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Hodge type de
ompositionby Wojciech Kozłowski (�ód¹)Abstra
t. In the spa
e Λp of polynomial p-forms in R
n we introdu
e some spe
ialinner produ
t. Let H

p be the spa
e of polynomial p-forms whi
h are both 
losed and
o-
losed. We prove in a purely algebrai
 way that Λp splits as the dire
t sum d⋆(Λp+1)⊕
δ⋆(Λp−1)⊕H

p, where d⋆ (resp. δ⋆) denotes the adjoint operator to d (resp. δ) with respe
tto that inner produ
t.1. Introdu
tion and main result. To begin with, re
all the 
lassi
alHodge de
omposition theorem. Suppose (Mn, g) is an oriented Riemannianmanifold. Introdu
e the following notation: Λp(M) is the spa
e of all smoothdi�erential p-forms on M whereas d, δ and ∆ = dδ+ δd, are the di�erential,
o-di�erential and the Lapla
e�Beltrami operator, respe
tively. Re
all thatfor any ω ∈ Λp(M), δω = (−1)n(p+1)+1⋆d⋆ω, where ⋆ is the Hodge operator.Moreover, let H
p(M) denote the spa
e of p-forms whi
h are both 
losed and
o-
losed: H

p(M) = {ω ∈ Λp(M) : dω = δω = 0}.If M is 
ompa
t then the formula
(ω|η)M =

\
M

ω ∧ ⋆ηde�nes an inner produ
t in Λp(M). Then d⋆ = δ and δ⋆ = d, i.e., d and δ areadjoint to ea
h other. Take any ω ∈ Λp(M); then (ω|∆ω)M = (dω|dω)M +
(δω|δω)M . Therefore, ω is harmoni
, i.e., ∆ω = 0, i� ω ∈ H

p(M). Thefollowing is a 
lassi
al result in analysis:Theorem 1.1 (Hodge de
omposition theorem). On a 
ompa
t orientedRiemannian manifold M , Λp(M) = dΛp−1(M) ⊕⊥ δΛp+1(M) ⊕⊥
H

p(M),or equivalently Λp(M) = δ⋆Λp−1(M) ⊕⊥ d⋆Λp+1(M) ⊕⊥
H

p(M), where ⊕⊥denotes an orthogonal dire
t sum.For the proof of the Hodge de
omposition theorem we refer to the bookof F. Warner ([4, Chapter 6℄). Noti
e that a histori
al survey of the devel-2000 Mathemati
s Subje
t Classi�
ation: 33C55, 35J99, 53C43.Key words and phrases: Hodge theorem, polynomial p-form.[99℄



100 W. Kozªowskiopment of the theory of ellipti
 operators is given in the beautiful arti
le ofL. Hörmander ([1℄).We treat R
n as a Riemannian manifold equipped with the 
anoni
alinner produ
t. If f is a polynomial of the form f =

∑

α aαx
α (here α =

(α1, . . . , αn) denotes a multi-index) we put
f(D) =

∑

α

aαD
α, Dα =

∂α1+···+αn

(∂x1)α1 · · · (∂xn)αn

.Let Pk (resp. Hk) denote the spa
e of all homogeneous (resp. harmoni
homogeneous) polynomials on R
n of degree k. De�ne the inner produ
t

(·, ·) = (·, ·)k in Pk as follows: (f, g) = f(D)g, for f, g ∈ Pk (
f. [3, p. 139℄).Clearly, for any f ∈ Pk, g ∈ Pl and h ∈ Pk+l, (gf, h)k+l = (f, g(D)h)k. Inparti
ular (1), (∆f, h) = (f,−r2h) where r2(x) is the square of the Eu
lidiannorm of x ∈ R
n. As a result we get the well-known identity ([3, Thm. 2.12℄)(1.1) Pk = Hk ⊕⊥ r2Pk−2.We may extend (using linearity) this inner produ
t onto the spa
e of allpolynomials, putting (f, g) = 0 if f ∈ Pk, g ∈ Pl and k 6= l.Re
all that any p-form ω in R

n has a unique expression
ω =

1

p!

n
∑

i1,...,ip=1

ωi1,...,ipdx
i1 ∧ · · · ∧ dxip ,where the fun
tions ωi1,...,ip , 
alled 
oe�
ients, are skew-symmetri
 with re-spe
t to the indi
es. Denote by Λp the spa
e of all p-forms in R

n that havepolynomial 
oe�
ients. We put Λp = {0} if p < 0. Let Hp and H
p denote,respe
tively, the spa
e of all harmoni
 polynomial p-forms and its subspa
eof all polynomial p-forms whi
h are both 
losed and 
o-
losed:

H
p = {ω ∈ Λp : ∆ω = (dδ + δd)ω = 0}, H

p = {ω ∈ Λp : dω = δω = 0}.Consider the ve
tor �eld ν and the 1-form ν⋆ de�ned by
νx = x1 ∂

∂x1
+ · · · + xn ∂

∂xn
, ν⋆

x = x1dx1 + · · · + xndxn,where x = (x1, . . . , xn) ∈ R
n. One sees that ν⋆ν = r2. Let εν (resp. ιν)denote the exterior (resp. interior) produ
t, i.e., ενω = ν⋆ ∧ ω and ινω =

ω(ν, ·, . . . , ·). Manifestly, ε2ν = 0 and ι2ν = 0. Sin
e ιν is an anti-derivation,
ινενω = ν⋆νω − ενινω. Therefore, we get(1.2) (ινεν + ενιν)ω = r2ω.One 
an easily 
he
k that(1.3) dεν = −ενd, διν = −ινδ.

(1) Sin
e we de�ne the Lapla
e operator as ∆ = dδ + δd, our ∆ on smooth real-valuedfun
tions has the sign su
h that ∆u = −(∂/(∂x1)2 + · · · + ∂/(∂xn)2)u on R
n.



Hodge type de
omposition 101Equip the spa
e Λp with the inner produ
t (·|·) as follows: for any ω, η ∈
Λp we put

(ω|η) =
1

p!

n
∑

i1,...,ip=1

(ωi1,...,ip , ηi1,...,ip),where ωi1,...,ip 's and ηi1,...,ip 's denote the 
oe�
ients of ω and η, respe
tively.It turns out ([2, Thm. 2.2.1℄) that the operators δ and −εν , and d and ιν ,are adjoint to ea
h other:(1.4) δ⋆ = −εν , d⋆ = ιν .If ω is a polynomial form su
h that ινω = ενω = 0 then, by (1.2), ω = 0.Sin
e ι2ν = ε2ν = 0, we see that εν(Λ
p−1)∩ιν(Λp+1) = {0}.Moreover, by (1.4)the spa
es H

p and εν(Λ
p−1) ⊕ ιν(Λp+1) are mutually orthogonal.The purpose of this paper is to prove, in a purely algebrai
 way, thefollowingTheorem 1.2 (Hodge type de
omposition). For any 0 ≤ p ≤ n, thespa
e Λp splits as the dire
t sum Λp = ινΛ

p+1⊕ενΛ
p−1⊕H

p, or equivalently
Λp = d⋆Λp+1 ⊕ δ⋆Λp−1 ⊕ H

p.2. Some preparations. Denote by Λp

k
and H

p

k
the spa
e of all forms in

R
n that have 
oe�
ients from Pk and Hk, respe
tively. It is 
onvenient toput Λp

k
= {0} if either p < 0 or k < 0. Let H

p
k

= H
p ∩ Λp

k
= {ω ∈ Λp

k
: dω =

δω = 0}. Sin
e for any di�erential p-form ω on R
n,

(∆ω)i1,...,ip = ∆ωi1,...,ip ,we see that ω ∈ Hp i� all 
oe�
ients of ω are harmoni
 polynomials. Inparti
ular, H
p
k = Hp ∩ Λp

k and H
p
k = H

p
k ∩ H

p. Moreover, the de
omposition(1.1) translates immediately to Λp

k
where we have(2.1) Λp

k
= H

p

k
⊕⊥ r2Λp

k−2.In the proof of the main theorem we will need to use some formulæfrom [2℄. We list them below.For any ω ∈ Λp
k we have ([2, Prop. 2.2.1℄)

δενω = −ενδω − (n− p+ k)ω,(2.2)
dινω = −ινdω + (p+ k)ω.(2.3)Applying the se
ond identity in (1.3) and (2.3) we see that for any polynomialform ω,(2.4) ∆ινω = ιν∆ω + 2δω.



102 W. KozªowskiDe�ne the spa
es χp,k, χ0
p,k and the operator Ip.k as follows:

χp,k = H
p
k
∩ ker δ, χ0

p,k = χp,k ∩ ker ιν ,

Ip.k = εν − ckr
2d, where ck =

{

1/(n+ 2k − 4) if k ≥ 2, 0 < p ≤ n,

0 otherwise.We have the following de
ompositions ([2, (3.3.2), (3.3.3)℄):(2.5) χp,k = χ0
p,k ⊕⊥ dχ0

p−1,k+1,(2.6) H
p
k

= χ0
p,k ⊕⊥ dχ0

p−1,k+1 ⊕
⊥ ενdχ

0
p−2,k ⊕⊥ Ip,k(χ

0
p−1,k−1).Noti
e that in (2.6) some subspa
es may degenerate sometimes. In parti
ular,by (2.3) it follows easily ([2, (3.2.1)℄) that(2.7) χ0

p,0 = {0} if p > 0.

Remark. The orthogonal de
omposition (2.6) above is the key step inthe proof of Hodge type de
omposition. In fa
t, (2.6) is the very spe
ial
ase of the more general de
omposition [2, Thm. 3.3.1℄ of the kernel of theoperator L = adδ + bδd, a, b > 0.The last part of this se
tion has a te
hni
al 
hara
ter. From (1.3) and(2.4) it follows that ινHp+1
k−1 ⊂ χ0

p,k. On the other hand, if p + k > 0 thentaking ω ∈ χ0
p,k we see that ω = ινη, where η = (p + k)−1dω. Clearly,

η ∈ H
p+1
k−1. So we have(2.8) ινH

p+1
k−1 = χ0

p,k if p+ k > 0.If k = p = 0 then 
learly H
0
0 = R (the spa
e of 
onstant fun
tions).Suppose that either p > 0 or k > 0. Let ω ∈ H

p
k
. In the light of (2.5) andthe relation H

p
k ⊂ χp,k we may write ω = ω′ + ω′′, where ω′ ∈ χ0

p,k and
ω′′ ∈ dχp−1,k+1. Sin
e ω and ω′′ are 
losed, dω′ = 0. Therefore, 0 = ινdω

′ =
−dινω

′+(p+k)ω′ = (p+k)ω′. Sin
e p+k > 0, ω′ = 0. Thus H
p
k
⊂ dχ0

p−1,k+1.On the other hand, one easily 
he
ks that dχ0
p−1,k+1 ⊂ H

p
k. We have provedthat(2.9) H

p
k

=

{

R if p = k = 0,

dχ0
p−1,k+1 otherwise.Let us 
omplete the se
tion with the following observation: if either p 6= 1or k 6= 1 then(2.10) Ip,k(χ

0
p−1,k−1) ⊕ r2Λp

k−2 ⊂ ινεν(Λ
p
k−2) ⊕ ενιν(Λ

p
k−2).Indeed, the in
lusion r2Λp

k−2 ⊂ ινεν(Λ
p
k−2) ⊕ ενιν(Λp

k−2) follows from(1.2). Now we prove that Ip,k(χ
0
p−1,k−1) ⊂ ινεν(Λ

p
k−2)⊕ ενιν(Λp

k−2). If p = 0or k = 0 then the in
lusion is trivial. Suppose that p, k > 0. Take ω ∈
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Ip,k(χ

0
p−1,k−1), ω = Ip,kη, η ∈ χ0

p−1,k−1. Using (1.2) and (2.3) one easily
he
ks that ω = ινενψ
′ + ενινψ

′′, where
ψ′ = −ckdη, ψ′′ =

1 − (p+ k − 2)ck
p+ k − 2

dη.

3. Proof of the Hodge type de
omposition. To prove Theorem 1.2it su�
es to show that for any p, k ≥ 0,(3.1) Λp
k = ινΛ

p+1
k−1 ⊕ ενΛ

p−1
k−1 ⊕ H

p
k.To prove (3.1) we apply indu
tion with respe
t to k. Before doing this, we
he
k some very spe
ial 
ase of (3.1) separately. Namely, we have

Λ1
1 = ινΛ

2
0 ⊕ ενΛ

0
0 ⊕H

1
1.(3.2)Proof of (3.2). Clearly, Λ1

1 = H1
1, Λ0

0 = χ0
0,0 = R and Λ2

0 = H2
0. Formula(2.6) implies that it su�
es to show that χ0

1,1 = ινH2
0. By (1.3), ινH2

0 ⊂ χ0
1,1.Let ω ∈ χ0

1,1. Put η = (1/2)dω; then one 
an easily 
he
k that ινη = ω. Thus
χ0

1,1 = ινH
p
0.Proof of (3.1) by indu
tion with respe
t to k. Suppose that k = 0. If p = 0then (3.1) is a dire
t 
onsequen
e of the equalities Λ0

0 = H0
0 = H

0
0 = R. If

p > 0 then (3.1) follows from (2.9), (2.6), (2.7) and the equality Λp
0 = H

p
0.Suppose that (3.1) holds for k−1, k ≥ 1. Take any p ≥ 0. We may assumethat either p 6= 1 or k 6= 1 (see (3.2)). Using (1.4), (2.2) and (2.3) we �ndthat ινεν(Λp

k−2) and ιν(Hp+1
k−1), and ενιν(Λp

k−2) and εν(H
p−1
k−1) are mutuallyorthogonal. Thus, by indu
tion hypothesis we have(3.3) εν(Λ

p−1
k−1) = ενιν(Λp

k−2) ⊕ εν(H
p−1
k−1),

ιν(Λ
p+1
k−1) = ινεν(Λp

k−2) ⊕ ιν(Hp+1
k−1).From (2.1), (2.6), (2.8), (2.9), (2.10) and (3.3) we get

Λp
k

⊃ εν(Λ
p−1
k−1) ⊕ ιν(Λp+1

k−1) ⊕ H
p
k

(3.3)
= ενιν(Λp

k−2) ⊕ ινεν(Λ
p
k−2) ⊕ εν(H

p−1
k−1) ⊕ ιν(Hp+1

k−1) ⊕ H
p
k

(2.9),(2.8)
= ενιν(Λp

k−2) ⊕ ινεν(Λ
p
k−2) ⊕ ενdχp−2,k ⊕ χ0

p,k ⊕ H
p
k

(2.10)
⊃ r2Λp

k−2 ⊕ Ip,k(χ
0
p−1,k−1) ⊕ χ0

p,k ⊕ ενdχp−2,k ⊕ H
p
k

(2.6)
= r2Λp

k−2 ⊕ H
p
k

(2.1)
= Λp

k
,whi
h proves (3.1).Indu
tion 
ompletes the proof.
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