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Linear differential polynomials
sharing the same 1-points with weight two

by INDRAJIT LAHIRI (Kalyani)

Abstract. We prove a uniqueness theorem for meromorphic functions involving dif-
ferential polynomials which improves some previous results and provides a better answer
to a question of C. C. Yang.

1. Introduction and definitions. Let f and g be two nonconstant
meromorphic functions defined in the open complex plane C. If for a € CU
{0}, f—a and g—a have the same set of zeros with the same multiplicities,
we say that f and g share the value a CM (counting multiplicities) and if
we do not consider the multiplicities, f and g are said to share the value a
IM (ignoring multiplicities). We do not explain the standard notations and
definitions of the value distribution theory as those are available in [2].

In [9] C. C. Yang asked: What can be said if two nonconstant entire
functions f, g share the value 0 CM and their first derivatives share the
value 1 CM?

A number of authors have worked on this question of Yang (e.g. [3, 6,
7, 10, 11]). To answer the question of Yang, K. Shibazaki [7] proved the
following result.

THEOREM A. Let f and g be two entire functions of finite order. If f’
and ¢’ share the value 1 CM with §(0; f) > 0 and 0 being lacunary for g
then either f =g or f'g' = 1.

Improving Theorem A, H. X. Yi [12] obtained the following theorem.

THEOREM B. Let f, g be two entire functions such that f™ and g™
share the value 1 CM. If 6(0;f) 4+ 6(0;g9) > 1 then either f = g or
fgn) =1,

For meromorphic functions H. X. Yi and C. C. Yang [13] proved the
following result.
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THEOREM C. Let f and g be two meromorphic functions such that
O(oo; f) = O(c0sg) = 1. If f and g™ share the value 1 CM with
5(0; f) +6(0; g) > 1 then either f =g or fMg") =1.

In [3] the following question was asked: What can be said if two linear
differential polynomials generated by two meromorphic functions f and g
share the value 1 CM?

We denote by ¥ (D) a linear differential operator with constant coeffi-
cients of the form

p
w(D) = a;D',
=1

where D = d/dz.

Also we denote by N(r, a; f) the counting function of a-points of f where
an a-point of multiplicity p is counted p times if p < k and k times if p > k,
where k is a positive integer. We put

. Nk: (Ta a; f)
O0p(a; f) =1 —limsup ———.
( ) r—o00 T(T, f)
Clearly d6(a; f) < dx(as f) < dk—1(a; f) < ... < di(as f) = O(as f).
In [3] the following two theorems were proved.
THEOREM D. Let f and g be two meromorphic functions such that

(i) ¥(D)f, ¥(D)g are nonconstant and share 1 CM, and
(ii) Za;éoo &(as f) n Za;ﬁoo 6(a; g)

1+p(1—6(c0; f)) 1+ p(l—6O(c0;g))
41 - 600 1)) 41~ O(o039))
2o (@ f)  Paseo Op(a;9)
where Y, o.0p(a; f)>0and 3, 0p(a; g)>0. Then either [V (D) f][¥(D)g]

=1orf—g=s where s = s(z) is a solution of the differential equation
U(D)w = 0.

THEOREM E. If f and g are of finite order then Theorem D still holds if
condition (ii) is replaced by the following weaker one:
Za;éoo d(a; f) Za;éoo d(as g)
1+p(1=0(c0; f))  1+4p(l—0(c0;g))
2(1 - 0(00i /) | 21— 6(xig))
Dartoo Op(05 ) D ases Oplaig)
where 3, 4o, 0p(a; f) >0 and 3, 6p(a;g) > 0.

H. X. Yi [10] also answered the question of Yang and proved the following
result.

> 14
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THEOREM F. Let f and g be two nonconstant entire functions. Assume
that f, g share 0 CM and f™, g share 1 C’M where n is a nonnegative
integer. If §(0; f) > 1/2 then ezther f=gorfm =1.

As an application of Theorem D, in [3] the following answer to the ques-
tion of Yang was given.

THEOREM G. Let f and g be two nonconstant meromorphic functions
with O(oc0; f) = O(00;g) = 1. Suppose that f, g (n > 1) share 1 CM
and f, g share a value b (# oo) IM. If 3, 6(a; f) + > ,z000(as9) > 1
then either f =g or f(Mg(™ = 1.

The following example shows that in Theorems D and E sharing the
value 1 cannot be relaxed from CM to IM.

EXAMPLE 1. Let f = —ie?*, g = 27Pe?* — 2ie* and ¥(D) = DP. Then
¥(D)f,¥(D)g share the value 1 IMand 3, 6(a; f)+>_, 2 6(a;9) = 3/2
but neither f = g+ Q nor [¥(D)f][¥(D)g] = 1 where @ is a polynomial of
degree at most p — 1.

Now one may ask the following question: Is it possible in any way to
relax the nature of sharing the value 1 in Theorems D and E?

The purpose of the paper is to study this problem. We shall not only
relax the nature of sharing the value 1 but also weaken the condition on
deficiencies. To this end we consider a gradation of sharing of values which
measures how close a shared value is to being shared IM or being shared
CM and is called weighted sharing of values as introduced in [4, 5].

DEFINITION 1. Let k& be a nonnegative integer or infinity. For a € C U
{o0} we denote by Ej(a; f) the set of all a-points of f where an a-point of
multiplicity m is counted m times if m < k and k + 1 times if m > k.

If Ex(a; f) = Ex(a;g), we say that f, g share the value a with weight k.

The definition implies that if f, g share a value a with weight k& then zg
is a zero of f — a with multiplicity m (< k) if and only if 2o is a zero of
g — a with multiplicity m (< k), and zg is a zero of f — a with multiplicity
m (> k) if and only if zg is a zero of g — a with multiplicity n (> k) where
m is not necessarily equal to n.

We write “f, g share (a,k)” to mean that f, g share the value a with
weight k. Clearly if f, g share (a, k) then f, g share (a,p) for any integer p,
0 < p < k. Also we note that f, g share a value a IM or CM if and only if
f, g share (a,0) or (a,c0) respectively.

DEFINITION 2. We denote by N(r,a; f|=1) the counting function of
simple a-points of f.
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DEFINITION 3. If s is a positive integer, we denote by N(r,a; f | >s) the
counting function of those a-points of f whose multiplicities are greater than
or equal to s, where each a-point is counted only once.

DEFINITION 4. Let f, g share a value a IM. We denote by N.(r,a; f, g)
the counting function of those a-points of f whose multiplicities are not
equal to multiplicities of the corresponding a-points of g, where each a-point
is counted only once.

Clearly N.(r,a; f,g) = N«(r,a59, f).

DEFINITION 5 (cf. [1]). For a meromorphic function f we put

TO(T, f) — S T(tt’ f) dt, ND(T, a; f) — S M dt,
1 1
N ) = (BT gy = D) g
! 1
sotr. ) =20 g
1

DEFINITION 6. If f is a meromorphic function, we put, for a € C U{o0o},

do(a; f)=1-— lirrisup W,
Oo(a; f) =1-— linisup —NTOSZ;G})JC)a
6k(a; £) = 1 — limsup %

2. Lemmas. In this section we present some lemmas which will be
needed in what follows. Let f, g be two nonconstant meromorphic functions

and we put
h: f_/l_ 2](‘/ B g_//_ 2g/
oo f-1 g g9g-1)

LEMMA 1. If f, g share (1,1) and h # 0 then
() N(r, 13 f|=1) < N(r,h) + S(r, f) + S(r,g),
(i) N(r,L;g|=1) < N(r,h) + S(r, ) + S(r, 9).
Proof. Since f, g share (1,1), it follows that a simple 1-point of f is a

simple 1-point of g and conversely. Let zy be a simple 1-point of f and g.
Then by a simple calculation we see that in some neighbourhood of z,

h=(z = 20)8(2),

where ¢ is analytic at zp.
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Hence by the first fundamental theorem and the Milloux theorem [2,
p. 47] we get

N(r,1; f|=1) < N(r,0;h) < N(r,h) + S(r, f) + S(r, 9),

which is (i).
Now (ii) follows from (i) because N(r,1; f|=1) = N(r,1;¢9|=1). This

proves the lemma. =

LEMMA 2. Let f, g share (1,0) and h # 0. Then for any number b
(# 0’ ]'7 Oo)?

N(r,h) < N(r,00; f| >2) + N(r,0; f | >2) + N(r,b; f | >2)
+ N(r,00;9]>2) + N(r,0;9|>2) + N.(r,1; f, g)
+N@(T’,O;f/)+N®(T’,O;g/),

where N g (r,0; f') is the reduced counting function of those zeros of 1" which
are not zeros of f(f — 1)(f —b), and Ng(r,0;q") is the reduced counting
function of those zeros of g’ which are not zeros of g(g —1).

Proof. We can easily verify that possible poles of h occur at (i) multiple
zeros of f, g; (ii) multiple poles of f, g; (iii) zeros of f — 1, g — 1; (iv) mul-
tiple zeros of f — b; (v) zeros of f’ which are not zeros of f(f — 1)(f — b);
(vi) zeros of g’ which are not zeros of g(g — 1).

Let zp be a zero of f — 1 with multiplicity m (> 1) and of g — 1 with
multiplicity n (> 1). Then in some neighbourhood of zy we get

L ()
Z— 20
where ¢, are analytic at zg and ¥(z9) # 0.

This shows that if m = n then zg is not a pole of h and if m # n then
zp is a simple pole of h. Since all the poles of h are simple, the lemma is
proved. =

+ ¢,

LEMMA 3. If f, g share (1,2) then
Ng(r,0;¢') + N(r, 1,91 >2) + N.(1,1; f, 9)
< N(r,0039) + N(r,0;9) + S(r, g),

where Ng(r,0;g') is the counting function of those zeros of g’ which are not
zeros of g(g — 1).

Proof. Since f, g share (1,2), it follows that N.(r,1;f,g) < N(r,1;
g|>3). So remembering the definition of Ng(r,0;¢") we get
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(1)  Ng(r,0;¢')+ N(r,1;9|>2) + N.(r,1; f,9)

+N(T7079) —N(T,O,g)
< Ng(r,0;¢') + N(r,1;9|>2) + N(r,1;g| >3)

"‘N(T,O,g) - N(T,O,g)
< N(r,0;¢).
By the first fundamental theorem and the Milloux theorem [2, p. 55] we get

r,0:9'/9) + N(r,0;g) — N(r,0; g)

r,9'/9) + N(r,0; g) — N(r,0; g) + S(r, 9)

r,00; g) + N(r,0;9) + N(r,0;9) — N(r,0; g) + S(r, )
r,00;9) + N(r,0;9) + S(r, 9).

(2)  N(r,09)

I
EEES

Now the lemma follows from (1) and (2). =
LEMMA 4 (see [1]). lim, oo So(r, f)/To(r, ) = 0 through all values of r.

LEMMA 5 (see [3]). For a € CU {oo}, d(a; f) < do(as f), Oa; f) <
Oo(a; f) and 5k (a; f) < 5)(a; f).

LEMMA 6 (see [3]).

> Za;éoo 50(0’; f)
14 p(1 = 6p(o0; f))

LEMMA 7 (see [3]). If >, .o 69(a; f) > 0 then
1 — BOg(o0; f)
D artoo 0p(a; )

LEMMA 8 (see [8]). If f is transcendental then lim, ... To(r, f)/(logr)?
= oo through all values of r.

Ou(cc;¥(D)f) >1—

3. The main result. In this section we discuss the main result of the
paper.

THEOREM 1. Let f, g be two meromorphic functions such that

(i) ¥(D)f, ¥(D)g are transcendental and share (1,2) and
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i) > artoo 0(as f) D oo 0(aig)
1+p(1—6(c0; f)) 1+ p(1—0O(c0;9))
+ min{da(b; lI/(D)f ),02(b;¥(D)g)}
2(1 — 6(c0; f)) | 2(L — O(c019))
Za;éoo p(a’ f) Za;éoo 517 a; g)

for some b#0,1,00,1/2,2, —w, —w?, with D arzoolp(@ 1) >0, 32 0p(as g)
> 0 and w being the imaginary cube root of unity.

Then either [¥(D)f][¥(D)g] = 1 or f —g = s, where s = s(z) is a
solution of the differential equation ¥(D)w = 0.

>1+

The following example shows that Theorem 1 is sharp.

EXAMPLE 2. Let f = le*(e* — 1), g = 3¢ (3 — 2e7%) and ¥(D) =
D?—3D. Then ¥(D)f = e*(1—¢*), ¥(D)g = e *(1—e %), 3. 0(a; f) =
Dazoo 0(a;9) = 1/2, O(00; f) = O(00;9) = 1, 52(b;¥(D)f) = 02(b; ¥(D)g)
= 0for b # 0,00 and ¥(D)f, ¥(D)g share (1,2). It is easily seen that neither
[@(D)f][¥(D)g] =1 nor f — g = c; — c2e3* for any constants ¢; and co.

Proof of Theorem 1. Let F = ¥(D)f and G = ¥(D)g. Then in view of
Lemmas 5-7 condition (ii) implies
(3)  60(0; F) + 90(0; G) 4+ 20¢(00; F) + 2600 (00; G)
+ min{d9(b; F),89(b; G)} > 5.

F" o 2F G" 26
H=(%-——) - (=% - .
(F-7)-(G-25)

Suppose H # 0. Then by Lemmas 1-3 we get

(4)  N(r1;F|=1) < N(r,00; F | >2) + N(r,0; F | >2) + N(r,b; F | >2)
+ N(r,00; G| >2) + N(r,0; G | >2) + Ng(r,0; F")
+ N(r,00;G) + N(r,0;G) — N(r,1; G| >2)
+S(r,F)+ S(r,G).

By the second fundamental theorem we get

(5) 2T(r,F) < N(r,00; F) + N(r,1; F) + N(r,b; F)

+ N(r,0; F) — Ng(r,0; F') + S(r, F),
where Ng(r,0; F') is the counting function of those zeros of F’ which are

not zeros of FI(F —1)(F —b).
Since F', G share (1,2), we see that

(6) N(r,1;F)=N(r,1; F|=1) +
= N(r,1; F|=1)+

We put

(r,1; F|>2)

N
N(r,1;G| >2).
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Since No(r,00; F) < 2N(r,00; F) and Na(r,00;G) < 2N(r,00;G), we get
from (4)—(6) on integration
(7)  2To(r, F) < NY(r,0; F) + NJ(r,b; F) + N3(r,0; G) + 2Ng(r, 00; F)

+ 2No(r,00; G) + So(r, F) + So(r, G).
Similarly we obtain
(8)  2Tp(r,G) < N2(r,0; F) + N (r,b; G) + N3(r,0; G) + 2Ny (r, 00; F)

+ 2No(r,00; G) + So(r, F) + So(r, G).
From (7) and (8) we get
(9)  2To(r) < N3(r,0; F) + N3(r,0; G) + N3 (r,b) + 2No(r, 00; F)

+ 2No(r,00; G) + So(r, F) + So(r, G),

where Ty(r) = max{Ty(r, F),To(r,G)} and NJ(r,b) = max{NJ(r,b; F),

N9(r,b; G)}.
Since (9) contradicts (3), it follows that H = 0. Then
AG+ B
1 =
(10) CG+ D’

where A, B, C', D are complex numbers such that AD — BC' # 0.
In view of (10) we get

(11) To(r, F) = To(r, G) + O(log r).
Now we consider the following cases.

CASE 1: AC #0. Then

A B-42

(12) r--—-=-__<
¢ CG+D

SUBCASE 1.1: A/C # b. Then by the second fundamental theorem we

get on integration
2To(r, F)
< No(r,00; F) + No(r,0; F) + No(r, A/C; F) + No(r, b; F) + So(r, F)
= No(r,00; F) + No(r,0; F) + No(r,b; F) + No(r, 00; G) + So(r, F),
which implies (9) in view of (11) and Lemma 8 and finally contradicts (3).

SUBCASE 1.2: A/C = b. Also we suppose that BD # 0. Then B/D # b
because AD — BC # 0. So by the second fundamental theorem we get on
integration

2T0(T’ F)
< No(r,00; F) + No(r,0; F) + No(r,b: F) + No(r, B/ D; F) + So(r, F)
= No(r,00; F) + No(r,0; F) + No(r,b; F) + No(r,0; G) + So(r, F),
which by (11) and Lemma 8 implies (9) and so contradicts (3).
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Let B = 0. Then D # 0 because F is nonconstant. Now from (12) we
get

(13) F—b=

where a = C/D.
Let 1 be a Picard exceptional value (e.v.P.) of F' and so of G. Then by
the second fundamental theorem we get on integration
2To(r, F) < No(r,00; F) + No(r,0; F) + No(r,b; F) + So(r, F),

which implies (9) in view of (11) and Lemma 8 and so contradicts (3).
Let 1 be not an e.v.P. of F and G. Then from (13) we get o = == so

b—1
that
B bG
C(b-1+ G
Since b # 1/2, by the second fundamental theorem we get on integration
2Ty(r, G)

< No(r,00;G) 4+ No(r,0; G) + No(r,b;G) + No(r,1 — b; G) + So(r, G)
= No(r,00; G) + No(r,0; G) + No(r,b;G) + No(r,00; F) + So(r, G),
which by (11 )
B

) and Lemma 8 implies (9) and so contradicts (3).
Let B # 0, D = 0. Then from (12) we obtain
g
14 F=b+—
(14) + &
where § = B/C.

If 1 is an e.v.P. of F' and so of GG, by the second fundamental theorem
we get on integration

QT()(?",F)SNo(T,OO;F)+N0(7",O;F)+N0(7",b;F>+So(T’,F),

which implies (9) in view of (11) and Lemma 8 and so contradicts (3).
Suppose 1 is not an e.v.P. of F' and G. Then from (14) we get 5=1—10»

so that ;
1_

F=b+——.

TG

Since b # —w, —w?, by the second fundamental theorem we get on integra-
tion
2Ty(r, G)
< No(r,00;G) 4+ No(r,0;G) + No(r, b; G) + No(r,1 — 1/b; G) + So(r, G)
= No(r,00;G) + No(r,0; G) + No(r,b;G) + No(r,0; F) + So(r, G),

which implies (9) in view of (11) and Lemma 8 and so contradicts (3).
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CASE 2: AC = 0. Since F' is nonconstant, it follows that A and C' are
not simultaneously zero.
SUBCASE 2.1: A =0 and C # 0. Then B # 0 and from (10) we get
1

where « = C/B and = D/B.
If 1 is an e.v.P. of F' and G, by the second fundamental theorem we get
on integration

2Ty(r, F) < No(r,00; F) + No(r,0; F) + No(r,b; F) + So(r, F),
which by (11) and Lemma 8 implies (9) and so contradicts (3).

Suppose 1 is not an e.v.P. of F and G. Then from (15) we get o+ 3 =1
so that

1

If « # 1,1 —1/b, by the second fundamental theorem we get on integration
2T0(T’ F)
< No(r,00; F) 4+ No(r,0; F) + No(r,b; F) + No(r,1/(1 — a); F) + So(r, F)
= No(r,00; F) + No(r,0; F) 4+ No(r,b; F) + No(r,0; G) + So(r, F),

which implies (9) in view of (11) and Lemma 8 and so contradicts (3).
If o =1then FG =1, ie. [¥(D)f|[¥(D)g] =1.
If «a =1—1/b then
b

F=—
1+(b-1)G

Since b # —w, —w?, by the second fundamental theorem we get on integra-
tion

2To(r, G)
< No(r,00;G) + No(r,0;G) + No(r,b; G) + No(r, 1/(1 — b); G) + So(r, G)
= No(r,00;G) + No(r,0; G) + No(r,b; G) + No(r,00; F) + So(r, G),
which by (11) and Lemma 8 implies (9) and so contradicts (3).
SUBCASE 2.2: A# 0 and C = 0. Then D # 0 and from (10) we get
(16) F =aG + 3,

where « = A/D, = B/D.
If 1 is an e.v.P. of F' and G, by the second fundamental theorem we get
on integration

2To(r, F) < No(r,00; F) + No(r,0; F) + No(r,b; F) + So(r, F),
which implies (9) by (11) and Lemma 8 and so contradicts (3).



Linear differential polynomials 167

Suppose 1 is not an e.v.P. of F' and G. Then from (16) we get a+ (5 =1
and so

F=aG+1-a.
If « #1,1 —b, by the second fundamental theorem we get on integration
2To(r, F)
< No(r,00; F) 4+ No(r,0; F) + No(r,b; F) + No(r,1 — o;; F) + So(r, F)
= No(r,00; F) + No(r,0; F) + No(r,b; F) + No(r,0; G) + So(r, F),

which implies (9) in view of (11) and Lemma 8 and so contradicts (3).
If « =1 then F =G and so f — g = s, where s = s(z) is a solution of
the differential equation ¥(D)w = 0.
If o =1—0then
F=(1-bG+hb.

Since b # 2, by the second fundamental theorem we get on integration
2TO(T7 G)
< No(r,00;G) + No(r,0;G) + No(r,b;G) + No(r,b/(b = 1); G) + So(r, G)

= No(r,00;G) + No(r,0; G) + No(r,b;G) + No(r,0; F) + So(r, G),

which by (11) and Lemma 8 implies (9) and so contradicts (3). This proves
the theorem. =

4. Applications. In this section we discuss two applications of the main
theorem, the first of which improves a result of Yi and Yang [13] and the
second gives a better answer to the question of Yang [9] mentioned in the
introduction.

THEOREM 2. Let f, g be two nonconstant meromorphic functions with
O(oc; ) = O(00;g) = 1. If for n > 1 the derivatives f™, g™ share (1,2)
and

() D d(asf)+ Y (asg) + min{dp(bs f™), 62(b:9™))} > 1
a#0o a7#oo
for some b #0,1,00,1/2,2, —w, —w?, and
(ii) O(es ) + Oz 9) > 1
for some o # oo, then either (1) fMg™) =1 or (II) f = g.

Proof. From the given condition it follows that f, g are transcendental
and so f(™, ¢(™ are transcendental. Choosing ¥ (D) = D" in Theorem 1 we
get either f(M g™ =1 or f — g = @, where Q is a polynomial of degree at
most n — 1. If possible let @) # 0. Then by Nevanlinna’s theorem on three
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2, p. 47] we get
T(r, f )gﬁ(m f)+N(r,a+Q; f)+ N(r,o0; f) + S(r, f)
= N(r,a; f) + N(r,a;9) + N(r,00; f) + S(r, f).

Since f — g = Q, it follows that T'(r, f) = T'(r,g) + O(logr). So O(«; f) +
O(a;g) < 1, which is a contradiction. Therefore @Q = 0 and so f = ¢. This
proves the theorem. m

small functions

The following examples show that the condition O(«; f) + O(a;g) > 1
is necessary for the validity of case (II).

ExXAMPLE 3. Let f =14 €® and g = €*. Then

>0 f)+ D d(as g) + min{Sa(b; f™), a(b; g™} = 2

aFoo a#oo
for any b # 0,00, O(c0; f) = O(o0; g) = 1, O(0; f) + O(0;9) = 1, O(1; f) +
O(l;g) =1, Oa; f) +O(a;g) < 1 for a #0,1,00 and f™, g™ share (1,2)
but f—g=1.

EXAMPLE 4. Let f =1+ ¢€” and g = (=1)"e™*. Then >__, d(a; f) +

> ato0 0(as9) +min{da(b; £)), 85(b; g™} = 2 for any b # 0, 00, O(00; ) =
a

O(c0;g) =1, 0(0; f) + 6(0:9) = 1, O(1; /) + O(L; g) = 1, O(av; f) + O(ar; 9)
<1for a#0,1,00 and f(™, g(" share (1,2) but f™g" = 1.

REMARK 1. Theorem 2 improves Theorem C, a result of Yi and Yang
[13] and also a recent result of Lahiri [3].

In the following theorem we provide a better answer to a question of
Yang [9] than those given in Theorems F and G.

THEOREM 3. Let f and g be two meromorphic functions such that f™
g™ (n > 1) share (1,2), f, g share (a,0) for some a # oo and

Sopd@ ) Sdlag)
(1000 /) Tl —Oacsg)) 00l )
514 20 =000 f) | 201 = O(c0sg))

Za;éoo dp(a; f) Za;éoo dp(as g)

for some b#0,1,00,1/2,2, —w, —w?, with > artocdpla; f) >0, Za#oo ( i 9)
> 0 and w being the imaginary cube root of unity. Then either f(™g(") =1
or f=g.

Proof. From the assumption it follows that f and g are transcendental
and so f and ¢(™ are transcendental. Choosing ¥ (D) = D™ we see from
Theorem 1 that either f—g = Q or f™g¢(™ = 1, where Q is a polynomial of
degree at most n — 1. If possible, let @ # 0. Since f, g share («,0), it follows
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that N(r,a; f) = N(r,a;9) < N(r,0;Q) = O(logr). Now by Nevanlinna’s
theorem on three small functions [2, p. 47] we get
T(r, f) < N(r,a; f) + N(r,a + Q; f) + N(r, 00; f) + S(r, f)

= N(r,a; f) + N(r, a5 9) + N(r,00; f) + S(r, f)

= N(r,00; f) + O(logr) + S(r, f),
which implies that ©(co; f) = 0. Similarly we see that @(o0;g) = 0. Since
this contradicts the assumption, it follows that @ = 0 and so f = g. This
proves the theorem. m

The following example shows that Theorem 3 is sharp.

EXAMPLE 5. Let f = —27"e?*4+(—1)""127"¢* and g = (—1)"F127"e 22
—27"¢~%. Then £, ¢g(™ share (1,2), f,g share (0,0), O(co; f) = O(c0; g)
— 1 and 300 005 F) + e 0(ai g) + min{da(b; £), (b (D)} = 1 for
any b # 0,00 but neither f = g nor f(®g" = 1.

CONCLUDING REMARK. Since Example 1 shows that in Theorem 1 shar-
ing (1,2) cannot be relaxed to sharing (1,0), we conclude the paper with
the following question: Is it possible in Theorem 1 to relax sharing (1,2) to
sharing (1,1)%
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