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Asymptotics of solutions to the Dirichlet–Cauchy problem
for parabolic equations in domains with edges

by Vu Trong Luong (Sonla), Nguyen Manh Hung (Hanoi)
and Do Van Loi (Thanhhoa)

Abstract. This paper is concerned with the Dirichlet–Cauchy problem for second
order parabolic equations in domains with edges. The asymptotic behaviour of the solution
near the edge is studied.

1. Introduction. We are concerned with initial boundary value prob-
lems (IBVP) for parabolic equations or systems in non-smooth domains.
Such problems in domains with conical points have been studied in [3, 4, 5];
we investigated the solvability and asymptotics of solutions in a neighbour-
hood of the conical point. Solonnikov [10] dealt with the Neumann problem
in domains with edges for the classical heat equation. By using the Fourier
transform to reduce the problem to an elliptic boundary value problem with
parameter, he proved the unique solvability and obtained coercive estimates
of the solution in a weighted Hölder norm. Frolova [2] extended the solvabil-
ity results of [10] to the case of boundary conditions involving derivatives
with respect to both space variables and time.

In the present paper, we consider the first initial boundary value problem
for second order parabolic equations in domains with edges. We modify the
approach suggested in [9, 3] to demonstrate the asymptotic representation
of the generalized solution of the problem in a neighbourhood of the edge.

Let Ω be a bounded domain in Rn, n ≥ 2, with the boundary ∂Ω con-
sisting of two surfaces Γ1, Γ2 which intersect along a manifold l0. Assume
that in a neighbourhood of each point of l0 the set Ω is diffeomorphic to
a dihedral angle. For any P ∈ l0, two half-spaces T1(P ) and T2(P ) tangent
to Ω, and a two-dimensional plane π(P ) normal to l0, are defined. We de-
note by ν(P ) the angle in the plane π(P ) (on the side of Ω) bounded by the
rays R1 = T1(P )∩ π(P ) and R2 = T2(P )∩ π(P ), and by β(P ) the aperture
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of this angle. Set QT = Ω×(0, T ), ST = ∂Ω×(0, T ) for each T, 0 < T ≤ ∞.
For each multi-index p = (p1, . . . , pn) ∈ Nn, |p| = p1 + · · · + pn, the sym-
bol Dpu = ∂|p|u/∂xp11 · · · ∂x

pn
n denotes the generalized derivative of order |p|

with respect to x = (x1, . . . , xn); utk = ∂ku/∂tk is the generalized derivative
of order k with respect to t.

We denote by H l(Ω), H̊ l(Ω) the usual Sobolev spaces as in [1]. We denote
by H l

α(Ω) (α ∈ R) the weighted Sobolev space of all functions u defined on
Ω with the norm

‖u‖2Hl
α(Ω) =

∑
0≤|p|≤l

�

Ω

(r2(α+|p|−l)|Dpu|2 + |u|2) dx,

where r2 = x21 + x22.

By H l,k(QT , γ), H l,k
α (QT , γ) (γ ∈ R) we denote the weighted Sobolev

spaces of functions u defined on QT with the norms

‖u‖2Hl,k(QT ,γ)
=

�

QT

( ∑
0≤|p|≤l

|Dpu|2 +

k∑
j=1

|utj |2
)
e−γt dx dt

and

‖u‖2
Hl,k
α (QT ,γ)

=
�

QT

( ∑
0≤|p|≤l

r2(α+|p|−l)|Dpu|2 +
k∑
j=0

|utj |2
)
e−γt dx dt.

The space H̊ l,k(QT , γ) is the closure in H l,k(QT , γ) of the set of all infinitely
differentiable functions on QT which vanish near ST .

Denote by L2(QT , γ), H l
α(QT , γ) the spaces of functions u(x, t) defined

on QT with the norms

‖u‖2L2(QT ,γ)
=

�

QT

|u|2e−γtdxdt,

‖u‖2Hl
α(QT ,γ)

=
∑

0≤|p|+k≤l

�

QT

(r2(α+|p|+k−l)|Dputk |2 + |u|2)e−γt dx dt.

Notice that if T <∞, then we can omit the weight γ.

Let

L(x, t, ∂)u = −
n∑

i,j=1

∂

∂xi

(
aij(x, t)

∂u

∂xj

)
+

n∑
i=1

bi(x, t)
∂u

∂xi
+ c(x, t)u

be a second order partial differential operator, where aij(x, t), bi(x, t) and
c(x, t) are real-valued functions on QT belonging to C∞(QT ). Moreover,
suppose that aij = aji, i, j = 1, . . . , n, are continuous in x ∈ Ω uniformly
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with respect to t ∈ [0, T ) and

(1.1)
n∑

i,j=1

aij(x, t)ξiξj ≥ µ0|ξ|2

for all ξ ∈ Rn \ {0} and (x, t) ∈ QT , where µ0 = const > 0. We consider the
problem

(1.2) ut + L(x, t, ∂)u = f in QT ,

with the initial condition

(1.3) u|t=0 = 0 on Ω,

and the boundary condition

(1.4) u|ST = 0.

Let us denote

B(u, v; t) =

n∑
i,j=1

�

Ω

aij(x, t)
∂u

∂xj

∂v

∂xi
dx+

n∑
i=1

�

Ω

bi(x, t)
∂u

∂xi
v dx+

�

Ω

c(x, t)uv dx,

a time-dependent bilinear form. Applying condition (1.1) and similar argu-
ments to the proof of G̊arding’s inequality it follows that

(1.5) B(u, u; t) ≥ µ0‖u‖2H1(Ω) − λ0‖u‖
2
L2(Ω), a.e. t ∈ [0, T ),

for all u ∈ H̊1,1(QT , γ), where µ0 = const > 0 and λ0 = const ≥ 0. Without
loss of generality, we shall deal explicitly with the case when λ0 = 0, since
by the substitution v = eλ0tu, problem (1.2)–(1.4) can be transformed to a
problem with λ0 = 0.

We denote by (·, ·) the inner product in L2(Ω). A function u(x, t) is
called a generalized solution in H̊1,1(QT , γ) of problem (1.2)–(1.4) if u(x, t) ∈
H̊1,1(QT , γ), u(x, 0) = 0, and the equality

(1.6) (ut, v) +B(u, v; t) = (f, v), a.e. t ∈ [0, T ),

holds for all v ∈ H̊1(Ω).

2. Preliminaries. In this section, we will present some results on the
well-posedness of the problem in weighted Sobolev spaces and the regularity
in the time variable.

Theorem 2.1. Let f ∈ H0
α(QT , γ0), γ0 > 0, α ∈ [0, 1], and suppose the

coefficients of the operator L satisfy

sup{|aij |, |aijt|, |bi|, |c| : i, j = 1, . . . , n; (x, t) ∈ QT } ≤ µ.
Then for each γ ≥ γ0, problem (1.2)–(1.4) has a unique generalized solution

u in H̊1,1(QT , γ), and the following estimate holds:

(2.1) ‖u‖2H1,1(QT ,γ)
≤ C‖f‖2H0

α(QT ,γ0)
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where C is a constant independent of u and f . This solution depends con-
tinuously on f .

Proof. Firstly, we will prove the existence by Galerkin’s approximation

method. Let {ωk}∞k=1 be an orthogonal basis of H̊1(Ω) which is orthonormal
in L2(Ω). Put

uN (x, t) =

N∑
k=1

CNk (t)ωk(x)

where CNk (t), t ∈ [0, T ), k = 1, . . . , N, is the solution of the following system
of ordinary differential equations:

(2.2) (uNt , ωk) +B(uN , ωk; t) = (f, ωk), t ∈ [0, T ), k = 1, . . . , N,

with the initial conditions

(2.3) CNk (0) = 0, k = 1, . . . , N.

Multiplying (2.2) by CNk (t), then summing over k from 1 to N , we arrive at

(uNt , u
N ) +B(uN , uN ; t) = (f, uN ), t ∈ [0, T ).

This can be rewritten in the form

(2.4)
d

dt
(‖uN‖2L2(Ω)) + 2B(uN , uN ; t) = 2(f, uN ).

By the Cauchy inequality and the Hardy inequality, for all α ∈ [0, 1] we have

|(f, uN )| ≤ ‖rαf‖L2(Ω)‖r−αuN‖L2(Ω) ≤ C‖f‖H0
α(Ω)‖r−1uN‖L2(Ω)(2.5)

≤ C‖f‖H0
α(Ω)‖uN‖H1(Ω) ≤ C(ε)‖f‖2H0

α(Ω) + ε‖uN‖2H1(Ω)

for any small ε, where C = C(ε) is a constant independent of N, f, t. Com-
bining the estimate above and (1.5), we deduce from (2.4) that

(2.6)
d

dt
(‖uN (·, t)‖2L2(Ω)) + 2(µ0 − ε)‖uN (·, t)‖2H1(Ω) ≤ C‖f(·, t)‖2H0

α(Ω)

for a.e. t ∈ [0, T ). Multiplying (2.6) by e−γt, then integrating with respect
to t from 0 to τ , τ ∈ (0, T ), we obtain
τ�

0

e−γt
(
d

dt
‖uN‖2L2(Ω)

)
dt+ 2(µ0 − ε)

τ�

0

e−γt‖uN‖2H1(Ω) dt ≤ C‖f‖
2
H0
α(QT ,γ0)

.

Notice that
τ�

0

e−γt
(
d

dt
‖uN‖2L2(Ω)

)
dt =

τ�

0

d

dt
(e−γt‖uN‖2L2(Ω)) dt+ γ

τ�

0

e−γt‖uN‖2L2(Ω) dt

= e−γτ‖uN (x, τ)‖2L2(Ω) + γ

τ�

0

e−γt‖uN‖2L2(Ω) dt ≥ 0.
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The inequalities above yield

(2.7)

τ�

0

e−γt‖uN‖2H1(Ω)dt ≤ C‖f‖
2
H0
α(QT ,γ0)

, ∀τ ∈ (0, T ).

Since the right-hand side of (2.7) is independent of τ , we get

(2.8) ‖uN‖2H1,0(QT ,γ)
≤ C‖f‖2H0

α(QT ,γ0)

where C is a constant independent of u, f and N .

Multiplying (2.2) by e−γtdCNk /dt, then summing over k from 1 to N , we
obtain

(2.9) e−γt(uNt , u
N
t ) + e−γtB(uN , uNt ; t) = e−γt(f, uNt )

for a.e. 0 ≤ t < T . To simplify notation, write uxi = ∂u/∂xi; then

e−γtB(uN , uNt ; t) =
�

Ω

n∑
i,j=1

e−γtaiju
N
xju

N
xit dx(2.10)

+
( �
Ω

n∑
i=1

biu
N
xiu

N
t dx+

�

Ω

cuNuNt dx
)
e−γt

=: I + IIe−γt.

It is easily seen that

(2.11) I =
1

2

�

Ω

n∑
i,j=1

∂

∂t
[e−γtaiju

N
xju

N
xi ] dx−

1

2

�

Ω

n∑
i,j=1

∂e−γtaij
∂t

uNxju
N
xi dx.

Furthermore,

|II| ≤ C(ε)‖uN‖2H1(Ω) + ε‖uNt ‖2L2(Ω),

|(f, uNt )| ≤ C(ε)‖f‖2L2(Ω) + ε‖uNt ‖2L2(Ω).

Combining the above inequalities and (2.9)–(2.11), we deduce

e−γt‖uNt ‖2L2(Ω) +
1

2

�

Ω

n∑
i,j=1

∂

∂t
[e−γtaiju

N
xju

N
xi ] dx

≤ C(ε)e−γt[‖uN‖2H1(Ω) + ‖f‖2L2(Ω)] + 2εe−γt‖uNt ‖2L2(Ω)

+
1

2

�

Ω

n∑
i,j=1

∂e−γtaij
∂t

uNxju
N
xi dx.



126 V. T. Luong et al.

Since aij , ∂aij/∂t, e
−γt are bounded, using Cauchy’s inequality, we get

(2.12) e−γt‖uNt ‖2L2(Ω) +
1

2

�

Ω

n∑
i,j=1

∂

∂t
[e−γtaiju

N
xju

N
xi ] dx

≤ C1(ε)e
−γt[‖uN‖2H1(Ω) + ‖f‖2L2(Ω)] + 2εe−γt‖uNt ‖2L2(Ω).

Choosing ε = 1/4, then integrating (2.12) with respect to t from 0 to τ
(0 < τ < T ), we find

(2.13) ‖uNt ‖2L2(Qτ ,γ)
+

�

Ω

n∑
i,j=1

τ�

0

∂

∂t
[e−γtaiju

N
xju

N
xi ] dτ dx

≤ C[‖uN‖2H1,0(Qτ ,γ)
+ ‖f‖2L2(Qτ ,γ)

].

By a simple calculation using (1.1), we obtain

‖uNt ‖2L2(Qτ ,γ)
≤ C[‖uN‖2H1,0(Qτ ,γ)

+ ‖f‖2L2(Qτ ,γ)
].

Letting τ → T and using (2.8) we find that

(2.14) ‖uNt ‖2L2(QT ,γ)
≤ C‖f‖2H0

α(QT ,γ0)
.

It follows readily from (2.8) and (2.14) that

(2.15) ‖uN‖2H1,1(QT ,γ)
≤ C‖f‖2H0

α(QT ,γ0)
,

where C is a constant independent of u, f and N .
According to (2.15), by standard weak convergence arguments, the se-

quence {uN}∞N=1 has a subsequence convergent to a function u∈H̊1,1(QT , γ),
which is a generalized solution of problem (1.2)–(1.4). Moreover, it follows
from (2.15) that inequality (2.1) holds.

Finally, we will prove the uniqueness of the generalized solution. It suf-
fices to check that the only generalized solution of problem (1.2)–(1.4) with
f ≡ 0 is u ≡ 0. By setting v = u(·, t) in (1.6) (for f ≡ 0), we get

d

dt
(‖u(·, t)‖2) + 2B(u, u; t) = 0.

By (1.5), we have

d

dt
(‖u‖2L2(Ω)) + 2µ0‖u‖2H1(Ω) ≤ 0 for a.e. t ∈ [0, T ).

Since u|t=0 = 0, it follows that u = 0 on QT . By (2.15), we also see that the
solution u depends continuously on f .

By the same arguments used in the proof of Theorem 2.1 together with
inductive arguments (cf. [3]), we obtain the following theorem:

Theorem 2.2. Let h ∈ N∗, and assume that

(i) sup{|aijtk+1 |, |bitk |, |ctk | : i, j = 1, . . . , n; (x, t) ∈ QT , k ≤ h} ≤ µ,
(ii) ftk ∈ H0

α(QT , γ0) for all k ≤ h; ftk(x, 0) = 0 for all 0 ≤ k ≤ h− 1.
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Then for each γ ≥ γ0, the generalized solution u ∈ H̊1,1(QT , γ) of problem
(1.2)–(1.4) has derivatives with respect to t up to order h, and

(2.16) ‖uth‖2H1,1(QT ,γ)
≤ C

h∑
j=0

‖ftj‖2H0
α(QT ,γ0)

where C is a constant independent of u and f .

3. Regularity of the generalized solution. We reduce the operator
with coefficients at P ∈ l0, t ∈ [0, T ),

L
(2)
0 := −

2∑
i,j=1

aij(P, t)
∂2

∂xi∂xj
,

to its canonical form. After a linear transformation of coordinates that re-
alizes this reduction, T1 and T2 go over into hyperplanes T ′1 and T ′2, respec-
tively, the angle between which is denoted by ω(P, t). It is easy to see that

ω(P, t) does not depend on the method by which L
(2)
0 is reduced to its canon-

ical form. The function ω(P, t) is infinitely differentiable, and ω(P, t) > 0.

Theorem 3.1. Let the assumptions of Theorem 2.2 be satisfied for a
given positive integer h. Furthermore, let α ∈ [0, 1], 1− α < π/ω. Then the
generalized solution u ∈ H̊1,1(QT , γ) of problem (1.2)–(1.4) has derivatives

with respect to t up to order h, uth ∈ H
2,0
α (QT , γ) and

‖uth‖2H2,0
α (QT ,γ)

≤ C
h∑
k=0

‖ftk‖2H0
α(QT ,γ0)

,

where C is a constant independent of u, f .

Proof. We use induction on h. Firstly, we consider the case h = 0. It
is easy to see that u(·, t0), t0 ∈ (0, T ), is the generalized solution of the
problem

L(x, t0, ∂)u = F (x, t0) in Ω, u|∂Ω = 0,

where F (x, t0) = f(x, t0) − ut(x, t0) ∈ H0
α(Ω). From [8, Thm. 2], we get

u(·, t0) ∈ H2
α(Ω) and

‖u(·, t0)‖2H2
α(Ω) ≤ C[‖F (·, t0)‖2H0

α(Ω) + ‖u‖2L2(Ω)](3.1)

≤ C[‖f‖H0
α(Ω) + ‖ut‖2L2(Ω) + ‖u‖2L2(Ω)].

Multiplying the above inequality with e−t0γ , then integrating with respect
to t0 from 0 to T and using the estimates from Theorem 2.2, we obtain

‖u‖2
H2,0
α (QT ,γ)

≤ C‖f‖2H0
α(QT ,γ0)

.

Thus, the assertion is valid for h = 0.
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Next, suppose that the assertion is true for h − 1; we will prove it for
k = h. Differentiating (1.2) h times with respect to t, we find

(3.2) Lu
th

= fth − uth+1 −
h−1∑
k=0

(
k

h

)
Lth−kutk =: F.

By the assumptions of the theorem and the induction assumption, this im-
plies that fth ∈ H0

α(Ω), uth+1 ∈ L2(Ω) ⊂ H0
α(Ω), α ∈ [0, 1], and utk ∈

H0
α(Ω), k ≤ h− 1. Therefore, F (·, t0) ∈ H0

α(Ω) for a.e. t0 ∈ (0, T ). By using
again [8, Thm. 2], we get uth ∈ H2

α(Ω) for a.e. t0 ∈ (0, T ) and

‖uth‖2H2
α(Ω) ≤ C‖F‖

2
H0
α(Ω)(3.3)

≤ C
[
‖fth‖2H0

α(Ω) + ‖uth+1‖2L2(Ω) +

h−1∑
k=0

‖utk‖2L2(Ω)

]
.

Multiplying (3.3) with e−t0γ , then integrating with respect to t0 from 0 to
T and using again the estimates from Theorem 2.2, we obtain

‖uth‖2H2,0
α (QT ,γ)

≤ C
h∑
k=0

‖ftk‖2H0
α(QT ,γ0)

.

This means that the assertion of the theorem is valid for k = h.

Theorem 3.2. Assume that f, ft ∈ Hh
α(QT , γ0), ftk(x, 0) = 0 for all

k ≤ h− 1, and
h+ 1− α < π/ω, α ∈ [0, 1].

Then the generalized solution u of problem (1.2)–(1.4) is in H2+h
α (QT , γ).

Moreover,

(3.4) ‖uth‖2H2+h
α (QT ,γ)

≤ C(‖f‖2Hh
α(QT ,γ0)

+ ‖ft‖2Hh
α(QT ,γ0)

),

where C is a constant independent of u, f .

Proof. We have

‖u‖2H2
α(QT ,γ)

=
∑
|p|+k≤2

�

QT

(r2(α+|p|+k−2)|Dputk |2 + |u|2)e−γt dx dt

=
∑
|p|≤2

�

QT

(r2(α+|p|−2)|Dpu|2 + |u|2)e−γt dx dt

+
∑
|p|≤1

�

QT

(r2(α+|p|−1)|Dput|2)e−γt dx dt+
�

QT

r2α|utt|2e−γt dx dt

= ‖u‖2
H2,0
α (QT ,γ)

+ ‖ut‖2H1,0
α (QT ,γ)

+ ‖utt‖2H0
α(QT ,γ)

=

2∑
k=0

‖utk‖2H2−k,0
α (QT ,γ)

.
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Therefore, u ∈ H2
α(QT , γ) by Theorem 3.1. Moreover, we have

‖u‖2H2
α(QT ,γ)

=
2∑

k=0

‖utk‖2H2−k,0
α (QT ,γ)

≤ C(‖f‖2H0
α(QT ,γ0)

+ ‖ft‖2H0
α(QT ,γ0)

).

Thus, the assertion is valid for h = 0. Suppose it is true for h− 1. It is easy
to see that

(3.5) ‖u‖2
H2+h
α (QT ,γ)

=

h+2∑
k=0

‖utk‖2Hh+2−k,0
α (QT ,γ)

.

We will prove that

(3.6) utk ∈ Hh+2−k,0
α (QT , γ), k = 0, . . . , h,

and

(3.7) ‖utk‖2Hh+2−k,0
α (QT ,γ)

≤ C
k∑
s=0

‖fts‖2Hh−k,0
α (QT ,γ0)

, k ≤ h.

By using Theorem 3.1, this holds for k = h. Suppose that it holds for
k = h, h − 1, . . . , j + 1; we will prove it for k = j. Returning once more to
(3.2) (h = j), we get

Lutj = ftj − utj+1 −
j−1∑
k=0

(
j

k

)
Lutj−kutk =: F1.

Notice that ftj ∈ Hh
α(Ω) ⊂ Hh−j

α (Ω) for a.e. t ∈ (0, T ) (by the assumptions

of the theorem), utj+1 ∈ Hh−j+1
α (Ω) ⊂ Hh−j

α (Ω) for a.e. t ∈ (0, T ) (by (3.6)

which holds for k = j + 1), utk ∈ Hh+1−k
α (Ω) ⊂ Hh−j

α (Ω), k = 0, . . . , j − 1
(by the induction assumption for k = h− 1).

This implies that F1(·, t) ∈ Hh−j
α (Ω) for a.e. t ∈ (0, T ). From [8, Thm. 2],

we obtain

utj ∈ Hh+2−j
α (Ω) for a.e. t ∈ (0, T )

and

(3.8) ‖utj‖2Hh+2−j
α (Ω)

≤ C‖F1‖Hh−j
α (Ω)

≤ C
[
‖ftj‖2Hh−j

α (Ω)
+ ‖utj+1‖2

Hh−j
α (Ω)

+

j−1∑
k=0

‖utk‖2Hh−j
α (Ω)

]
.

Multiplying (3.8) with e−γt, then integrating with respect to t from 0 to T ,
we arrive at

‖utj‖2Hh+2−j,0
α (QT ,γ)

≤ C
j∑

k=0

‖ftk‖2Hh−j,0
α (QT ,γ0)

.
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This means that (3.6) and (3.7) are true for k = j, so they hold for all
k = 0, 1, . . . , h. From (3.5), we get

‖u‖2
Hh+2
α (QT ,γ)

≤ C
h+1∑
k=0

‖ftk‖2Hh−k,0
α (QT ,γ0)

= C(‖f‖2Hh
α(QT ,γ0)

+ ‖ft‖2Hh
α(QT ,γ0)

).

The proof is complete.

4. Asymptotics of the solution in a neighbourhood of the edge.
In the previous section, we have seen that if k+ 1−α < π/ω, α ∈ [0, 1] and
f, ft ∈ Hk

α(QT , γ0), then the solution u is in H2+k
α (QT , γ0). Now we study

the solution in the case π/ω < k + 1 − α. In this case we can obtain for u
an asymptotic representation in a neighbourhood of l0 : x1 = x2 = 0. To
start, we denote y1 = x1, y2 = x2, y = (y1, y2), zi = xi+2, z = (z1, . . . , zn−2),
r = x21 +x22; (r, ϕ) are the polar coordinates of y = (y1, y2) ∈ Ωz = Ω∩{z =
const}. Set Qz,T = Ωz × (0, T ).

Lemma 4.1. Suppose that the following hypotheses are satisfied:

(i) fts ∈ Hk,0
α (QT , γ0) for all s ≤ h; fts(x, 0) = 0 for all s ≤ h− 1.

(ii) k − α < π/ω < k + 1− α < 2π/ω, α ∈ [0, 1].

Let u be the solution of (1.2)–(1.4) with u ≡ 0 outside some neighbourhood
of l0. Then

u(y, z, t) = c(z, t)rπ/ωΦ(z, ϕ, t) + u1(y, z, t)

where cts ∈ L2(QT , γ), Φ ∈ C∞ and (u1)ts ∈ Hk+2,0
α (Qz,T , γ) for all s ≤ h.

Proof. Using (i), we deduce from Theorem 3.2 that uts ∈ Hk+1,0
α (QT , γ)

for all s ≤ h, in particular, uz ∈ Hk
α(Ω) and utz ∈ Hk

α(Ω) for a.e. t ∈ (0, T ).
On the other hand, we have

Luz = fz − utz − Lzu =: f1

where

Lz = −
n∑

i,j=1

∂

∂xi

(
aijz

∂

∂xj

)
+

n∑
i=1

biz
∂

∂xi
+ cz

and f1 ∈ Hk−1
α (Ω) for a.e. t ∈ (0, T ). Using Theorem 3.1, we obtain uz ∈

Hk+1
α (Ω) for a.e. t ∈ (0, T ). Therefore, equality (1.2) can be rewritten in

the form

(4.1) L
(2)
0 u = F

where F ∈ Hk
α(Ω) for a.e. t ∈ (0, T ). Now we can apply Theorem 1′ of [9]

to get

(4.2) u(y, z, t) = c(z, t)rπ/ωΦ(z, ϕ, t) + u1(y, z, t)
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where Φ ∈ C∞, u1 ∈ Hk+2
α (Ωz) and

|c(z, t)|2 ≤ C(‖F‖2Hk
α(Ωz)

+ ‖u‖2L2(Ωz)
),

‖u1‖2Hk+2
α (Ωz)

≤ C(‖F‖2Hk
α(Ωz)

+ ‖u‖2L2(Ωz)
), z ∈ l0, t ∈ (0, T ).

Hence, c ∈ L2(QT , γ), u1 ∈ Hk+2,0
α (Qz,T , γ). This implies that the conclusion

holds for h = 0. Suppose it is true for h − 1; we will prove it for k = h.
Denoting v = uth , and differentiating (4.1) h times with respect to t, we
find

(4.3) L
(2)
0 v = Fth −

h∑
j=1

(
h

j

)
L
(2)

0tj
uth−j .

Setting S0 = rπ/ωΦ, we have

(4.4)
h∑
j=1

(
h

j

)
L
(2)

0tj
uth−j =

h∑
j=1

(
h

j

)
L
(2)

0tj
(cS0)th−j +

h∑
j=1

(
h

j

)
L
(2)

0tj
(u1)th−j .

The first term of the right-hand side of (4.4) can be rewritten in the following
form:

h∑
j=1

(
h

j

)
L
(2)

0tj
(cS0)th−j =

h∑
j=1

(
h

j

)
L
(2)

0tj

(h−j∑
i=0

(
h− j
i

)
cth−j−iS0ti

)

=
h∑
j=1

(
h

j

) h−j∑
i=0

(
h− j
i

)
cth−j−iL

(2)

0tj
S0ti

=

h∑
j=1

(
h

j

) h−j∑
i=1

(
h− j
i

)
cth−j−iL

(2)

0tj
S0ti

+

h∑
j=1

(
h

j

)
cth−jL

(2)

0tj
S0

=
h∑
j=0

(
h

j

) h−j∑
i=1

(
h− j
i

)
cth−j−iL

(2)

0tj
S0ti

+
h∑
j=1

(
h

j

)
cth−jL

(2)

0tj
S0 −

h∑
i=1

(
h

i

)
cth−iL

(2)
0 S0ti

= F1 −
h∑
i=1

(
h

i

)
cth−iL

(2)
0 S0ti .
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From the assumptions of the lemma and the inductive assumptions, this
implies that F1 ∈ Hk

α(Ωz). Hence, from (4.4) we obtain

h∑
j=1

(
h

j

)
L
(2)

0tj
uth−j = F2 −

h∑
i=1

(
h

i

)
cth−iL

(2)
0 S0ti

where F2 ∈ Hk
α(Ωz). Employing the equality above, we infer from (4.3) that

(4.5) L
(2)
0 v = F3 +

h∑
i=1

(
h

i

)
cth−iL

(2)
0 S0ti .

Thus,

L
(2)
0

(
v −

h∑
i=1

(
h

i

)
cth−iS0ti

)
= F3

where F3 ∈ Hk
α(Ωz). Analogously to the case h = 0, we get

v −
h∑
i=1

(
h

i

)
cth−iS0ti = d(z, t)S0 + u2(y, z, t).

Therefore,

(4.6) uth =
h∑
i=1

(
h

i

)
cth−iS0ti + d(z, t)S0 + u2(y, z, t)

where d ∈ L2(QT , γ0) and u2 ∈ Hk+2,0
α (Qz,T , γ). By the assumption (i), this

implies that u is differentiable with respect to t. Then, we can see that the
functions c(z, ·) and u1(·, t) are differentiable with respect to t. Combining
(4.2) and (4.6), we conclude that

cth = d ∈ L2(QT , γ), (u1)th = u2 ∈ Hk+2,0
α (Qz,T , γ).

The proof is complete.

Next, we have the following theorem.

Theorem 4.2. Suppose that the hypotheses of Lemma 4.1 are satisfied.
Then the following representation holds:

u(x, t) = c(x, t)rπ/ωΦ(z, ϕ, t) + u1(x, t)

where cts ∈ Hk+2,0
α+π/ω(QT , γ) and (u1)ts ∈ Hk+2,0

α (QT , γ) for all s ≤ h.

Proof. From Lemma 4.1, we have the representation:

(4.7) u(x, t) = c(z, t)rπ/ωΦ(z, t, ϕ) + u1(x, t)

where cts ∈ L2(QT , γ) and (u1)ts ∈ Hk+2,0
α (Qz,T , γ) for all s ≤ h. Consider

the differential operator

D1 =
∂

∂r
+

1

r

∂

∂ϕ
;
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in the coordinates x1, x2, it is

D1 = Φ1
∂

∂x1
+ Φ2

∂

∂x2

where Φ1, Φ2 are infinitely differentiable. From representation (4.7), we find

(4.8) D1u =
π

ω
c(z, t)rπ/ω−1Φ3(z, t, ϕ) +D1u1(x, t).

Moreover,

(4.9) u1 ∈ Hk+2,0
α (Qz,T , γ),

�

Qz,T

(
r2α

∂k+2u1

∂xk11 ∂x
k2
2

)
e−γt dx1 dx2 dt <∞.

By arguments analogous to the proof of Lemma 4.1, we obtain

uz, u ∈ Hk+1,0
α (QT , γ).

Therefore,

(4.10)

(D1u)z ∈ Hk,0
α (QT , γ),�

QT

(r2(α−k)|(D1u)z|)e−γt dx dt ≤
�

QT

(r2α|f |2)e−γ0t dx dt <∞.

Combining (4.9) and (4.10), we get

r−π/ω+1D1u1 ∈ Hk+1,0
α+π/ω−1(Qz,T , γ), r−π/ω+1(D1u)z ∈ Hk+1,0

α+π/ω−1(QT , γ).

On the other hand, equality (4.8) yields

(r−π/ω+1D1u)y = (r−π/ω+1D1u1)y.

Consequently,

(4.11) r−π/ω+1D1u ∈ Hk+1,0
α+π/ω−1(QT , γ).

Now write

c1(x, t) =
ω

π
r−π/ω+1D1uΦ3.

Then (4.11) implies c1 ∈ Hk+1,0
α+π/ω−1(QT , γ). From Lemma 2 in [9], we con-

clude that there is c̃1 ∈ Hk+2,0
α+π/ω(QT , γ) with (c̃1)ts ∈ Hk+2,0

α+π/ω(QT , γ) for all

s ≤ h such that

(4.12)
�

QT

(|c1 − c̃1|2r2(α+π/ω−k−2))e−γt dx dt <∞.

Ultilizing (4.8) and the fact that u1 ∈ Hk+2,0
α (Qz,T , γ), we get

(4.13)
�

QT

(|c− c1|2r2(α+π/ω−k−2))e−γt dx dt <∞.
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We can rewrite representation (4.7) in the form

u(x, t) = c̃1(x, t)r
π/ωΦ(z, ϕ, t) + [c− c̃1]rπ/ωΦ(z, ϕ, t)(4.14)

= c̃1(x, t)r
π/ωΦ(z, ϕ, t) + u2(x, t)

where u2 ∈ Hk+2,0
α (Qz,T , γ) for all z ∈ l0. Since u is differentiable with

respect to z and u2 = u− c̃1rπ/ωΦ, we see that Lu2 ∈ Hk
α(Ω) and�

Ω

r2(α−k−2)|u2| dx <∞.

By Lemma 2 in [7], we obtain u2 ∈ Hk+2
α (Ω). Hence, u2 ∈ Hk+2,0

α (QT , γ).

To prove (u2)ts ∈ Hk+2,0
α (QT , γ) for all s ≤ h, we can use arguments

analogous to the proof of Lemma 4.1.
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