Hodge type decomposition

by WOJCIECH KOZŁOWSKI (Łódź)

Abstract. In the space Λ^p of polynomial *p*-forms in \mathbb{R}^n we introduce some special inner product. Let \mathbf{H}^p be the space of polynomial *p*-forms which are both closed and co-closed. We prove in a purely algebraic way that Λ^p splits as the direct sum $d^*(\Lambda^{p+1}) \oplus \delta^*(\Lambda^{p-1}) \oplus \mathbf{H}^p$, where d^* (resp. δ^*) denotes the adjoint operator to d (resp. δ) with respect to that inner product.

1. Introduction and main result. To begin with, recall the classical Hodge decomposition theorem. Suppose (M^n, g) is an oriented Riemannian manifold. Introduce the following notation: $\Lambda^p(M)$ is the space of all smooth differential *p*-forms on M whereas d, δ and $\Delta = d\delta + \delta d$, are the differential, co-differential and the Laplace–Beltrami operator, respectively. Recall that for any $\omega \in \Lambda^p(M)$, $\delta \omega = (-1)^{n(p+1)+1} \star d \star \omega$, where \star is the Hodge operator. Moreover, let $\mathbf{H}^p(M)$ denote the space of *p*-forms which are both closed and co-closed: $\mathbf{H}^p(M) = \{\omega \in \Lambda^p(M) : d\omega = \delta \omega = 0\}.$

If M is compact then the formula

$$(\omega|\eta)_M = \int_M \omega \wedge \star \eta$$

defines an inner product in $\Lambda^p(M)$. Then $d^* = \delta$ and $\delta^* = d$, i.e., d and δ are adjoint to each other. Take any $\omega \in \Lambda^p(M)$; then $(\omega | \Delta \omega)_M = (d\omega | d\omega)_M + (\delta \omega | \delta \omega)_M$. Therefore, ω is harmonic, i.e., $\Delta \omega = 0$, iff $\omega \in \mathbf{H}^p(M)$. The following is a classical result in analysis:

THEOREM 1.1 (Hodge decomposition theorem). On a compact oriented Riemannian manifold M, $\Lambda^p(M) = d\Lambda^{p-1}(M) \oplus^{\perp} \delta\Lambda^{p+1}(M) \oplus^{\perp} \mathbf{H}^p(M)$, or equivalently $\Lambda^p(M) = \delta^* \Lambda^{p-1}(M) \oplus^{\perp} d^* \Lambda^{p+1}(M) \oplus^{\perp} \mathbf{H}^p(M)$, where \oplus^{\perp} denotes an orthogonal direct sum.

For the proof of the Hodge decomposition theorem we refer to the book of F. Warner ([4, Chapter 6]). Notice that a historical survey of the devel-

²⁰⁰⁰ Mathematics Subject Classification: 33C55, 35J99, 53C43.

Key words and phrases: Hodge theorem, polynomial p-form.

opment of the theory of elliptic operators is given in the beautiful article of L. Hörmander ([1]).

We treat \mathbb{R}^n as a Riemannian manifold equipped with the canonical inner product. If f is a polynomial of the form $f = \sum_{\alpha} a_{\alpha} x^{\alpha}$ (here $\alpha = (\alpha_1, \ldots, \alpha_n)$ denotes a multi-index) we put

$$f(D) = \sum_{\alpha} a_{\alpha} D^{\alpha}, \quad D^{\alpha} = \frac{\partial^{\alpha_1 + \dots + \alpha_n}}{(\partial x^1)^{\alpha_1} \cdots (\partial x^n)^{\alpha_n}}$$

Let \mathcal{P}_k (resp. \mathcal{H}_k) denote the space of all homogeneous (resp. harmonic homogeneous) polynomials on \mathbb{R}^n of degree k. Define the inner product $(\cdot, \cdot) = (\cdot, \cdot)_k$ in \mathcal{P}_k as follows: (f, g) = f(D)g, for $f, g \in \mathcal{P}_k$ (cf. [3, p. 139]). Clearly, for any $f \in \mathcal{P}_k, g \in \mathcal{P}_l$ and $h \in \mathcal{P}_{k+l}, (gf, h)_{k+l} = (f, g(D)h)_k$. In particular (¹), $(\Delta f, h) = (f, -r^2h)$ where $r^2(x)$ is the square of the Euclidian norm of $x \in \mathbb{R}^n$. As a result we get the well-known identity ([3, Thm. 2.12])

(1.1)
$$\mathcal{P}_k = \mathcal{H}_k \oplus^{\perp} r^2 \mathcal{P}_{k-2}.$$

We may extend (using linearity) this inner product onto the space of all polynomials, putting (f,g) = 0 if $f \in \mathcal{P}_k$, $g \in \mathcal{P}_l$ and $k \neq l$.

Recall that any *p*-form ω in \mathbb{R}^n has a unique expression

$$\omega = \frac{1}{p!} \sum_{i_1,\dots,i_p=1}^n \omega_{i_1,\dots,i_p} dx^{i_1} \wedge \dots \wedge dx^{i_p}$$

where the functions ω_{i_1,\ldots,i_p} , called *coefficients*, are skew-symmetric with respect to the indices. Denote by Λ^p the space of all *p*-forms in \mathbb{R}^n that have polynomial coefficients. We put $\Lambda^p = \{0\}$ if p < 0. Let \mathfrak{H}^p and \mathbf{H}^p denote, respectively, the space of all harmonic polynomial *p*-forms and its subspace of all polynomial *p*-forms which are both closed and co-closed:

$$\mathfrak{H}^p = \{ \omega \in \Lambda^p : \Delta \omega = (d\delta + \delta d) \omega = 0 \}, \quad \mathbf{H}^p = \{ \omega \in \Lambda^p : d\omega = \delta \omega = 0 \}.$$

Consider the vector field ν and the 1-form ν^{\star} defined by

$$\nu_x = x^1 \frac{\partial}{\partial x^1} + \dots + x^n \frac{\partial}{\partial x^n}, \quad \nu_x^* = x^1 dx^1 + \dots + x^n dx^n,$$

where $x = (x^1, \ldots, x^n) \in \mathbb{R}^n$. One sees that $\nu^* \nu = r^2$. Let ε_{ν} (resp. ι_{ν}) denote the exterior (resp. interior) product, i.e., $\varepsilon_{\nu}\omega = \nu^* \wedge \omega$ and $\iota_{\nu}\omega = \omega(\nu, \cdot, \ldots, \cdot)$. Manifestly, $\varepsilon_{\nu}^2 = 0$ and $\iota_{\nu}^2 = 0$. Since ι_{ν} is an anti-derivation, $\iota_{\nu}\varepsilon_{\nu}\omega = \nu^*\nu\omega - \varepsilon_{\nu}\iota_{\nu}\omega$. Therefore, we get

(1.2)
$$(\iota_{\nu}\varepsilon_{\nu} + \varepsilon_{\nu}\iota_{\nu})\omega = r^{2}\omega.$$

One can easily check that

(1.3)
$$d\varepsilon_{\nu} = -\varepsilon_{\nu}d, \quad \delta\iota_{\nu} = -\iota_{\nu}\delta.$$

^{(&}lt;sup>1</sup>) Since we define the Laplace operator as $\Delta = d\delta + \delta d$, our Δ on smooth real-valued functions has the sign such that $\Delta u = -(\partial/(\partial x^1)^2 + \cdots + \partial/(\partial x^n)^2)u$ on \mathbb{R}^n .

Equip the space Λ^p with the inner product $(\cdot|\cdot)$ as follows: for any $\omega, \eta \in \Lambda^p$ we put

$$(\omega|\eta) = \frac{1}{p!} \sum_{i_1,\dots,i_p=1}^n (\omega_{i_1,\dots,i_p}, \eta_{i_1,\dots,i_p}),$$

where ω_{i_1,\ldots,i_p} 's and η_{i_1,\ldots,i_p} 's denote the coefficients of ω and η , respectively.

It turns out ([2, Thm. 2.2.1]) that the operators δ and $-\varepsilon_{\nu}$, and d and ι_{ν} , are adjoint to each other:

(1.4)
$$\delta^* = -\varepsilon_\nu, \quad d^* = \iota_\nu.$$

If ω is a polynomial form such that $\iota_{\nu}\omega = \varepsilon_{\nu}\omega = 0$ then, by (1.2), $\omega = 0$. Since $\iota_{\nu}^2 = \varepsilon_{\nu}^2 = 0$, we see that $\varepsilon_{\nu}(\Lambda^{p-1}) \cap \iota_{\nu}(\Lambda^{p+1}) = \{0\}$. Moreover, by (1.4) the spaces \mathbf{H}^p and $\varepsilon_{\nu}(\Lambda^{p-1}) \oplus \iota_{\nu}(\Lambda^{p+1})$ are mutually orthogonal.

The purpose of this paper is to prove, in a purely algebraic way, the following

THEOREM 1.2 (Hodge type decomposition). For any $0 \leq p \leq n$, the space Λ^p splits as the direct sum $\Lambda^p = \iota_{\nu} \Lambda^{p+1} \oplus \varepsilon_{\nu} \Lambda^{p-1} \oplus \mathbf{H}^p$, or equivalently $\Lambda^p = d^* \Lambda^{p+1} \oplus \delta^* \Lambda^{p-1} \oplus \mathbf{H}^p$.

2. Some preparations. Denote by Λ_k^p and \mathfrak{H}_k^p the space of all forms in \mathbb{R}^n that have coefficients from \mathcal{P}_k and \mathcal{H}_k , respectively. It is convenient to put $\Lambda_k^p = \{0\}$ if either p < 0 or k < 0. Let $\mathbf{H}_k^p = \mathbf{H}^p \cap \Lambda_k^p = \{\omega \in \Lambda_k^p : d\omega = \delta\omega = 0\}$. Since for any differential *p*-form ω on \mathbb{R}^n ,

$$(\Delta\omega)_{i_1,\dots,i_p} = \Delta\omega_{i_1,\dots,i_p},$$

we see that $\omega \in \mathfrak{H}^p$ iff all coefficients of ω are harmonic polynomials. In particular, $\mathfrak{H}^p_k = \mathfrak{H}^p \cap \Lambda^p_k$ and $\mathbf{H}^p_k = \mathfrak{H}^p_k \cap \mathbf{H}^p$. Moreover, the decomposition (1.1) translates immediately to Λ^p_k where we have

(2.1)
$$\Lambda^p_k = \mathfrak{H}^p_k \oplus^{\perp} r^2 \Lambda^p_{k-2}$$

In the proof of the main theorem we will need to use some formulæ from [2]. We list them below.

For any $\omega \in \Lambda_k^p$ we have ([2, Prop. 2.2.1])

(2.2)
$$\delta \varepsilon_{\nu} \omega = -\varepsilon_{\nu} \delta \omega - (n-p+k) \omega.$$

(2.3)
$$d\iota_{\nu}\omega = -\iota_{\nu}d\omega + (p+k)\omega.$$

Applying the second identity in (1.3) and (2.3) we see that for any polynomial form ω ,

(2.4)
$$\Delta \iota_{\nu}\omega = \iota_{\nu}\Delta\omega + 2\delta\omega.$$

Define the spaces $\chi_{p,k}$, $\chi^0_{p,k}$ and the operator $I_{p,k}$ as follows:

$$\chi_{p,k} = \mathfrak{H}_k^p \cap \ker \delta, \quad \chi_{p,k}^0 = \chi_{p,k} \cap \ker \iota_{\nu},$$
$$I_{p,k} = \varepsilon_{\nu} - c_k r^2 d, \quad \text{where} \quad c_k = \begin{cases} 1/(n+2k-4) & \text{if } k \ge 2, \ 0$$

We have the following decompositions ([2, (3.3.2), (3.3.3)]):

(2.5)
$$\chi_{p,k} = \chi_{p,k}^0 \oplus^\perp d\chi_{p-1,k+1}^0,$$

(2.6)
$$\mathfrak{H}_{k}^{p} = \chi_{p,k}^{0} \oplus^{\perp} d\chi_{p-1,k+1}^{0} \oplus^{\perp} \varepsilon_{\nu} d\chi_{p-2,k}^{0} \oplus^{\perp} I_{p,k}(\chi_{p-1,k-1}^{0}).$$

Notice that in (2.6) some subspaces may degenerate sometimes. In particular, by (2.3) it follows easily ([2, (3.2.1)]) that

(2.7)
$$\chi^0_{p,0} = \{0\} \text{ if } p > 0.$$

REMARK. The orthogonal decomposition (2.6) above is the key step in the proof of Hodge type decomposition. In fact, (2.6) is the very special case of the more general decomposition [2, Thm. 3.3.1] of the kernel of the operator $L = ad\delta + b\delta d$, a, b > 0.

The last part of this section has a technical character. From (1.3) and (2.4) it follows that $\iota_{\nu} \mathbf{H}_{k-1}^{p+1} \subset \chi_{p,k}^{0}$. On the other hand, if p + k > 0 then taking $\omega \in \chi_{p,k}^{0}$ we see that $\omega = \iota_{\nu}\eta$, where $\eta = (p + k)^{-1}d\omega$. Clearly, $\eta \in \mathbf{H}_{k-1}^{p+1}$. So we have

(2.8)
$$\iota_{\nu} \mathbf{H}_{k-1}^{p+1} = \chi_{p,k}^{0} \quad \text{if } p+k > 0.$$

If k = p = 0 then clearly $\mathbf{H}_0^0 = \mathbb{R}$ (the space of constant functions). Suppose that either p > 0 or k > 0. Let $\omega \in \mathbf{H}_k^p$. In the light of (2.5) and the relation $\mathbf{H}_k^p \subset \chi_{p,k}$ we may write $\omega = \omega' + \omega''$, where $\omega' \in \chi_{p,k}^0$ and $\omega'' \in d\chi_{p-1,k+1}$. Since ω and ω'' are closed, $d\omega' = 0$. Therefore, $0 = \iota_{\nu} d\omega' = -d\iota_{\nu}\omega' + (p+k)\omega' = (p+k)\omega'$. Since p+k > 0, $\omega' = 0$. Thus $\mathbf{H}_k^p \subset d\chi_{p-1,k+1}^0$. On the other hand, one easily checks that $d\chi_{p-1,k+1}^0 \subset \mathbf{H}_k^p$. We have proved that

(2.9)
$$\mathbf{H}_{k}^{p} = \begin{cases} \mathbb{R} & \text{if } p = k = 0, \\ d\chi_{p-1,k+1}^{0} & \text{otherwise.} \end{cases}$$

Let us complete the section with the following observation: if either $p \neq 1$ or $k \neq 1$ then

(2.10)
$$I_{p,k}(\chi^0_{p-1,k-1}) \oplus r^2 \Lambda^p_{k-2} \subset \iota_{\nu} \varepsilon_{\nu}(\Lambda^p_{k-2}) \oplus \varepsilon_{\nu} \iota_{\nu}(\Lambda^p_{k-2}).$$

Indeed, the inclusion $r^2 \Lambda_{k-2}^p \subset \iota_{\nu} \varepsilon_{\nu}(\Lambda_{k-2}^p) \oplus \varepsilon_{\nu} \iota_{\nu}(\Lambda_{k-2}^p)$ follows from (1.2). Now we prove that $I_{p,k}(\chi_{p-1,k-1}^0) \subset \iota_{\nu} \varepsilon_{\nu}(\Lambda_{k-2}^p) \oplus \varepsilon_{\nu} \iota_{\nu}(\Lambda_{k-2}^p)$. If p = 0 or k = 0 then the inclusion is trivial. Suppose that p, k > 0. Take $\omega \in$

 $I_{p,k}(\chi^0_{p-1,k-1}), \ \omega = I_{p,k}\eta, \ \eta \in \chi^0_{p-1,k-1}$. Using (1.2) and (2.3) one easily checks that $\omega = \iota_{\nu}\varepsilon_{\nu}\psi' + \varepsilon_{\nu}\iota_{\nu}\psi''$, where

$$\psi' = -c_k d\eta, \quad \psi'' = \frac{1 - (p + k - 2)c_k}{p + k - 2} d\eta.$$

3. Proof of the Hodge type decomposition. To prove Theorem 1.2 it suffices to show that for any $p, k \ge 0$,

(3.1)
$$\Lambda_k^p = \iota_{\nu} \Lambda_{k-1}^{p+1} \oplus \varepsilon_{\nu} \Lambda_{k-1}^{p-1} \oplus \mathbf{H}_k^p.$$

To prove (3.1) we apply induction with respect to k. Before doing this, we check some very special case of (3.1) separately. Namely, we have

(3.2)
$$\Lambda_1^1 = \iota_{\nu} \Lambda_0^2 \oplus \varepsilon_{\nu} \Lambda_0^0 \oplus \mathbf{H}_1^1.$$

Proof of (3.2). Clearly, $\Lambda_1^1 = \mathfrak{H}_1^1$, $\Lambda_0^0 = \chi_{0,0}^0 = \mathbb{R}$ and $\Lambda_0^2 = \mathfrak{H}_0^2$. Formula (2.6) implies that it suffices to show that $\chi_{1,1}^0 = \iota_{\nu}\mathfrak{H}_0^2$. By (1.3), $\iota_{\nu}\mathfrak{H}_0^2 \subset \chi_{1,1}^0$. Let $\omega \in \chi_{1,1}^0$. Put $\eta = (1/2)d\omega$; then one can easily check that $\iota_{\nu}\eta = \omega$. Thus $\chi_{1,1}^0 = \iota_{\nu}\mathfrak{H}_0^0$.

Proof of (3.1) by induction with respect to k. Suppose that k = 0. If p = 0 then (3.1) is a direct consequence of the equalities $\Lambda_0^0 = \mathfrak{H}_0^0 = \mathbb{R}$. If p > 0 then (3.1) follows from (2.9), (2.6), (2.7) and the equality $\Lambda_0^p = \mathfrak{H}_0^p$.

Suppose that (3.1) holds for k-1, $k \ge 1$. Take any $p \ge 0$. We may assume that either $p \ne 1$ or $k \ne 1$ (see (3.2)). Using (1.4), (2.2) and (2.3) we find that $\iota_{\nu}\varepsilon_{\nu}(\Lambda_{k-2}^{p})$ and $\iota_{\nu}(\mathbf{H}_{k-1}^{p+1})$, and $\varepsilon_{\nu}\iota_{\nu}(\Lambda_{k-2}^{p})$ and $\varepsilon_{\nu}(\mathbf{H}_{k-1}^{p-1})$ are mutually orthogonal. Thus, by induction hypothesis we have

(3.3)
$$\varepsilon_{\nu}(\Lambda_{k-1}^{p-1}) = \varepsilon_{\nu}\iota_{\nu}(\Lambda_{k-2}^{p}) \oplus \varepsilon_{\nu}(\mathbf{H}_{k-1}^{p-1}),$$
$$\iota_{\nu}(\Lambda_{k-1}^{p+1}) = \iota_{\nu}\varepsilon_{\nu}(\Lambda_{k-2}^{p}) \oplus \iota_{\nu}(\mathbf{H}_{k-1}^{p+1}).$$

From (2.1), (2.6), (2.8), (2.9), (2.10) and (3.3) we get

$$\begin{array}{lcl}
\Lambda_{k}^{p} & \supset & \varepsilon_{\nu}(\Lambda_{k-1}^{p-1}) \oplus \iota_{\nu}(\Lambda_{k-1}^{p+1}) \oplus \mathbf{H}_{k}^{p} \\
 & \stackrel{(3.3)}{=} & \varepsilon_{\nu}\iota_{\nu}(\Lambda_{k-2}^{p}) \oplus \iota_{\nu}\varepsilon_{\nu}(\Lambda_{k-2}^{p}) \oplus \varepsilon_{\nu}(\mathbf{H}_{k-1}^{p-1}) \oplus \iota_{\nu}(\mathbf{H}_{k-1}^{p+1}) \oplus \mathbf{H}_{k}^{p} \\
 & \stackrel{(2.9),(2.8)}{=} & \varepsilon_{\nu}\iota_{\nu}(\Lambda_{k-2}^{p}) \oplus \iota_{\nu}\varepsilon_{\nu}(\Lambda_{k-2}^{p}) \oplus \varepsilon_{\nu}d\chi_{p-2,k} \oplus \chi_{p,k}^{0} \oplus \mathbf{H}_{k}^{p} \\
 & \stackrel{(2.10)}{\supset} & r^{2}\Lambda_{k-2}^{p} \oplus I_{p,k}(\chi_{p-1,k-1}^{0}) \oplus \chi_{p,k}^{0} \oplus \varepsilon_{\nu}d\chi_{p-2,k} \oplus \mathbf{H}_{k}^{p} \\
 & \stackrel{(2.6)}{=} & r^{2}\Lambda_{k-2}^{p} \oplus \mathfrak{H}_{k}^{p} \\
 & \stackrel{(2.1)}{=} & \Lambda_{k}^{p},
\end{array}$$

which proves (3.1).

Induction completes the proof.

W. Kozłowski

References

- L. Hörmander, A history of existence theorems for the Cauchy-Riemann complex in L²-space, J. Geom. Anal. 13 (2003), 329–357.
- [2] W. Kozłowski, Laplace type operators: Dirichlet problem, Ann. Scoula Norm. Sup. Pisa, to appear.
- [3] E. M. Stein and G. Weiss, Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.
- [4] F. W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Scott & Foresman, London, 1971.

Institute of Mathematics Polish Academy of Sciences Łódź Branch Faculty of Mathematics Łódź University Banacha 22 90-238 Łódź, Poland E-mail: wojciech@math.uni.lodz.pl

Received 10.10.2005 and in final form 15.12.2006

(1641)