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Hodge type decomposition

by WousciecH Kozr.owskr (Lodz)

Abstract. In the space AP of polynomial p-forms in R"™ we introduce some special
inner product. Let H? be the space of polynomial p-forms which are both closed and
co-closed. We prove in a purely algebraic way that A? splits as the direct sum d*(AP™) @
5*(AP~1)@HP, where d* (resp. %) denotes the adjoint operator to d (resp. §) with respect
to that inner product.

1. Introduction and main result. To begin with, recall the classical
Hodge decomposition theorem. Suppose (M™, g) is an oriented Riemannian
manifold. Introduce the following notation: AP(M) is the space of all smooth
differential p-forms on M whereas d, § and A = dd + dd, are the differential,
co-differential and the Laplace-Beltrami operator, respectively. Recall that
for any w € AP(M), dw = (—1)"PTD+1xdxw, where x is the Hodge operator.
Moreover, let HP(M) denote the space of p-forms which are both closed and
co-closed: HP(M) = {w € AP(M) : dw = dw = 0}.

If M is compact then the formula

(W) = S w A X1
M
defines an inner product in A?(M). Then d* = ¢ and §* = d, i.e., d and ¢ are
adjoint to each other. Take any w € AP(M); then (w|Aw)y = (dw|dw)nr +
(0w|dw)pr. Therefore, w is harmonic, i.e., Aw = 0, iff w € HP(M). The
following is a classical result in analysis:

THEOREM 1.1 (Hodge decomposition theorem). On a compact oriented
Riemannian manifold M, AP(M) = dAP~Y(M) @t AP H(M) o+ HP(M),
or equivalently AP(M) = §*AP~Y(M) @+ d* AP+ (M) @+ HP (M), where &
denotes an orthogonal direct sum.

For the proof of the Hodge decomposition theorem we refer to the book
of F. Warner ([4, Chapter 6]). Notice that a historical survey of the devel-
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opment of the theory of elliptic operators is given in the beautiful article of
L. Hérmander ([1]).

We treat R™ as a Riemannian manifold equipped with the canonical
inner product. If f is a polynomial of the form f = ) aqz® (here a =
(a1,...,qp) denotes a multi-index) we put

8041+--~+an

f(D) = za:aam, D* = TR T

Let Py (resp. Hy) denote the space of all homogeneous (resp. harmonic
homogeneous) polynomials on R™ of degree k. Define the inner product
(-,+) = (+,)k in Py as follows: (f,g) = f(D)g, for f,g € Px (cf. [3, p. 139]).
Clearly, for any f € Py, g € Py and h € Py, (9f, h)gr1 = (f, 9(D)h)g. In
particular (1), (Af, h) = (f, —r2h) where r2(z) is the square of the Euclidian

norm of x € R™. As a result we get the well-known identity ([3, Thm. 2.12])
(1'1) Pk: = Hk @l 7“2'Pk_g.

We may extend (using linearity) this inner product onto the space of all
polynomials, putting (f,g) =01if f € Py, g € P; and k # [.
Recall that any p-form w in R™ has a unique expression

n
w = % | Z wil,m,ipdxil ARREWA dxip,
11yenip=1
where the functions w;, .. ;,, called coefficients, are skew-symmetric with re-
spect to the indices. Denote by AP the space of all p-forms in R™ that have
polynomial coefficients. We put AP = {0} if p < 0. Let $” and HP denote,
respectively, the space of all harmonic polynomial p-forms and its subspace
of all polynomial p-forms which are both closed and co-closed:

P ={weA’: Aw = (dd + dd)w =0}, HP ={we AP : dw = dw = 0}.
Consider the vector field v and the 1-form v* defined by
0 0
_ 1 n *x 1 1 n n
Vg =X @-F--'—Faz g’ =7 dz” + -+ 2"dz",
where = (2!,...,2") € R™ One sees that v*v = r2. Let ¢, (resp. 1)
denote the exterior (resp. interior) product, i.e., e,w = V* Aw and w =
w(v,-,...,-). Manifestly, €2 = 0 and (2 = 0. Since ¢, is an anti-derivation,
LyEyw = V*vw — eyt w. Therefore, we get

(1.2) (Lwey +epty)w = r’w.
One can easily check that
(1.3) de, = —e,d, L, = —1,0.

(*) Since we define the Laplace operator as A = dé + dd, our A on smooth real-valued
functions has the sign such that Au = —(8/(dz')* + --- + 8/(dz™)*)u on R™.
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Equip the space AP with the inner product (-|-) as follows: for any w,n €
AP we put

n

1
(w|77) = o Z (wil,---,ipvnil,---,ip)v
p: i1 yeenyip=1
where w;, ;. ’s and n;, _;’s denote the coefficients of w and 7, respectively.

It turns out ([2, Thm. 2.2.1]) that the operators § and —¢,, and d and ¢,
are adjoint to each other:

(1.4) 0 =—g,, d"=u.

If w is a polynomial form such that ¢,w = e,w = 0 then, by (1.2), w = 0.
Since 12 = £2 = 0, we see that €, (AP~1) N, (APT1) = {0}. Moreover, by (1.4)
the spaces HP and ¢, (AP~1) @ 1, (APT1) are mutually orthogonal.

The purpose of this paper is to prove, in a purely algebraic way, the
following

THEOREM 1.2 (Hodge type decomposition). For any 0 < p < n, the
space AP splits as the direct sum AP = 1, APT' @ e, AP~L S HP, or equivalently
AP = @* APt @ 5* AP~ @ HP.

2. Some preparations. Denote by A} and 7 the space of all forms in
R™ that have coefficients from P}, and Hy, respectively. It is convenient to
put A} = {0} if either p <0 or k < 0. Let H) = HP N A} = {w e A} : dw =
dw = 0}. Since for any differential p-form w on R",

(Aw)ilyn-:ip = Awihm,i

p?

we see that w € $HP iff all coefficients of w are harmonic polynomials. In
particular, 2 = HP N AZ and Hz = Sﬁz N HP. Moreover, the decomposition
(1.1) translates immediately to AY where we have

(2.1) A =P ot r2Ab .

In the proof of the main theorem we will need to use some formulae
from [2]. We list them below.

For any w € A} we have ([2, Prop. 2.2.1])

(2.2) depw = —g0w — (N —p+ k)w,
(2.3) diyw = —tdw + (p + k)w.

Applying the second identity in (1.3) and (2.3) we see that for any polynomial
form w,

(2.4) Apw = 1, Aw + 20w.
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Define the spaces x, , Xg,k and the operator I, as follows:
Xpk = 9% Nker 4, X%k = Xp,k Nkere,,
1/(n+2k—4) ifk>2 0<p<n,
Ipy =6, — cpr’d, where ¢ = /(n+ ) -7 P =
0 otherwise.

We have the following decompositions ([2, (3.3.2),(3.3.3)]):

3

(2.5) Xpk = Xpr & dXp 1 k115

(2.6) D = Xk & Axp—1 g1 B EvdXp_o s & Lpk(Xp-14-1)-
Notice that in (2.6) some subspaces may degenerate sometimes. In particular,
by (2.3) it follows easily ([2, (3.2.1)]) that

(2.7) Xpo=1{0} ifp>0.

REMARK. The orthogonal decomposition (2.6) above is the key step in
the proof of Hodge type decomposition. In fact, (2.6) is the very special
case of the more general decomposition [2, Thm. 3.3.1] of the kernel of the
operator L = add + bdd, a,b > 0.

The last part of this section has a technical character. From (1.3) and
(24) it follows that 1, HY "} C x0,. On the other hand, if p + % > 0 then
taking w € ng we see that w = 1,1, where n = (p + k) 'dw. Clearly,
RS Hiii So we have

(2.8) WHPT =20, ifp+k >0

If Kk = p = 0 then clearly H} = R (the space of constant functions).
Suppose that either p > 0 or k > 0. Let w € HJ}. In the light of (2.5) and
the relation H} C x,; we may write w = w’ + w”, where W' € xgk and
w"” € dxp—1k+1- Since w and w” are closed, dw’ = 0. Therefore, 0 = 1, dw’ =
—duw'+(p+k)w’ = (p+k)w'. Since p+k > 0, w’ = 0. Thus H} C dxg—l,kﬂ‘
On the other hand, one easily checks that dngl,kﬂ C Hﬁ. We have proved
that

R ifp=k=0

:[Ip _ )
(29) ko {d 0 otherwise
Xp—1,k+1 ‘

Let us complete the section with the following observation: if either p #£ 1
or k # 1 then

(2.10) Ip,k(Xg—Lk—l) D 72/1%_2 C wen(A_y) © vt (A]_y)-

Indeed, the inclusion 724} , C e, (AL ) @ ep0, (A ) follows from
(1.2). Now we prove that I, x(x) 1 4_1) C twew(4]_,) ®eptn(A}_y). T p =0
or £k = 0 then the inclusion is trivial. Suppose that p,k > 0. Take w €
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Ip7k(xg_17k_1), w=Im n € Xg—l,k—l' Using (1.2) and (2.3) one easily
checks that w = 16,9 + ,1,70", where

1—(p—|—k:—2)ck
/:_ d //: d
sz) Cgar, sz) p+k—2

3. Proof of the Hodge type decomposition. To prove Theorem 1.2

it suffices to show that for any p, k > 0,

(3.1) Aﬁ = LVAzti D 51//12:1 ©® HZ

To prove (3.1) we apply induction with respect to k. Before doing this, we
check some very special case of (3.1) separately. Namely, we have

(3.2) Al =, A @ e, A) o HY.

Proof of (3.2). Clearly, A} = 91, A) = X8,0 =R and A3 = $2. Formula
(2.6) implies that it suffices to show that x? ; = 1,93 By (1.3), 93 C x{ ;.
Let w € x{ ;. Put 7 = (1/2)dw; then one can easily check that ¢,n = w. Thus
X(il = Ll/f)g-

Proof of (3.1) by induction with respect to k. Suppose that k = 0. If p =0
then (3.1) is a direct consequence of the equalities A) = 9 = H) = R. If
p > 0 then (3.1) follows from (2.9), (2.6), (2.7) and the equality A5 = Hf.

Suppose that (3.1) holds for k—1, k > 1. Take any p > 0. We may assume
that either p # 1 or k # 1 (see (3.2)). Using (1.4), (2.2) and (2.3) we find
that L,js,,(/lid) and L,,(HZfi), and EVLZ,(Az72) and sy(Hiii) are mutually
orthogonal. Thus, by induction hypothesis we have

E,,(Aiii) = 51/“/(/1272) ® E,,(Hz:i),
1 1
w( AP = e (A2 ) @, (HET)).

From (2.1), (2.6), (2.8), (2.9), (2.10) and (3.3) we get

(3.3)

3 3

A D e (M) @ (AN e HY

3 _
= gvbv(Ai—Q) ® LV*?V(Aﬁ—z) ©® EV(Hﬁ—b ® LV(HZ:) ® Hi

2.9),(2.8
( ):( ) gVLV(Ai—Q) ©® LV&V(Ai_Q) D EVpr—Q,k 7 X%k D Hi
(2.10)
o A Lol ,k(Xg—l,k—ﬂ ® Xg,k; ® eydxp—2,x O HJ,
2.6
Yo e
(2.1)

= AP
which proves (3.1).
Induction completes the proof.
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