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On fractional iterates of a homeomorphism of the plane

by Zbigniew Leśniak (Kraków)

Abstract. We find all continuous iterative roots of nth order of a Sperner homeo-
morphism of the plane onto itself.

1. Introduction. In the present paper we shall give all continuous so-
lutions of the functional equation

gn(x) = f(x) for x ∈ R2,(1)

where n ∈ N, n > 1 and f is a given Sperner homeomorphism of R2 onto it-
self, i.e., f is a homeomorphism of R2 onto itself which satisfies the following
condition:

(S) every Jordan domain B meets at most a finite number of its images
fn[B], n ∈ Z,

where by a Jordan domain is meant the union of a Jordan curve C and the
inside of C [i.e., the bounded component of R2 \ C].

Main Result. Let f be a Sperner homeomorphism of the plane onto
itself. Then there exists a continuous solution g of equation (1) if and only
if one of the following three conditions holds:

(a) f preserves orientation and n is odd ;
(b) f reverses orientation and n is odd ;
(c) f preserves orientation and n is even.

2. Preliminaries. The index IndC of C, where C is a piecewise con-
tinuously differentiable closed curve in R2 defined on the unit interval, is
the function on R2 \ C defined by

IndC(x) :=
1

2πi

1�

0

C ′(t)
C(t)− x dt for x ∈ R2 \ C.
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By the index of a closed curve C is meant the index of any piecewise conti-
nuously differentiable closed curve C1 which is homotopic to C (such a curve
C1 exists: see [3, p. 247]). On account of the Cauchy integral theorem the
definition does not depend on the choice of C1.

Furthermore, for every homeomorphism f of R2 into itself there exists
exactly one df ∈ {−1, 1} such that

IndC(x) = df · Indf [C](f(x))(2)

for every Jordan curve C and every x ∈ R2 \ C (see [7, p. 197]).
The number df is called the degree of f and denoted by deg f . We shall

say that a homeomorphism f of R2 into itself preserves orientation if deg f
= 1, and it reverses orientation if deg f = −1.

We will study the following cases:

(A1) there exists a homeomorphism ϕ of the plane onto itself satisfying
the Abel equation

ϕ(f(x)) = ϕ(x) + (1, 0) for x ∈ R2;(3)

(A2) there exists a homeomorphism ϕ of the plane onto itself satisfying
the equation

ϕ(f(x)) = S0(ϕ(x)) + (1, 0) for x ∈ R2,(4)

where

S0(x1, x2) = (x1,−x2) for (x1, x2) ∈ R2.(5)

E. Sperner [8] proved that a homeomorphism f of the plane onto itself
satisfies (A1) if and only if it preserves orientation and condition (S) holds.
Furthermore, D. Betten [2] proved that f satisfies (A2) if and only if it is
an orientation reversing Sperner homeomorphism of the plane onto itself.

A homeomorphic image of a straight line which is a closed set is called
a line. Let us consider the following condition:

(B) there exists a line K such that

K ∩ f [K] = ∅,(6)

U0 ∩ f [U0] = ∅,(7) ⋃
n∈Z f

n[U0] = R2,(8)

where U0 := M0 ∪ f [K] and M0 is the strip bounded by K and
f [K].

Geometrically speaking, the condition is that the strips between two
consecutive iterates of K are pairwise disjoint and each point of the plane
belongs either to one of the strips or to an iterate of K.
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In [6] we have constructed all continuous and homeomorphic solutions
of the Abel equation

ϕ(f(x)) = ϕ(x) + a for x ∈ R2,(9)

where a 6= (0, 0) and f is an orientation preserving homeomorphism of the
plane onto itself satisfying (B). Moreover, it has been proved that for every
homeomorphism f of R2 onto itself which preserves orientation, conditions
(A1) and (B) are equivalent.

3. Equation with reflection. In this section we are concerned with
continuous and homeomorphic solutions of the functional equation

ϕ(f(x)) = Sk(ϕ(x)) + a for x ∈ R2,(10)

where f is a given orientation reversing homeomorphism of the plane onto
itself such that condition (B) holds, Sk is the reflection in a given straight
line k and the vector a ∈ R2 is not perpendicular to k.

The following statement is well known:

Proposition 1. Let k be a straight line on the plane and let a = (a1, a2)
∈ R2 be a vector which is not perpendicular to k. Then there exist a straight
line l and a vector b = (b1, b2) ∈ R2 \ {(0, 0)} which is parallel to l and such
that

Sk(x) + a = Sl(x) + b for x ∈ R2.(11)

According to Proposition 1 we can replace the right-hand side of (10) by
Sl(ϕ(x)) + b, where the vector b is parallel to l. Therefore we write (10) in
the form

ϕ(f(x)) = Sl,b(ϕ(x)) for x ∈ R2,(12)

where Sl,b denotes the glide reflection which is the composition of the re-
flection in l and the translation by the vector b.

In the case where l = {(x1, x2) ∈ R2 : x2 = 0} and b = (1, 0) the glide
reflection Sl,b will be denoted by S1. Thus

S1(x) = S0(x) + (1, 0) for x ∈ R2,(13)

where S0 is given by (5).
Now we prove

Lemma 1. Let l be a straight line on the plane. Let b = (b1, b2) ∈ R2 \
{(0, 0)} be a vector parallel to l. Then there exists a homeomorphism ψ of
the plane onto itself such that

S1 = ψ−1 ◦ Sl,b ◦ ψ,(14)

where S1 is given by (13).
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Proof. In case b1 6= 0,

l =
{

(x1, x2) ∈ R2 : x2 =
b2
b1
x1 + d

}
,

for some d ∈ R, whereas in case b1 = 0, l has the form

l = {(x1, x2) ∈ R2 : x1 = d′}
with some d′ ∈ R. Set

ψ(x1, x2) =
(
b1x1 −

b2√
b21 + b22

x2, b2x1 +
b1√
b21 + b22

x2 + d

)
(15)

if b1 6= 0, and

ψ(x1, x2) = (x2 + d′, b2x1)(16)

if b1 = 0.

Now we prove

Proposition 2. Let l be any straight line on the plane. Let b = (b1, b2) ∈
R2 \ {(0, 0)} be a vector parallel to l. Then ϕ is a solution of equation (12)
if and only if it has the form

ϕ = ψ ◦ ϕ0,(17)

where ϕ0 satisfies equation (4) and ψ is given by (15) in case b1 6= 0, and
by (16) in case b1 = 0.

Proof. First we show that ϕ given by (17) is a solution of (12). Since ϕ0
solves (4), we have, by (14),

ϕ0(f(x)) = (ψ−1 ◦ Sl,b ◦ ψ)(ϕ0(x)) for x ∈ R2,

where ψ is given by (15) or (16). Hence

(ψ ◦ ϕ0)(f(x)) = Sl,b((ψ ◦ ϕ0)(x)) for x ∈ R2.

Thus ψ ◦ ϕ0 is a solution of (12).
Let now ϕ be any solution of (12). Set ϕ0 := ψ−1 ◦ ϕ. By (12) and (14)

we have
ϕ(f(x)) = (ψ ◦ S1 ◦ ψ−1)(ϕ(x)) for x ∈ R2.

Hence
(ψ−1 ◦ ϕ)(f(x)) = S1((ψ−1 ◦ ϕ)(x)) for x ∈ R2.

Thus ϕ0 is a solution of (4) such that (17) holds.

4. Equations with reflection in the x-axis. By Propositions 1 and
2 in order to find all solutions of (10) it suffices to know all solutions of (4).

Lemma 2. If a mapping f : R2 → R2 satisfies (A2), then it is an orien-
tation reversing homeomorphism of the plane onto itself such that condition
(B) holds.
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Proof. Let ϕ be a homeomorphism of the plane onto itself which satis-
fies (4). Then

f = ϕ−1 ◦ S1 ◦ ϕ,
where S1 is given by (13). Hence f is a homeomorphism of the plane onto
itself which reverses orientation.

Putting K := ϕ−1[L], where L := {0} × R, we get condition (B). This
completes the proof.

All continuous and homeomorphic solutions of (4) are found in

Theorem 1. Let f be a homeomorphism of the plane onto itself which
reverses orientation. Assume that condition (B) is satisfied. Let ϕ0 :
U0 ∪K → R2 be continuous and suppose that

ϕ0(f(x)) = S0(ϕ0(x)) + (1, 0) for x ∈ K,
where S0 is given by (5). Then:

(a) There exists a unique solution ϕ : R2 → R2 of equation (4) such that

ϕ(x) = ϕ0(x) for x ∈ U0 ∪K.
The function ϕ is continuous.

(b) If ϕ0 is one-to-one and ϕ0[U0] ∩ (Sn0 [ϕ0[U0]] + (n, 0)) = ∅ for all
n ∈ Z \ {0}, then ϕ is a homeomorphism.

(c) If ϕ0 is one-to-one, ϕ0[K] is a line and ϕ0[K]∩Dγ 6= ∅ for all γ ∈ R,
where Dγ = {(x1, x2) ∈ R2 : x2 = γ}, then ϕ is a homeomorphism.

(d) If ϕ0 is as in (c) and ϕ0[M0] = N0, where N0 is the strip bounded by
ϕ0[K] and S0[ϕ0[K]] + (1, 0), then ϕ is a homeomorphism of R2 onto itself.

Proof. By (6) we have

fn[K] ∩ fn+1[K] = ∅ for n ∈ Z.
Furthermore, fn[K] is a line for n ∈ Z, as so is K. For each n ∈ Z, denote
by Mn the strip bounded by fn[K] and fn+1[K]. Let Un := Mn ∪ fn+1[K]
for n ∈ Z. Then fn[U0] = Un for n ∈ Z.

Define ϕ : R2 → R2 by setting

ϕ(x) = Sn0 (ϕ0(f−n(x))) + (n, 0) for x ∈ Un, n ∈ Z.
By (7) and (8), ϕ is a function defined on R2. The rest of the proof is similar
to that of the theorem describing the construction of solutions of (9).

From Theorem 1(d), by the Schönflies Theorem (see [1]), we get

Corollary 1. Let f be an orientation reversing homeomorphism of R2

onto itself. Then (B) implies (A2).

Moreover, on account of Lemma 2 and Corollary 1 we have
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Corollary 2. Let f be an orientation reversing homeomorphism of R2

onto itself. Then conditions (B) and (A2) are equivalent.

As a consequence of the results of Sperner [8] and Betten [2], the result
[6] described in Section 1, and Corollary 2 we have

Theorem 2. Let f be a homeomorphism of R2 onto itself. Then condi-
tions (B) and (S) are equivalent.

Proof. Let f satisfy (B). Then either deg f = 1, or deg f = −1. If
deg f = 1, then f satisfies (A1) (see [6]). Hence condition (S) holds (see
[8]). Likewise, if deg f = −1, then by Corollary 1, f satisfies (A2), and con-
sequently condition (S) holds (see [2]). In a similar manner we can show
that (S) implies (B).

5. Roots of order preserving homeomorphisms. In this section we
shall find all continuous solutions of equation (1). Let us start with

Remark 1. If f is a homeomorphism of R2 onto itself , g is continuous
and gn = f for some n ∈ N, then g is also a homeomorphism of R2 onto
itself.

Proof. Since f is a one-to-one map of R2 onto itself, so is g (see e.g. [5,
p. 422]). Thus g, being a continuous one-to-one mapping of the plane onto
itself, is a homeomorphism (see e.g. [4, p. 186]).

Now we prove

Proposition 3. Let f be a homeomorphism of R2 onto itself and g be
a continuous function such that gn = f for some n ∈ N. If f satisfies
condition (S), then g is a homeomorphism of R2 onto itself satisfying (S).

Proof. Let B be a Jordan domain. Then there exists a Jordan domain
D such that

gr[B] ⊂ D for r ∈ {0, 1, . . . , n− 1},
since B is a compact set and g is continuous. Hence

gmn+r[B] ⊂ fm[D] for m ∈ Z, r ∈ {0, 1, . . . , n− 1}.(18)

By (S) there exists m0 ∈ N such that

fm[D] ∩D = ∅ for |m| ≥ m0.

Hence, by (18),

gmn+r[B] ∩B = ∅ for |m| ≥ m0 and r = 0, 1, . . . , n− 1.

This means that
gk[B] ∩B = ∅ for |k| ≥ m0n.

From Proposition 3 and Theorem 2 we get
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Corollary 3. Let f be a homeomorphism of R2 onto itself and g be
a continuous function such that gn = f for some n ∈ N. If f satisfies
condition (B), then g is a homeomorphism of R2 onto itself satisfying (B).

Now we shall give all continuous solutions of equation (1) in the case
where f preserves orientation. First note that from Remark 1 we can get

Remark 2. Let f be a homeomorphism of R2 onto itself which preserves
orientation. Let g be a continuous function defined on R2 such that gn = f
for some odd n ∈ N. Then g is a homeomorphism of R2 onto itself which
preserves orientation.

Proof. By the definition of the degree of a homeomorphism of the plane
we have

(deg g)n = deg f.(19)

Hence deg g = 1, since deg f = 1 and n is odd.

Let

T1/n(x1, x2) := (x1 + 1/n, x2) for (x1, x2) ∈ R2,(20)

S1/n(x1, x2) := (x1 + 1/n,−x2) for (x1, x2) ∈ R2.(21)

Now we can state

Theorem 3. Let f be an orientation preserving Sperner homeomor-
phism of R2 onto itself. Then

(a) for every even n ∈ N a function g is a continuous solution of equation
(1) if and only if it can be expressed in either of the forms

g = ϕ−1 ◦ T1/n ◦ ϕ(22)

and

g = ϕ−1 ◦ S1/n ◦ ϕ,(23)

where ϕ is a homeomorphic solution of (3) and T1/n, S1/n are given by (20)
and (21), respectively ;

(b) for every odd n ∈ N, n > 1, a function g is a continuous solution of
equation (1) if and only if it has the form (22), where ϕ is a homeomorphic
solution of (3).

Proof. Let

T1(x1, x2) := (x1 + 1, x2) for (x1, x2) ∈ R2.

Take any homeomorphic solution ϕ of (3). Fix n ∈ N, n > 1. Let g be given
by (22). We shall show that g is a solution of (1).

Since Tn1/n = T1, we have gn = ϕ−1 ◦ T1 ◦ ϕ. On the other hand f =

ϕ−1 ◦ T1 ◦ ϕ, since ϕ satisfies (3). Thus gn = f .
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If n is even, then g given by (23) is also a solution of equation (1), since
Sn1/n = T1 for every even n ∈ N.

Fix n ∈ N, n > 1. Let g be any continuous solution of (1). Then, by
Proposition 3 and Theorem 2, g is a homeomorphism of R2 onto itself which
satisfies (B). Moreover, if n is odd, then by Remark 2, g preserves orientation.

Conversely, assume that g preserves orientation. Then, by the Schönflies
theorem and the theorem describing the solutions of (9) given in [6], there
exists a homeomorphism ϕ satisfying

ϕ(g(x)) = ϕ(x) + (1/n, 0) for x ∈ R2.(24)

Hence

ϕ(gn(x)) = ϕ(x) + (1, 0) for x ∈ R2.(25)

Since gn = f , ϕ is a solution of (3). By (24) the function g has the form
(22).

Now assume that n is even and g reverses orientation. Then, by Corol-
lary 1 and Proposition 2, there exists a homeomorphism ϕ satisfying

ϕ(g(x)) = S0(ϕ(x)) + (1/n, 0) for x ∈ R2.(26)

Hence ϕ is a solution of (25), since Sn0 = id for every even n ∈ Z. Thus ϕ
satisfies (3) and clearly (23) holds.

From Theorem 3(a) we obtain the following

Corollary 4. Let f be an orientation preserving Sperner homeomor-
phism of R2 onto itself. Then for every even positive integer n there exist
solutions of equation (1) which preserve orientation and ones which reverse
orientation.

6. Roots of order reversing homeomorphisms. Now we find all
continuous solutions of equation (1) in the case where f reverses orientation.
Immediately from Remark 1 and relation (19) we obtain

Remark 3. Let f be an orientation preserving homeomorphism of the
plane onto itself. Then

(a) if g is a continuous function such that gn = f for some odd n ∈ N,
then g is a homeomorphism of R2 onto itself which reverses orientation;

(b) if n is even, then there exist no solutions of equation (1).

Now we prove

Theorem 4. Let f be an orientation reversing Sperner homeomorphism
of R2 onto itself. Let n be an odd integer greater than 1. Then a function
g is a continuous solution of equation (1) if and only if it has the form
(23), where ϕ is a homeomorphic solution of equation (4) and S1/n is given
by (21).
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Proof. Let ϕ be any homeomorphism of the plane onto itself satisfying
(4). Assume that g is given by (23). Then gn = ϕ−1 ◦S1 ◦ϕ, since Sn1/n = S1

for odd n, where S1 is given by (13). Hence gn = f , since ϕ satisfies (4).
Let g be a continuous solution of (1). Then, by Theorem 2 and Corol-

lary 3, g is a homeomorphism of the plane onto itself satisfying (B). More-
over, Remark 3(a) shows that g reverses orientation. By Corollary 1 and
Proposition 2, there exists a homeomorphism ϕ satisfying (26). Hence

ϕ(gn(x)) = S0(ϕ(x)) + (1, 0) for x ∈ R2,

since n is odd. Thus ϕ is a solution of (4).

Remark 4. Theorems 3 and 4 and Remark 3(b) yield our Main Result.
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