,€)llx + lls:(Ex)1x

< 0.5d+ Ke + Lln(,e)llx + KE+ LEllxllx < d, t€]0,al.
We thus get, for w € X satisfying (13),
lg(t,w)| <M +1, tel0,al

It follows that for y € U and ¢ € [0, a] we have
lye = se(n+n(,€) + )l x

< Kmax{|y(t) — (n(0) +e+&)| : 7€ [0,0]} < K(M +1+0.5d)o < 0.5d

and consequently
t
Tly)(t) — Tyl(2)] < ‘ Vlg(r,yr) +e+€ldr| < (M +1+05d)[t -1
t

for all t,t € [0,«]. Thus, T maps U into itself. The continuity of g shows
that T is continuous on U. Now, an application of the Schauder fixed point
theorem yields the existence of at least one solution w(-, ¢, ) of the equation
y = T'[y|]. The solution is defined on (—o0, ] for each ¢ and ¢ satisfying (8)
and (12) respectively. It is easily seen that w(-,¢,§) is a classical solution of

(10), (11).
Now we prove that for {; < & satisfying (12) we have
(14) w(t,e, &) <w(t,e, &) fort € (0,al.

Suppose not. Then the set
I ={te0,0] :w(t,e,&) 2 w(t e, &)}
is not empty. If we put ¢ = min I, it is clear that ¢ > 0 and
(15) S (Fe,6) 2 o (F e, 62).
It follows from the monotonicity condition W, and from (10) that
W(t, e, &) —w'(t,e,&) < g(t,wil-e,&)) — gt wil- 6, ) <0,

which contradicts (15). Hence I is empty and the statement follows.
Consider now a sequence {&,}5°_, of numbers such that

(i) & satisfies (12) for m > 0,
(il) &mt1 < &m for m > 0 and limy,—00 &y = 0.

Then the sequence {w(-,&, &)}, is uniformly convergent on [0, a and

im_Jemxlx = 0.
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Moreover we have
t

(16) w(t,e,&m) =n(0) + e+ &n + S [9(T,wr(+,€,&m)) + €+ &m) dT
0

for all ¢t € [0, . Write
(17) w(t,e) = lim w(t,e,&n), te (—oo,al.

Letting m — oo in (16) shows that w(-, ) is a classical solution of (5), (6).
It remains to show that it is the maximal solution on (—oo, a|. Let w(-,¢) :
(—o0,a] — R be a solution of (5), (6) and g = min(«, @). Then
T (t,€) < gltswi(€)) + € + my
w/(tﬂ?agm) :g(tawt('7€7§m))+€+§ma te [O,CMQ],

and consequently w(t,e) < w(t,e,&y) for t € [0,ap] and m > 0. It follows
from (17) that w(t,e) < w(t,e) for t € [0, ap]. Thus w(-, &) is the maximal
solution of (5), (6).

Let w(-) denote the maximal solution of (3), (4). It follows easily that for
e satisfying (8) we have

w(t) <w(t,e), tel0,al

The functions {w(-,€)lj,o} are uniformly bounded and equicontinuous. Tt
follows from assumption (7) and from the Ascoli-Arzela theorem that asser-
tion (9) holds. This completes the proof.

REMARK 2.1. Suppose that 0 < e < d/4 and

1) the function n — ||n(-€)||x is nondecreasing,
2) K < 1 and the constant d satisfies the condition

Ln(-,d/4)x < (1 - K)d/4.
Then the second inequality in (8) is satisfied.

Now we prove a theorem on the continuous dependence of maximal so-
lutions of (3), (4) on initial functions.

ASSUMPTION H.[X]. Assumption H[X] is fulfilled and if y: (—o0,a] =R
is such that yo € X and yjg ) € C([0,a], R) then the mapping (7,t) — s;yr
is continuous for (7,t) € [0,a] x [0,al, t > T.

THEOREM 2.2. Suppose that

1) Assumptions H.[X] and H[n(-,€)] hold and n € X,
2) condition 2) of Theorem 2.1 is satisfied and w is the mazimal solution
of (3), (4) existing on the interval (—oo, al.
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Then for any 0 < ap < a there is eg > 0 such that for each 0 < € < g9 the
mazimal solution w(-,e) of problem (5), (6) exists on (—oo,ap] and

lir% w(t,e) =w(t) wuniformly on [0, ao].

Proof. Let 0 < ag < a be fixed. The proof will be divided into 2 steps.

I. We first prove the following property of equations with unbounded
delay. Suppose that 7 € [0, ap] and that the family of functions

Y(-ye) : (o0, 7] = Ry, >0,

satisfies the conditions

(i) v0(,e) € X and 7(7,e) = ¢ for e > 0,

(ii) v(-,€)l[0,7 is continuous for each & > 0 and

limfflyo(- e)llx + (el ] = 0.

Consider the Cauchy problem
(18) y'(t) =gt y) +e,
(19) y(t) = w(t) +v(t,e) forte (—oo,7].

We prove that there are € > 0 and @ > 0 (independent of 7) such that for
0 < e < € there is the maximal solution w(-,&,7) of (18), (19) defined on
(—o0, 7+ @] and

lim @(t,e,7) = w(t) wuniformly on [7,7 + @].

e—0
It is easily seen that problem (18), (19) is equivalent to
(20) V() =g(t+7u) +e,
(21) y(t) = wr(t) + 77 (t,e) forteR_.
More precisely, a function y : (—oo, 7 + & — R satisfies (18), (19) if and
only if the function § : (—oo, 7| — R given by §(t) = y(t + 7) satisfies (20),

(21). Tt follows from Assumption H,[X] that there are M,b > 0 such that
lg(t+ 7, s0w7)| <M, T €[0,a0], t € [r,a],

and N
lg(t +1,w) — g(t + 7, s50w07)| <1 for |[w — spwr||x <0,

for all 7 € (0, ap] and ¢ € [7,a]. Suppose that ¢ satisfies
0<e<b/d,

(22 b/ _
Ke + Lio(e)llx + K max{[7(¢,¢)| : € € [0, 7]} < b/a.

Write

~ b
a:min{a—ao, — = }
2K (M + 1+ 0.5b)
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It follows from Theorem 2.1 that the maximal solution w(-, e, 7) of (20), (21)
exists on (—oo, @] and

lim&(t,e,7) = w-(t) uniformly on [0, @].

e—0
According to the above considerations, for ¢ satisfying (22) there exists the
maximal solution w(-,&,7) of problem (18), (19). The solution is defined on
(—o0, T + @] and

lin%)w(t, g,7) =w(t) uniformly on [7,7 + a&].
e—

I1. Fix £ > 0. We will prove that there is € > 0 such that for 0 <e <&
we have:

(i) the maximal solution w(-,¢) of (5), (6) exists on (—o0, ag,

(i) w(t,e) —w(t) < & for t € [0, agp).
Consider the Cauchy problem (18), (19) with 7 = 0 and 7(-,&) = n(-,¢) for
e > 0. According to step I, we find e; > 0 such that for 0 < ¢ < g7 there
exists the maximal solution w(-,¢) of (5), (6). The function w(-,¢) is defined
on (—oo,a) and w(t,e) —w(t) < € for t € [0, a].

Now consider the functional differential problem

(23) y'(t) = glt,y) +e,

(24) y(t) = w(t,e) forte (—o0,al,

where 0 < € < £1. It follows that there is €9 > 0 such that for 0 < & < g9 we
have:

(i) the maximal solution wa(+,¢) of (23), (24) is defined on (—o0, 2a],
(i) wa(t,e) —w(t) < € for t € [a, 2.

Thus, the maximal solution w(-, &) of (5), (6) for 0 < & < &9 is defined on
(—00,2a] and
w(t,e) —w(t) <& fortel0,2al.

The above procedure can be repeated k times until k& > ag, which gives the
existence of e > 0 such that for any 0 < ¢ < g, the maximal solution w(-, €)
of problem (5), (6) is defined on (—o0, ag] C (—o0, ka] and w(t,e) —w(t) < &

for t € [0, ag]. This completes the proof.

3. Comparison theorems for mixed problems. We formulate as-
sumptions on the space Y. Write I = [0,7'] x [—7",0]. Assume that ¢ > 0,
w : (—o0,¢] x I — R and t € (—o0,c|. Define a function w() : D — R by
wy(7,8) = w(t +7,5), (1,5) € D. If w: (~o00,c] x I — R, ¢ >0, and
wlip.qx1 € C([0,a] x I,R) then we write

lwllfo,fxr = max{|w(r,s)| : (1,5) € [0,¢] x [}, 0<t<ec

The axioms on Y are the following.
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AssumMPTION H[Y]. Y is a normed linear space with the norm || - ||y
which satisfies the conditions:

1) there is & € Ry such that for all w € Y we have
(w(0,2)] < &llwlly,  zel,

2) if w: (—00,¢] x I = R, ¢ >0, is a function such that w € Y and

w|[0,c}><[ € C([0,c] x I, R) then W) € Y for t € (0,c| and

(i) the mapping ¢ — w(y) is continuous from [0, c] to Y,

(ii) there are K, Ky € R4 independent of w such that

lwlly < Kllwllpgxr + Kollwlly, t€[0,¢].

3) (Y, - |ly) is a Banach space.

In order to get comparison results based on ordinary functional differential
equations, it is necessary to formulate some relations between the spaces Y

and X.
For a function w : (—00,0] x I — R we define V]w] : R_ — Ry by
V{w](t) = sup{|w(t,x)| :x € I}, teR_;
the value V{w](t) = oo is not excluded. For z : 2 — R and (¢t,z) € E we
write V'z(; ) instead of V[z( 4]
AssuMPTION H[X,Y]. Assumptions H.[X] and H[Y] hold and if w € Y
then Viw] € X.

Examples of spaces Y and X satisfying Assumption H|[X,Y]| are given
below. Note that Assumption H[Y] and all the spaces Y given in this sec-
tion appear in the papers on the existence of solutions for equations with
unbounded delay [9], [10].

EXAMPLE 3.1. Let Y be the class of all functions w : D — R which are
uniformly continuous and bounded on D. For w € Y we put

(25) |lw|ly = sup{|w(r,s)|: (1,s) € D}.

Let X be the space of all p : R_ — R which are uniformly continuous and
bounded on R_. Write

(26) Inllx = sup{[n(7)| : 7 € R_}.
Then Assumption H[X, Y] holds.

EXAMPLE 3.2. Let Y be the class of all w : D — R such that w €
C(D,R) and the limit

tlim w(t,x) = wo(x) exists uniformly with respect to z € I.
——00
The norm in Y is defined by (25). Let X be the space of all n : R_ — R

such that n € C(R_,R) and the limit lim;—,_, 7(t) exists. The norm in X
is defined by (26). Then Assumption H[X,Y] is satisfied.
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EXAMPLE 3.3. Let v : R_ — (0,00) be a continuous nonincreasing func-
tion. Let Y be the space of all continuous functions w : D — R such that

Jim w(t,z)/4(t) =0, =l

Put
[wlly = sup{|w(t, z)[/~(t) : (t,2) € D}.
Let X be the class of all continuous functions 7 : R_ — R such that
im n(t)/~y(t) = 0.
Put
[nllx = sup{[n(t)|/~(t) : t € R_}.
Then Assumption H[X, Y] is satisfied.

ExaMPLE 3.4. Fix p > 1. Denote by Y the class of all w: D — R such
that

(i) for each ¢t € R_ the function w(¢,-) : I — R is continuous,

(ii) for z € I we have
0

| Jw(r,2)Pdr < 0.
We define the norm in Y by
|wl|ly = max{|w(t,x)|: (t,z) € {0} x I}

0
+ S [max{|w(r,z)|P : x € I}]dr.
—00
Let X be the space of all n: R_ — R such that
0
n is continuous at 0 and S In(T)|Pdr < oc.
—00
Write o
1/p
Inllx = (§ In(rypar) ™.
—00

Then Assumption H[X, Y] holds.

ExaMPLE 3.5. Denote by Y the set of all functions w : D — R which
are bounded and

(i) for each ¢t € R_ the function w(¢,-) : I — R is continuous,
(ii) w is continuous on {0} x I and for x € I we have
—m
W(m):sup{ S |w(7',x)\d7':m€N}<oo.
—(m+1)
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Here N is the set of natural numbers. The norm in Y is defined by
|lw|ly = max{|w(t,z)|: (t,x) € {0} x I} +sup{W (z):x € I}.
Let X be the class of all : R_ — R which are bounded and

—m
Inllo =sup{ § [n(r)dr:neN} <.
—(m+1)
We also assume that 77 is continuous at 0. Write
Inllx = In(0)] + lInllo-
Then Assumption H[X,Y] is satisfied.

Suppose that
o:00,al x Xy =Ry and A:E—=R" A= (A1,...,\n),
are given functions. We consider functional differential inequalities of the
form

(27) D12t ) = D7 Nt @), 21 )| < (8, V).
i=1
We prove that a function u : 2 — R satisfying (27) can be estimated by a

maximal solution of a suitable initial value problem for an ordinary functional
differential equation.

AssumMPTION Hlo,\]. The functions o € C([0,a] x X4,Ry) and A €
C(E,Rf x R™™") satisfy the conditions:

1) o satisfies the monotonicity condition W,
2) for any function 7 € X the maximal solution of the initial problem

(28) yl(t) = U(ta yt)7 Yo =1,
is defined on (—o0,al.
We can now formulate the main result in this section.

THEOREM 3.1. Suppose that Assumptions H[X,Y] and H[o, \] are sat-
isfied and

1) u: 2 — R is continuous on EUE and ug,) €Y for x € [~b,b],
2) there is n € Xy such that n(t) < n(0) fort € R_ and
u(t, z)| <n(t)  for (t,z) € Ey,
lu(t,z)| <n(0) for (t,z)€ OoFE,
3) w satisfies (27) on E.
Under the above assumptions we have
(29) jult, ) < wl(tn) for (x) € F,

where w(-,n) is the mazimal solution of (28).
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Proof. Define
o(t) = sup{|u(t,z)| : x € [V, ] x [ V']}, t € (—o0,al

Then estimate (29) is equivalent to

(30) a}(t) < w(t777)7 te (—OO, CL].
Fix ag € (0,a). Consider the Cauchy problem
(31) y'(t) = olt,ye) +e,
(32) y(t) =n(t) + h(t,e), teR_,
where
0 forte (—oo,—e,
(33) h(t,e) = { or ¢ € (—00, —¢]
t+¢e forte(—¢,0].

It follows that there is g > 0 such that for 0 < € < g¢ there is the maximal
solution w(-,n, ) of (31), (32). The function w(+,n, ) is defined on (—oo, ag]
and

gi_r%w(t, n,e) = w(t,n) uniformly on [0, ag].
We prove that
(34) w(t) <w(t,n,e) fort e |0,an,
where 0 < ¢ < gg. Suppose this is not true. Then the set
I. ={t€0,a0] : w(t) > w(t,n,e)}

is not empty. If we put ¢ = min I it is clear that ¢ > 0 and

(1) < w(t,m,e) for 7 €[0,1),

O(t) = w(t,n,e).
This gives
(35) D_&(t) > o' (,1,¢)
where D_ is the left-hand lower Dini derivative. There is 7 € [V, (] x
(=", V"], T = (F1, ..., T,), such that &(t) = |u(t,Z)|. Let I(H), 1), 100) be
the sets of integers (possibly empty) such that IO UTUIO = {1,... n}
and

T; > b; foriEI(+), T; < —b; foriGI(_),
~b; <@ <b foriel®,

Since (t,7) ¢ 0o F, we have

{1,...,k}NIM =0 and {k+1,....n}nI0) =0.



32 Z. Kamont and S. Koziel

It follows that either (i) &(t) = u(t, ) or (ii) ©(t) = —u(t,Z). If (i) holds,
then
Opu(t,7) >0 forieI™® | G u(t,z) <0 foriel),
Opu(t,T) =0 foriel®,
It follows from Assumption H[o, \] and from (27) that

n
D (1) < u(t, ) < o(t, Vugz) + Y Nill, B)0g,u(t, T)
i=1
< U(E w{(‘a 1, E)) +e= wl(a m, 5)7
which contradicts (35).
Similar considerations apply if case (ii) holds. Then the set I is empty
and estimate (34) follows.
Letting € tend to 0 in (34), we obtain inequality (30) on [0, ag]. By the
arbitrariness of ag € (0,a), the assertion follows.

REMARK 3.1. Assumption 2) of Theorem 3.1 can be replaced by

2') there is n € X4 such that |u(t,z)] < n(t) for (t,z) € Ep and
lu(t,z)| < w(t,n) for (t,z) € OpF where w(-,n) is the maximal solu-
tion of (28).
Let us now consider two problems: problem (1), (2) and the following
one:

(36) atZ(t,.%') = f(tamaz(t,x)vawz(tax))a
(37) z(t,x) = p(t,xz) for (t,x) € Eg UOE,
where f: EXxY xR" - Rand ¢p: EgUOJyE — R are given functions. Let

u,u : {2 — R denote classical solutions of (1), (2) and (36), (37) respectively.
Now we are going to give an estimate of u — % on FE.

AssuMPTION H|[f]. Assumption H[X,Y] is satisfied and

1) the function f: ExY xR™ — R of the variables (¢, z,w, q) is contin-
uous and the derivatives (0y, f, ..., 0y, f) = 0y f exist on E x Y x R"
and 9,f € C(E x Y x R, R"),

2) for (t,z,w,q) € E xY x R"™ we have

O f(t,z,w,q) >0 for 1 <i <k,
Opft,z,w,q) <0 for k+1<i<n,
3) there is 0 € C(]0,a] x X1,R,) such that

(i) o satisfies the monotonicity condition W, and for each n € X
and v € C([0,a],R) the maximal solution of the problem
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(38) Y () =o(ty) +(t), yo=n,
exists on (—o0, al,
(ii) the estimate

|f(t,x,w,q) — f(t,2,@,q)| < o(t,Vw— @)
is satisfied on E x Y x R™.
THEOREM 3.2. Suppose that Assumption H|[f] is satisfied and

1) the functions ¢, ¢ : EgUOyE — R are continuous on Oy E and satisfy
02) €Y, P €Y forx € [-b,0],
2) there is n € Xy such that n(t) < n(0) fort € R_ and
ot x) —(t,z)| <n(t)  for (tz) < Eo,
ot x) —p(t,2)| <n(0)  for (t,x) € HE,
3) f:ExY xR" — R is continuous and there is v € C([0,a], R..) such
that
(2, w,q) = f(t,2,w,q)| <y(t) on ExY xR",
4) u,u: 2 — R" are classical solutions of (1), (2) and (36), (37), respec-
tively.
Under these assumptions we have
(39) lu(t, z) — u(t,z)| <w(t,n,7) for (t,z) € E,
where w(-,m,) is the mazimal solution of (38).
Proof. The function z(t,z) = (v — u)(t,x) for (t,z) € §2 satisfies the
initial boundary estimates
|Z(t,x)] < n(t) for (t,x) € Ey,
|Z(t,x)] <n(0) for (t,x) € OE.

Moreover,
n 1
’@z t,x) Z S Og f(P(t,z,7))d7T0:,2(t, 2)| < 0(t,VZy ) + (1),
=10

where (t,z) € E and
P(t,x,7) = (t, 2, U 4), Ozu(t, x) + 70 (0 — u)(t, x)).
Hence, (39) follows by applying Theorem 3.1 to Zz.

The following uniqueness and continuous dependence results are imme-
diate consequences of Theorem 3.2.

THEOREM 3.3. Suppose that Assumption H|[f] is satisfied and the func-
tion y(t) = 0, t € (—o0,al, is the mazimal solution of (28) corresponding
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ton(t) =0,t € R_. Then the mized problem (1), (2) admits at most one
classical solution. Moreover, for every € > 0 there exists & > 0 such that if

’f(t7x7w7Q)_f(t7x7w7q)’<6 OTLEXYXRn

and

lo(t,x) — o(t,x)| <& on EyUOE
then
(40) lu(t,z) —u(t,z)| <e onkKE,

where u and u are the solutions of (1), (2) and (36), (37), respectively.

Proof. Uniqueness of classical solutions of (1), (2) is a consequence of
Theorem 3.2 with f = f, v(t) = 0 for ¢ € [0,a] and n(t) = 0 for t € R_.

For ¢ > 0 we can choose § > 0 so that the maximal solution w(-,7,7) of
(38), where v € C([0,a],R4), n € X4 and v(t) < 6 on [0,a], n(t) <n(0) =0
for t € R_, satisfies the condition w(t,n,v) < ¢ for ¢ € [0, a]. Now, assertion
(40) follows from Theorem 3.2.

4. Functional differential inequalities. We now prove a theorem on
weak functional differential inequalities generated by the mixed problem

(1), (2)-

Let 6 : E — R"™ be the zero function.
ASSUMPTION Hy[f]. Assumption H[X,Y] is satisfied and
1) conditions 1), 2) of Assumption H[f] hold,

2) f satisfies the following monotonicity condition: if w,@w € Y and
w(r,s) < w(r,s) for (1,s) € D and w(0,0) = @w(0,0) then f(¢,z,w,q)
< f(t,x,w,q) for all (t,z,q) € E x R",
3) there exists o such that H{o, ] holds with ¢(¢) = 0 being the maximal
solution of (28) for n(t) =0, t € R_, and the estimate
(41) flt,z,w.q) = f(t,2,@.q) < o(t,V[w — @)
is satisfied for (¢,z,q) € E x R™ and for w,@w € Y such that w(r,s) >
w(r,s) on D.
Denote by F' the Nemytskii operator corresponding to (1), i.e.
F[Z](tv :C) = f(ta Ly Z(t,a)s axz(t7 IE))
THEOREM 4.1. Suppose that Assumption Hy[f] is satisfied and the func-
tions u,v : 2 — R are such that

1) u|lpug,E and v|gug,E are continuous and the partial derivatives
Ou(t, x), Ow(t,x), Oyu(t,x), Ozv(t,x)

exist on F,
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2) w(o,2),V(0,2) €Y for x € [=b,b] and the initial boundary inequality
u(t,z) <wv(t,z), (t,x) € By UE,

is satisfied,
3) the differential functional inequality

(42) Owu(t, z) — Flul(t,z] < dw(t,x) — Fv](t, x)
holds on E.
Under these assumptions we have u(t,z) < v(t,z) on E.

Proof. Fix ag € (0,a). We will prove that

(43) u(t,x) <wv(t,z) for (t,x) € EN([0,a0] x R™).
Consider the Cauchy problem
(44) y'(t)=o(t,y) +e, y(t)=h(t,e) forteR_,

where h(-,¢) is given by (33). It follows that there is 9 > 0 such that for
0 < € < g there is the maximal solution w(-,¢) of (44). The function w(-,¢)
is defined on (—oc0, ag] and

iii]% w(t,e) =0 uniformly on [0, ag].
Write
o(t,x) =v(t,x) +w(t,e) for (t,z) € 2N ((—o0,ap] x R").
We prove that
(45) u(t,z) <wv(t,z) for (t,x) € EN([0,a0] x R™).
Suppose otherwise. Then the set
Jr ={t€[0,a0] : (u—"2)(t,x) > 0 for some x € [—b, b]}

is not empty. If we put ¢ = min.Jy, it is clear that £ > 0 and there exists
T = (Z1,...,Tp) € [—b,b] such that

u(t,z) <o(t,x) for (t,z) € [0,t) x R"
and u(t,Z) = v(t,Z). Then we have
(46) u(’{,g)(ﬂ s) < 5(;75(7', s) for (r,s) € D, u(;j)((),()) = 5(;@(0,0).
It is easy to see that
(47) d(u —0)(t,T) > 0.

There exist sets of integers I(+), 1(=) 1(0) (possibly empty) such that IMy
IO UI® ={1,... n}and

Z;=b forielt) —F=—b foriell),
—b; <x;<b; for i€ I(D)
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Since (t,7) & OoF we have {1,...,x}NIH) = @ and {k+1,...,n}NI) = (.
We thus get

(48) Oy, (u—0)(£,2) >0 forieI™, 8, (u—0)(t,7) <0 forie I
and
(49) Op,(u—0)(£,2) =0 forie I,
From (41), (42), (46) it follows that
Oh(u—~7T)(T.7) < Flu)(,) - F[o|(5.3) - &' ([, )
< [f( 7,0 5y, Owu(t, B)) = F(1,7, 035, Qull, T))]
+ f (%, 05 5), Oxu(l, 7))
— FE 5,02, 00(EF) — & (7 )

< (8,35 €)) + Y 04, F(Q)0x, (u—0)(£,F) — &' (1,2),
i=1

where ) € E X Y x R” is an intermediate point. From the above estimates
and from (48), (49) we deduce that d;(u — ?)(¢,Z) < 0, which contradicts
(47). Thus estimate (45) is proved. Now, letting ¢ — 0 we obtain (43). By
the arbitrariness of ag € (0, a) the assertion follows.

REMARK 4.1. Assumption 3) of Theorem 4.1 can be replaced by the
following condition: the differential functional inequality (41) is satisfied on
the set

{(t,z) € E:u(t,x) > v(t,z)}.

REMARK 4.2. Suppose that Assumption Hy[f] is satisfied. Then the
mixed problem (1), (2) admits at most one classical solution.
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