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Invariane in the lass of weighted quasi-arithmeti meansby Justyna Jarczyk (Zielona Góra) and
Janusz Matkowski (Zielona Góra and Katowie)

Abstrat. Under the assumption of twie ontinuous di�erentiability of some of thefuntions involved we determine all the weighted quasi-arithmeti means M, N,K suhthat K is (M, N)-invariant, that is, K◦(M, N) = K. Some appliations to iteration theoryand funtional equations are presented.1. Introdution. In the whole paper I ⊂ R denotes an interval. Afuntion M : I2 → R is said to be a mean on I if
min(x, y) ≤M(x, y) ≤ max(x, y), x, y ∈ I.If M : I2 → R is a mean, then M is re�exive, that is, M(x, x) = x forall x ∈ I and, onsequently, for every interval J ⊂ I we have M(J2) = J ; inpartiular, M(I2) = I.If α : I → R is a ontinuous stritly monotoni funtion and p ∈ (0, 1)then A[α]

p : I2 → I, given by
A[α]
p (x, y) := α−1(pα(x) + (1 − p)α(y)), x, y ∈ I,is a mean; it is alled a weighted quasi-arithmeti mean with generator α andweight (p, 1 − p). In the ase α = id|I the mean A[α]

p beomes the weightedarithmeti mean and is denoted by Ap; thus Ap(x, y) = px + (1 − p)y. Wewrite simply A instead of A1/2.Let M,N : I2 → I be means. A mean K : I2 → I is said to be invariantwith respet to (M,N), brie�y (M,N)-invariant, or K is alled the Gaussomposition of M and N (f. [3℄, [5℄), if K ◦ (M,N) = K.Fix p, q, r ∈ (0, 1). Assuming twie ontinuous di�erentiability of someof the funtions involved we determine all triples (α, β, γ) and (p, q, r) for2000 Mathematis Subjet Classi�ation: Primary 26E60; Seondary 39B22.Key words and phrases: mean, funtional equation, invariant mean, quasi-arithmetimean. [39℄



40 J. Jarzyk and J. Matkowskiwhih the weighted quasi-arithmeti mean A[α]
p is (A

[β]
q , A

[γ]
r )-invariant, i.e.

A[α]
p ◦ (A[β]

q , A[γ]
r ) = A[α]

p(1)(see Theorem 2 in Setion 4).The ase when p = q = r = 1/2 (alled simply the ase of quasi-arithmeti means) has a long history. The analyti solutions were foundby O. Sut� in 1914 [7℄. The twie ontinuously di�erentiable solutions aregiven in [5℄. Moreover, ontinuously di�erentiable solutions were found byZ. Darózy and Zs. Páles [2℄, and �nally, without any regularity assumption,the problem was solved by Z. Darózy and Zs. Páles [3℄ (f. also [1℄ as wellas [3℄ for further referenes).The fundamental role for Theorem 2 will be played here by Theorem 1in Setion 4, onerning the ase of α being the identity funtion. In theproof of Theorem 1 we need a haraterization of onditionally homogeneousweighted quasi-arithmeti means given by Proposition 1 proved in Setion 2and by the lemmas of Setion 3.In Setion 5 we also apply Theorem 1 to establish the limit of the iterationsequene of some mean type mappings (Remark) and to solve a funtionalequation (Theorem 3).2. Conditional homogeneity of the quasi-arithmeti mean. De-note by CM(I) the lass of all ontinuous stritly monotoni funtions de-�ned on I. In the proof of Theorem 1 we need the followingProposition 1. Assume that I ⊂ (0,∞). Let q ∈ (0, 1) and σ ∈ CM(I).The mean A[σ]
q is onditionally homogeneous, i.e.

A[σ]
q (sx, sy) = sA[σ]

q (x, y)for all x, y ∈ I and s > 0 with sx, sy ∈ I if , and only if , there are a ∈ R\{0}and b ∈ R suh that either
σ(x) = axη + b, x ∈ I,for some η ∈ R \ {0}, or
σ(x) = a lnx+ b, x ∈ I.Before proving this proposition we will �nd the form of so-alled ondi-tional loal groups of ontinuous a�ne maps.Proposition 2. Let {Xs}s∈S , where S ⊂ R is an interval ontaining 0,be a family of subsets of R and let F :

⋃

s∈S{s} × Xs → R. Assume that
F (·, u) and F (·, v) are ontinuous for some di�erent u, v ∈

⋂

s∈S Xs and
F (s, ·) is ontinuous a�ne for every s ∈ S. Assume also that for every
s, t ∈ S with s+ t ∈ S there is an at least two-element set Us,t ⊂ Xs ∩Xs+t



Weighted quasi-arithmeti means 41suh that
F ({s} × Us,t) ⊂ Xt(2)and

F (s+ t, u) = F (t, F (s, u)), u ∈ Us,t.(3)Then either F is onstant , or there is an interval S0 ⊂ S ontaining 0 andsuh that
F (s, u) = cs+ u, s ∈ S0, u ∈ Xs,(4)with a c ∈ R, or

F (s, u) = cs1(u− c2) + c2, s ∈ S0, u ∈ Xs,(5)with some c1 ∈ (0,∞) and c2 ∈ R.Proof. Let m : S → R and k : S → R be suh that
F (s, u) = m(s)u+ k(s), s ∈ S, u ∈ Xs.(6)Taking any u, v ∈

⋂

s∈S Xs, u 6= v, suh that F (·, u) and F (·, v) are ontin-uous we see that m and k are ontinuous as linear ombinations of F (·, u)and F (·, v).Fix any s, t ∈ S with s + t ∈ S and hoose a Us,t ⊂ Xs ∩Xs+t with atleast two points, satisfying (2) and (3). Taking an arbitrary u ∈ Us,t andusing (6), (3), and again (6), we get
m(s+ t)u+ k(s+ t) = F (s+ t, u) = F (t, F (s, u))

= m(t)(m(s)u+ k(s)) + k(t)

= m(s)m(t)u+m(t)m(s) + k.Consequently,
m(s+ t) = m(s)m(t)(7)and

k(s+ t) = m(t)k(s) + k(t)(8)for all s, t ∈ S with s+ t ∈ S.Assume that m(s0) = 0 for some s0 ∈ S with −s0 ∈ S. By (7) we get
m(0) = m(s0)m(−s0) = 0,whene, again aording to (7), we have m(s) = m(s)m(0) = 0 for all s ∈ Sand, onsequently, k is onstant by (8). Then, on aount of (6) also F isonstant. Now we an assume thatm does not vanish in a subinterval S0 ⊂ Sontaining 0 and, in addition, satisfying S0 + S0 ⊂ S. Then, by (7), m|S0

ispositive.Sine (7) is a multipliative version of the restrited Cauhy equation,with the use of ontinuity arguments and making use of [4, Theorem 2,



42 J. Jarzyk and J. Matkowskip. 327℄ we infer that there exists a c1 ∈ (0,∞) suh that m(s) = cs1 for all
s ∈ S0.If c1 = 1 it follows from (8) that k(s + t) = k(s) + k(t) for all s, t ∈ S0and, again by [4, Theorem 2, p. 327℄, we �nd a c ∈ R suh that k(s) = csfor all s ∈ S0. Consequently, on aount of (6) we have F (s, u) = cs+ u forall s ∈ S0 and u ∈ Xs.Now assume that c1 6= 1. Then, by (8), k(s + t) = ct1k(s) + k(t) for all
s, t ∈ S0. By symmetry k(s+ t) = cs1k(t) + k(s) and

k(s)

1 − cs1
=

k(t)

1 − ct1
, s, t ∈ S0 \ {0}.Thus there exists a c2 ∈ R suh that k(s) = c2(1 − cs1) for all s ∈ S0.Consequently, by (6), we have F (s, u) = cs1(u − c2) + c2 for all s ∈ S0 and

u ∈ Xs.Proof of Proposition 1. Without loss of generality we may assume that
int I 6= ∅.Assume that A[σ]

q is onditionally homogeneous, that is,
σ−1(qσ(sx) + (1 − q)σ(sy)) = sσ−1(qσ(x) + (1 − q)σ(y))(9)for all x, y ∈ I and s > 0 with sx, sy ∈ I. Fix an x0 ∈ int I and put

u0 = σ(x0). Then u0 ∈ intσ(I) and there exist δ > 0 and δ0 > 1 suh that
σ(sx0) ∈ (u0 − δ, u0 + δ)(10)for all s ∈ (1/δ0, δ0) and sσ−1(u) ∈ I for all s ∈ (1/δ0, δ0) and u ∈ (u0 − δ,

u0+δ). In partiular, (u0−δ, u0+δ) ⊂ σ(I). Put S = (− ln δ0, ln δ0). De�ning
F : S × (u0 − δ, u0 + δ) → R by

F (s, u) = σ(esσ−1(u))we an rewrite (9) in the form
F (s, qu+ (1 − q)v) = qF (s, u) + (1 − q)F (s, v),(11)

s ∈ S, u, v ∈ (u0 − δ, u0 + δ).Fix an s ∈ S. Then, applying the Darózy�Páles identity
q

(

(1 − q)
u+ v

2
+ qu

)

+ (1 − q)

(

q
u+ v

2
+ (1 − q)v

)

= qu+ (1 − q)v,we get
F

(

s, q

(

(1 − q)
u+ v

2
+ qu

)

+ (1 − q)

(

q
u+ v

2
+ (1 − q)v)

))

= qF (s, u) + (1 − q)F (s, v)



Weighted quasi-arithmeti means 43for all u, v ∈ (u0 − δ, u0 + δ). Now, applying (11) twie to the left-hand sideexpression, for all u, v ∈ (u0 − δ, u0 + δ) we have
q2F (s, u)+2q(1−q)F

(

s,
u+ v

2

)

+(1−q)2F (s, v) = qF (s, u)+(1−q)F (s, v)and, onsequently,
2F

(

s,
u+ v

2

)

= F (s, u) + F (s, v), u, v ∈ (u0 − δ, u0 + δ).By the ontinuity of F and the Jensen theorem we an �nd m(s), k(s) ∈ Rsuh that
F (s, u) = m(s)u+ k(s), u ∈ (u0 − δ, u0 + δ).Thus we have shown that F (s, ·) is ontinuous a�ne for every s ∈ S. More-over, if s, t, s + t ∈ S then, by (10), we have F (s, u0) ∈ (u0 − δ, u0 + δ),whene

F (s, u) ∈ (u0 − δ, u0 + δ)for u from a neighbourhood Us,t ⊂ (u0 − δ, u0 + δ) of u0 and
F (t, F (s, u)) = σ(etσ−1σ(esσ−1(u)))) = σ(es+tσ−1(u)) = F (s+ t, u)for all u ∈ Us,t. Sine F is not onstant, on aount of Proposition 2 thereis an interval S0 ⊂ S ontaining 0 and suh that F is of the form (4) or (5),where c1 ∈ (0,∞) and c2, c ∈ R.In this way we have shown that every point x of intI has a neighbourhoodin whih σ has one of the following forms:

σ(x) = a lnx+ b, σ(x) = axη + bwith a ∈ R\{0}, b ∈ R and η ∈ R\{0} depending on that point. By standardarguments we dedue that one of these forms holds on the whole interval I.The onverse assertion is obvious.3. Auxiliary results. Denote by CnM(I) the sublass of CM(I) on-sisting of funtions whih are n-times ontinuously di�erentiable.Lemma 1. Let p, q, r ∈ (0, 1). If ϕ, ψ ∈ C1M(I) satisfy
pA[ϕ]

q (x, y) + (1 − p)A[ψ]
r (x, y) = px+ (1 − p)y(12)and ϕ′(x) 6= 0, ψ′(x) 6= 0 for all x ∈ I, then

p =
r

1 − q + r
.Proof. Di�erentiation of both sides of (12) with respet to x gives

p
qϕ′(x)

ϕ′(A
[ϕ]
q (x, y))

+ (1 − p)
rψ′(x)

ψ′(A
[ψ]
r (x, y))

= p, x, y ∈ I.(13)



44 J. Jarzyk and J. MatkowskiLetting y → x and taking into aount the re�exivity of the means we obtainthe desired equality.Lemma 2. Let p, q, r∈(0, 1). If ϕ, ψ∈C1M(I) satisfy (12) and ϕ′(x) 6=0and ψ′(x) 6= 0 for all x ∈ I, then f := ϕ′ ◦ ϕ−1 and g := ψ′ ◦ ϕ−1 satisfy theequation
(14) f(qu+ (1 − q)v)[(1 − r)g(v) − (1 − q)g(u)]

= q(1 − r)f(u)g(v)− r(1 − q)f(v)g(u)for all u, v ∈ ϕ(I).Proof. Di�erentiating both sides of (12), �rst with respet to x and thenwith respet to y, we get (13) and
p

(1 − q)ϕ′(y)

ϕ′(A
[ϕ]
q (x, y))

+ (1 − p)
(1 − r)ψ′(y)

ψ′(A
[ψ]
r (x, y))

= 1 − p, x, y ∈ I.(15)Multiplying (13) by (1 − r)ψ′(y) and (15) by rψ′(x) we get
pq(1 − r)ϕ′(x)ψ′(y)

ϕ′(A
[ϕ]
q (x, y))

+
(1 − p)r(1 − r)ψ′(x)ψ′(y)

ψ′(A
[ψ]
r (x, y))

= p(1 − r)ψ′(y),

p(1 − q)rϕ′(y)ψ′(x)

ϕ′(A
[ϕ]
q (x, y))

+
(1 − p)(1 − r)rψ′(x)ψ′(y)

ψ′(A
[ψ]
r (x, y))

= (1 − p)rψ′(x),for all x, y ∈ I. Subtrating these equalities we obtain
pq(1 − r)ϕ′(x)ψ′(y) − p(1 − q)rϕ′(y)ψ′(x)

ϕ′(A
[ϕ]
q (x, y))

= p(1 − r)ψ′(y) − (1 − p)rψ′(x)for all x, y ∈ I. Setting here x := ϕ−1(u) and y := ϕ−1(v) we have
pq(1 − r)f(u)g(v) − p(1 − q)rf(v)g(u)

f(qu+ (1 − q)v)
= p(1 − r)g(v) − r(1 − p)g(u)for all u, v ∈ ϕ(I). Now Lemma 1 yields the assertion.Lemma 3. Let q, r ∈ (0, 1) and let J ⊂ R be an interval. If f, g : J →

(0,∞) are ontinuously di�erentiable and satisfy (14) for all u, v ∈ J, thenthere exists a number c > 0 suh that
f(u)qg(u)1−r = c, u ∈ J.Proof. Di�erentiating both sides of (14) with respet to u we get

qf ′(qu+ (1 − q)v)[(1 − r)g(v) − (1 − q)g(u)] − (1 − q)f(qu+ (1 − q)v)g′(u)

= q(1 − r)f ′(u)g(v) − (1 − q)rf(v)g′(u)for all u, v ∈ J. Letting v → u we obtain
qf ′(u)g(u) = −(1 − r)f(u)g′(u), u ∈ J.



Weighted quasi-arithmeti means 45Consequently,
f(u)qg(u)1−r = c, u ∈ J,for some c > 0.Lemma 4. Let q, r ∈ (0, 1) and let J ⊂ R be an interval. If f : J →

(0,∞) is ontinuous and satis�es the equation
(16) f(qu+ (1 − q)v)[(1 − r)f(v)−q/(1−r) − (1 − q)f(u)−q/(1−r)]

= q(1 − r)f(u)f(v)−q/(1−r) − r(1 − q)f(v)f(u)−q/(1−r)for all u, v ∈ J, then either f is onstant , or q + r = 1 and there exist
λ ∈ R \ {0} and b ∈ R suh that

f(u) = λ(u− b), u ∈ J.Proof. First assume that f is not one-to-one. Fix u0, v0 ∈ J, u0 < v0,suh that f(u0) = f(v0). We will show that f is onstant on [u0, v0]. Suppose,on the ontrary, that
f(v) 6= f(u0), v ∈ (u0, v0).(17)By (16) we have

(q − r)f(qu0 + (1 − q)v0) = (q − r)f(u0),whene (17) gives q = r. Thus (16) takes the form
(18) f(qu+ (1 − q)v)[f(u)q/(1−q) − f(v)q/(1−q)]

= q[f(u)1/(1−q) − f(v)1/(1−q)]for all u, v ∈ J . In partiular, with the use of (17) and interhanging u and v,we arrive at
f(qu0 + (1 − q)v) = f((1 − q)u0 + qv), v ∈ (u0, v0).(19)If q = 1/2 equality (18) gives

f

(

u+ v

2

)

=
f(u) + f(v)

2
, u, v ∈ J,whene f is a�ne, whih is impossible in the ase of (17) with f(u0) = f(v0).So we may further assume that q 6= 1/2. Let, for instane, q ∈ (0, 1/2). Fixa u ∈ (u0, qu0 + (1 − q)v0). Put u1 := u and

un+1 := (1 − q)u0 + q
un − qu0

1 − q
, n ∈ N.(20)Clearly,

un = qu0 + (1 − q)
un − qu0

1 − q
, n ∈ N.(21)



46 J. Jarzyk and J. MatkowskiUsing indution we dedue from (20) that un > u0 for all n ∈ N. This impliesthat un − qu0

1 − q
> u0, n ∈ N.Hene, from (20), (21) and the ondition q < 1/2 we infer that the sequene

(un)n∈N is dereasing and, in partiular,
un − qu0

1 − q
∈ (u0, v0), n ∈ N.Consequently, by (20) the sequene (un)n∈N onverges to u0 and, aordingto (19)�(21),

f(u0) = lim
n→∞

f(un) = f(u1) = f(u),whih, by (17), is impossible. This ontradition shows that there are amaximal interval J0 ⊂ J with nonempty interior and a positive c suh that
f(u) = c, u ∈ J0.We will show that J0 = J. Suppose this is not the ase. For instane let

supJ0 < supJ . Fix a u ∈ J0, u < supJ0. Then it follows from (16) that wean �nd an ε > 0 with
c[(1 − r)f(v)−q/(1−r) − (1 − q)c−q/(1−r)]

= q(1 − r)cf(v)−q/(1−r) − r(1 − q)f(v)c−q/(1−r),that is,
f(v)q/(1−r) =

c1+q/(1−r)(1 − r)

c− rf(v)for all v ∈ (supJ0, supJ0 + ε). Putting here d := c1+q/(1−r)(1 − r) and
y := f(v) we see that

yq/(1−r) =
d

c− ryfor all y from an interval with nonempty interior, whih is impossible. Thus
J0 = J. In other words, f is onstant.Now onsider the ase when f is one-to-one. Putting x = f(u) and y =
f(v) in (16) we get, for all x, y ∈ f(J),

f(qf−1(x) + (1 − q)f−1(y))[(1 − r)y−q/(1−r) − (1 − q)x−q/(1−r)]

= q(1 − r)xy−q/(1−r) − r(1 − q)yx−q/(1−r),whih shows that the quasi-arithmeti mean A[f−1]
q on f(J) is onditionallyhomogeneous. On aount of Proposition 1 there are a ∈ R \ {0} and b ∈ Rsuh that either

1◦ f−1(x) = axη + b, x ∈ f(J), for some η ∈ R \ {0},or
2◦ f−1(x) = a lnx+ b, x ∈ f(J).



Weighted quasi-arithmeti means 47Suppose that ase 2◦ holds. Then we an �nd c ∈ R \ {0} and µ > 0, µ 6= 1,suh that
f(u) = cµu, u ∈ J,whene, by (16),

µqu+(1−q)v[(1 − r)µ−qv/(1−r) − (1 − q)µ−qu/(1−r)]

= q(1 − r)µuµ−qv/(1−r) − r(1 − q)µvµ−qu/(1−r)for all u, v ∈ J and, onsequently, for all u, v ∈ R. Taking here v = 0 andputting w := µu we obtain
(1−r)wq− (1− q)w−qr/(1−r) = q(1−r)w−r(1− q)w−q/(1−r), w ∈ (0,∞).Thus, sine q > 0, −qr/(1 − r) < 0 and −q/(1 − r) < 0, we get q = 1 and
−qr/(1 − r) = −q/(1 − r), whih is impossible. Therefore ase 1◦ is satis�edand it follows that

f(u) = c|u− u0|
ξ, u ∈ J,(22)with some u0 ∈ R \ J and c ∈ (0,∞), ξ ∈ R \ {0}. By (16) we get

|qu+ (1 − q)v − u0|
ξ[(1 − r)|v − u0|

−qξ/(1−r) − (1 − q)|u− u0|
−qξ/(1−r)]

= q(1 − r)|u− u0|
ξ|v − u0|

−qξ/(1−r) − r(1 − q)|v − u0|
ξ|u− u0|

−qξ/(1−r)for all u, v ∈ J, whene
(23) (qu+ (1 − q)v)ξ[(1 − r)v−qξ/(1−r) − (1 − q)u−qξ/(1−r)]

= q(1 − r)uξv−qξ/(1−r) − r(1 − q)vξu−qξ/(1−r)either for all u, v ∈ J − u0, or for all u, v ∈ u0 − J, depending on whether
u0 < u, u ∈ J, or u0 > u, u ∈ J. If ξ < 0, then (23) gives

u−ξv−ξ[(1 − r)v−qξ/(1−r) − (1 − q)u−qξ/(1−r)]

= (qu+ (1 − q)v)−ξ(q(1 − r)v−(1+ q

1−r
)ξ − r(1 − q)u−(1+ q

1−r
)ξ)for all u, v ∈ [0,∞), whene, by setting u = 0,

q(1 − r)(1 − q)−ξv−(2+ q

1−r
)ξ = 0, v ∈ [0,∞),whih is impossible. Therefore ξ > 0 and now (23) gives

(24) (qu+ (1 − q)v)ξ[(1 − r)uqξ/(1−r) − (1 − q)vqξ/(1−r)]

= q(1 − r)u(1+ q

1−r
)ξ − r(1 − q)v(1+ q

1−r
)ξfor all u, v ∈ [0,∞). Putting here v = 0 we arrive at

qξuξ(1 − r)uqξ/(1−r) = q(1 − r)u(1+ q

1−r
)ξ, u ∈ [0,∞).Hene qξ = q, i.e. ξ = 1. Thus, putting u = 0 in (24), we get

−(1 − q)v(1 − q)vq/(1−r) = −r(1 − q)v1+q/(1−r), v ∈ [0,∞),



48 J. Jarzyk and J. Matkowskiand, onsequently, r = 1−q.Moreover, aording to (22) we have the desireda�ne form of f.4. Main results. Now we are in a position to prove the main resultof the paper. It onerns the ase of α = id, when equation (1) takes theform (12).Theorem 1. Funtions ϕ, ψ ∈ C2M(I) and numbers p, q, r ∈ (0, 1)satisfy (12) if , and only if , the following two onditions are ful�lled :(i)
p =

r

1 − q + r
,(ii) there exist a, c ∈ R \ {0} and b, d ∈ R suh that

ϕ(x) = ax+ b, ψ(x) = cx+ d, x ∈ I,or p = 1/2, q + r = 1 and
ϕ(x) = aeλx + b, ψ(x) = ce−λx + d, x ∈ I,with some λ ∈ R \ {0}.In that ase Ap is the unique (A

[ϕ]
q , A

[ψ]
r )-invariant mean. Moreover , the it-erates of (A

[ϕ]
q , A

[ψ]
r ) approah Ap.Proof. Assume that ϕ, ψ satisfy equation (12) and put f := ϕ′◦ϕ−1, g :=

ψ′◦ϕ−1. First assume additionally that ϕ′(x) 6= 0 and ψ′(x) 6= 0 for all x ∈ I.Without loss of generality we may assume that ϕ′ and ψ′ are positive. ByLemmas 2 and 3 there is a c0 ∈ (0,∞) suh that
f(u)qg(u)1−r = c0, u ∈ ϕ(I),(25)and, moreover, f satis�es (16). Aording to Lemma 4 either

1◦ f(u) = a, u ∈ ϕ(I), for some a ∈ (0,∞),or
2◦ f(u) = λ(u − b), u ∈ ϕ(I), with some λ ∈ R \ {0}, b ∈ R, and

q + r = 1.First onsider ase 1◦. Then, by (25), there is a c ∈ (0,∞) suh that
g(u) = c, u ∈ ϕ(I).Thus

ϕ′(x) = a, ψ′(x) = c, x ∈ I,whih ompletes the proof in ase 1◦. Now assume 2◦. Then, by Lemma 1,we get p = 1/2. Moreover, from the de�nition of f , we obtain
ϕ′(x) = λ(ϕ(x) − b), x ∈ I,whene
ϕ(x) = aeλx + b, x ∈ I,



Weighted quasi-arithmeti means 49with an a ∈ R \ {0}. Now, by (25),
g(u) = −cλ

a

u− b
, u ∈ ϕ(I),with a c ∈ R \ {0}, whih gives

ψ′(x) = g(ϕ(x)) = −cλe−λx, x ∈ I,that is,
ψ(x) = ce−λx + d, x ∈ I,with a d ∈ R.For the proof in the general ase denote by Zϕ and Zψ the sets of zerosof ϕ′ and ψ′, respetively. It is enough to show that these sets are empty.Sine they are losed sets with empty interiors, I \ (Zϕ ∪Zψ) is a nonemptyopen subset of I. Let I0 be any of its omponents and suppose that I0 6= I.Then at least one end of I0, say x0, belongs to I. Clearly, x0 ∈ Zϕ∪Zψ, thatis, either ϕ′(x0) = 0, or ψ′(x0) = 0. On the other hand, applying the justproved ase of the theorem to ϕ|I0 and ψ|I0 , and the ontinuity of ϕ′ and

ψ′ at x0, we infer that ϕ′(x0) 6= 0 and ψ′(x0) 6= 0. This ontradition showsthat I0 = I and, onsequently, Zϕ = Zψ = ∅.The onverse impliation an be easily veri�ed. The last paragraph ofTheorem 1 is an immediate onsequene of Theorem 1 in [6℄.Theorem 1 implies the following result onerning equation (1) for gen-eral α.Theorem 2. Let α, β, γ ∈ CM(I). Assume that β ◦ α−1, γ ◦ α−1 ∈
C2M(I). The funtions α, β, γ and numbers p, q, r ∈ (0, 1) satisfy (1) if ,and only if , the following two onditions are ful�lled :(i)

p =
r

1 − q + r
,(ii) there exist a, c ∈ R \ {0} and b, d ∈ R suh that

β(x) = aα(x) + b, γ(x) = cα(x) + d, x ∈ I,or p = 1/2, q + r = 1 and
β(x) = aeλα(x) + b, γ(x) = ce−λα(x) + d, x ∈ I,with some λ ∈ R \ {0}.In that ase A[α]
p is the unique (A

[β]
q , A

[γ]
r )-invariant mean. Moreover , theiterates of (A

[β]
q , A

[γ]
r ) approah A[α]

p .Proof. It is enough to observe that α, β, γ satisfy (1) if, and only if,
ϕ := β ◦ α−1 and ψ := γ ◦ α−1 satisfy (12) and next use Theorem 1.
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Remark. It an be seen from Theorem 1 (or by a diret substitution)that for q ∈ (0, 1) and ϕ, ψ : I → R given by

ϕ(x) = eλx, ψ(x) = e−λx(26)with arbitrary λ ∈ R \ {0} we have
A[ϕ]
q (x, y) +A

[ψ]
1−q(x, y) = x+ y, x, y ∈ I,(27)that is, the arithmeti mean is the (unique) (A

[ϕ]
q , A

[ψ]
1−q)-invariant mean.Moreover, we have

lim
n→∞

(A[ϕ]
q , A

[ψ]
1−q)

n(x, y) =

(

x+ y

2
,
x+ y

2

)

, x, y ∈ I.(28)The above Remark allows us to obtainTheorem 3. Let q ∈ (0, 1) and let ϕ, ψ : I → R be given by (26).A funtion F : I2 → R is a solution of the equation
F (A[ϕ]

q (x, y), A[ψ]
r (x, y)) = F (x, y),(29)ontinuous at every point of the diagonal {(x, y) ∈ I2 : x = y}, if , and onlyif , there is a ontinuous funtion f : I → R suh that

F (x, y) = f

(

x+ y

2

)

, x, y ∈ I.Proof. Assume that F : I2 → R satis�es (29) and is ontinuous on thediagonal. By indution we get
F (x, y) = F ((A[ϕ]

q , A[ψ]
r )n(x, y)), x, y ∈ I, n ∈ N.Letting n → ∞ and making use of (28) and of the ontinuity of F at thediagonal we obtain

F (x, y) = F (A(x, y), A(x, y)), x, y ∈ I.Putting
f(u) := F (u, u), u ∈ I,we get the desired form of F . In view of (27) the onverse is lear.Aknowledgements. The authors are indebted to the referee for hisvaluable omments and remarks, espeially those onerning Setion 2.
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