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Abstract. The main purpose of this paper is to consider the analytic solutions of
the non-homogeneous linear differential equation

f (k) + ak−1(z)f (k−1) + · · ·+ a1(z)f ′ + a0(z)f = F (z),

where all coefficients a0, a1, . . . , ak−1, F 6≡ 0 are analytic functions in the unit disc D =
{z ∈ C : |z| < 1}. We obtain some results classifying the growth of finite iterated order
solutions in terms of the coefficients with finite iterated type. The convergence exponents
of zeros and fixed points of solutions are also investigated.

1. Introduction and main results. In this paper, we assume that
the reader is familiar with the fundamental results and standard notations
of Nevanlinna’s value distribution theory of meromorphic functions on the
complex plane C and in the unit disc D = {z ∈ C : |z| < 1} (see [9], [21]).
First, the weighted Hardy space H∞q consists of those functions f, analytic
in the unit disc, such that

sup
0≤r<1

M(r, f)(1− r2)q <∞,

whereM(r, f) is the maximum modulus of f on the circle of radius r centered
at the origin. If g belongs to H∞q for some q ≥ 0, then it is said to be an
H-function. One can deduce that

DM (f) := lim sup
r→1−

log+M(r, f)
− log(1− r)

= inf{q ≥ 0 : f ∈ H∞q },
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where log+ x = max{log x, 0}. If f is meromorphic in D satisfying

D(f) := lim sup
r→1−

T (r, f)
− log(1− r)

<∞ (resp. =∞),

then we say that f is non-admissible (resp. admissible), where T (r, f) is
the Nevanlinna characteristic of f. If f is analytic in D, then DM (f) and
D(f) satisfy the inequality D(f) ≤ DM (f). This meanss that every an-
alytic admissible function in D is an H-function. Furthermore, there are
analytic functions, such as f = e1/(1−z) (see Remark 1.5 of [5]), satisfying
D(f) < DM (f).

For n ∈ N, the iterated n-order of a meromorphic function f in D is
defined by

σn(f) := lim sup
r→1−

log+
n T (r, f)

− log(1− r)
,

where log+
1 x = log+ x and log+

n+1 = log+ log+
n x. If f is analytic in D, we

also define

σM,n(f) := lim sup
r→1−

log+
n+1M(r, f)
− log(1− r)

.

If f is analytic in D, it is well known that σM,1(f) and σ1(f) satisfy the
inequalities

σ1(f) ≤ σM,1(f) ≤ σ1(f) + 1,

which are best possible in the sense that there are analytic functions g and
h such that σM,1(g) = σ1(g) and σM,1(h) = σ1(h) + 1 (see [8]). However, it
follows from Proposition 2.2.2 of [14] that σM,n(f) = σn(f) for n ≥ 2.

For n ∈ N, the iterated n-convergence exponent of the sequence of zeros
in D of a meromorphic function f in D is defined by

λn(f) := lim sup
r→1−

log+
n N(r, 1/f)
− log(1− r)

;

and λn(f), the iterated n-convergence exponent of the sequence of distinct
zeros in D of f is defined by

λn(f) := lim sup
r→1−

log+
n N(r, 1/f)
− log(1− r)

.

Recently, there has been an increasing interest in studying the growth
of analytic solutions of

(1) f (k) + ak−1(z)f (k−1) + · · ·+ a1(z)f ′ + a0(z)f = 0

in the unit disc D. For finite 1-order solutions, see [3, 8, 12, 10, 13, 7], and for
finite n-order solutions, see [5, 11]. In a very recent paper [4], the convergence
exponent of the sequence of zeros of solutions of linear differential equations
in D has been considered.
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The main purpose of this paper is to consider the analytic solutions of
the non-homogeneous linear differential equation, corresponding to (1),

(2) f (k) + ak−1(z)f (k−1) + · · ·+ a1(z)f ′ + a0(z)f = F (z),

where all coefficients a0, a1, . . . , ak−1, F 6≡ 0 are analytic functions in D.
The first result classifies the growth of finite iterated 1-order solutions of (2)
in terms of the growth of the coefficients.

Theorem 1.1. Let aj (j = 0, 1, . . . , k − 1) be H-functions and assume
that F 6≡ 0 and

σM,1(F ) ≤ max
{

0, max
j=0,...,k−1

DM (aj)
k − j

− 1
}
.

In particular, F may be an H-function. Then all solutions f of (2) satisfy

σ1(F ) ≤ σ1(f) ≤ σM,1(f) ≤ max
{

0, max
j=0,...,k−1

DM (aj)
k − j

− 1
}
.

Moreover, if either F is an H-function or σ1(F ) < σ1(f), then λ1(f) =
λ1(f) = σ1(f).

Next, we obtain the following results classifying the growth of finite
iterated n-order solutions of (2) in terms of the iterated n-type of coefficients.
For n ∈ N, the iterated n-type of an analytic function f in D with 0 <
σM,n(f) <∞ is defined by

τM,n(f) := lim sup
r→1

(1− r)σM,n(f) log+
n M(r, f).

Theorem 1.2. Let n ∈ N, and assume that the coefficients a0, . . . , ak−1

and F 6≡ 0 are analytic in D with σM,n(aj)≤ σM,n(a0) for all j = 1, . . . , k−1,
and
(3)

∑
σM,n(aj)=σM,n(a0)

τM,n(aj) < τM,n(a0).

(i) If σM,n+1(F ) > σM,n(a0), then all solutions f of (2) satisfy
σM,n+1(f) = σM,n+1(F ).

(ii) If σM,n+1(F ) < σM,n(a0), then all solutions f of (2) satisfy
σM,n+1(f) = λn+1(f) = λn+1(f) = σM,n(a0), with at most one ex-
ception f0 satisfying σM,n+1 (f0) < σM,n(a0).

If σM,n(aj) < σM,n(a0) for all j = 1, . . . , k − 1, then the sum of (3) is
empty, and Theorem 1.2 reduces to the following result.

Corollary 1.1. Let n∈N, and assume that the coefficients a0, . . . , ak−1

and F 6≡ 0 are analytic in D and σM,n(aj)<σM,n(a0) for all j = 1, . . . , k−1.
Then both (i) and (ii) of Theorem 1.2 are true.

If the condition σM,n(aj) < σM,n(a0) is replaced by σn(aj) < σn(a0),
then we have the following result.
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Theorem 1.3. Let n ∈ N, and assume that the coefficients a0, . . . , ak−1

and F 6≡ 0 are analytic in D and σn(aj) < σn(a0) for all j = 1, . . . , k − 1.
Let αM := max{σM,n(aj) : j = 0, . . . , k − 1}.

(i) If σM,n+1(F ) > αM , then all solutions f of (2) satisfy σM,n+1(f) =
σM,n+1(F ).

(ii) If σM,n+1(F ) < αM , then all solutions f of (2) satisfy σn(a0) ≤
σM,n+1(f)≤αM , with at most one exception f0 satisfying σM,n+1(f0)
< σn(a0).

(iii) If σM,n+1(F ) < σn(a0), then all solutions f of (2) satisfy αM ≥
σM,n+1(f) = λn+1(f) = λn+1(f) ≥ σn(a0), with at most one excep-
tion f0 satisfying σM,n+1(f0) < σn(a0).

Recently, there is much interest in investigating the fixed points of solu-
tions of differential equations on the plane C (see [1, 2, 6, 15, 16, 19, 20]).
In [4], the fixed points of analytic solutions of differential equations in the
unit disc were considered. We obtain some results on the fixed points of
analytic solutions of (2).

Theorem 1.4. Let f be a solution of (2), let aj (j = 0, 1, . . . , k − 1)
be H-functions and assume that either F 6≡ 0 is an H-function or σ1(F ) <
σ1(f). If F (z)−a1(z)−za0(z) 6≡ 0, then λ1(f−z) = λ1(f) = λ1(f) = σ1(f).

Theorem 1.5. Under the hypothesis of either Theorem 1.2(ii) or Theo-
rem 1.3(iii), if F (z)− a1(z)− za0(z) 6≡ 0, then all solutions f of (2) satisfy
λn+1(f − z) = λn+1(f) = λn+1(f) = σn+1(f), with at most one exceptional
solution.

2. Some lemmas. For the proofs of our main results, we need the
lemmas below.

Lemma 2.1 ([10] and [17]). Let f be a meromorphic function in the unit
disc D, and let k ∈ N. Then

m(r, f (k)/f) = S(r, f),

where

S(r, f) = O(log+ T (r, f)) +O

(
log

1
1− r

)
,

possibly outside a set E ⊂ [0, 1) with
	
E dr/(1− r) < ∞. If f is of finite

iterated 1-order of growth, then

m(r, f (k)/f) = O

(
log

1
1− r

)
.

If f is non-admissible, then

m(r, f ′/f) ≤ log
1

1− r
+ (2 + o(1)) log log

1
1− r

.
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The following result was proved in [11]. When σM,n(aj) < σM,n(a0) for
all j = 1, . . . , k − 1, the conclusion is also proved in [5].

Lemma 2.2. Let n ∈ N. If the coefficients a0(z), . . . , ak−1(z) are analytic
in D such that σM,n(aj) ≤ σM,n(a0) for all j = 1, . . . , k − 1, and (3) holds,
then all solutions f 6≡ 0 of (1) satisfy σM,n+1(f) = σM,n(a0).

In [5], one of the present authors and H.-X. Yi also obtained the result
below, where the condition σM,n(aj) < σM,n(a0) is replaced by σn(aj) <
σn(a0).

Lemma 2.3. Let n ∈ N. If the coefficients a0(z), . . . , ak−1(z) are an-
alytic in D such that σn(aj) < σn(a0) for all j = 1, . . . , k − 1, then all
solutions f 6≡ 0 of (1) satisfy αM ≥ σM,n+1(f) ≥ σn(a0), where αM :=
max{σM,n(aj) : j = 0, . . . , k − 1}.

Lemma 2.4. Let Φ(r) be a continuous and positive increasing function,
defined for r in (0, 1), and set

σp(Φ) = lim sup
r→1−

logp Φ(r)
− log(1− r)

.

Then for any subset E of [0, 1) of finite linear measure, there exists a se-
quence {rn} (rn 6∈ E) such that

σp(Φ) = lim
rn→1−

logp Φ(rn)
− log(1− rn)

.

Proof. By definition, there exists a sequence {r′n} (r′n → 1−) such that

lim
r′n→1−

logp Φ(r′n)
− log(1− r′n)

= σp(Φ).

Set
	
E dr/(1− r) =: log δ <∞. Since

1−(1−r′n)/(δ+1)�

r′n

dr

1− r
= log(δ + 1),

there exists rn ∈ [r′n, 1− (1− r′n)/(δ + 1)] \ E ⊂ [0, 1) such that

log+
n Φ(rn)

− log(1− rn)
≥ log+

n Φ(r′n)
log
(
δ+1
1−r′n

) =
log+

n Φ(r′n)
log(δ + 1)− log(1− r′n)

.

Hence

lim inf
rn→1−

log+
n Φ(rn)

− log(1− rn)
≥ lim

r′n→1−

log+
n Φ(r′n)

log(δ + 1)− log(1− r′n)
= σp(Φ).

Therefore

lim
rn→1−

log+
n Φ(rn)

− log(1− rn)
= σp(Φ).
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Lemma 2.5. Let a0, a1, . . . , ak−1, F 6≡ 0 be meromorphic functions in D
and let f be a meromorphic solution of (2) such that max{σn(F ), σn(aj) :
j = 0, 1, . . . , k − 1} < σn(f). Then λn(f) = λn(f) = σn(f).

Proof. From the equation (2) we see that

(4)
1
f

=
1
F

(
f (k)

f
+ ak−1

f (k−1)

f
+ · · ·+ a0

)
.

If f has a zero at z0 ∈ D of order α (> k) and a0, a1, . . . , ak−1 are all
analytic at z0, then from (4) we see that F has a zero at z0 of order at least
α− k. Hence

(5) N(r, 1/f) ≤ k ·N(r, 1/f) +N(r, 1/F ).

It follows from Lemma 2.1 and (4) that

(6) m(r, 1/f) ≤ m(r, 1/F ) +
k−1∑
j=0

m(r, aj) +O

(
log+ T (r, f) + log

1
1− r

)
for all |z| = r 6∈ E, where E is a subset of [0, 1) with

	
E dr/(1− r) <∞. By

(5) and (6), we have

T (r, f) = T (r, 1/f) +O(1)(7)

≤ kN(r, 1/f) + T (r, F ) +
k−1∑
j=0

T (r, aj)

+O

{
log
(

1
1− r

T (r, f)
)}

(r 6∈ E).

By Lemma 2.4, there exists a sequence {rn} (rn 6∈ E) such that

lim
rn→1−

log+
n T (rn, f)

− log(1− rn)
= σn(f) =: σ.

Set max{σn(F ), σn(aj) (j = 0, . . . , k − 1)} =: b < σ. Then for any given ε
satisfying 0 < 2ε < σ − b, we have

T (rn, f) ≥ expn−1

(
1

1− rn

)σ−ε
, T (rn, F ) ≤ expn−1

(
1

1− rn

)b+ε
and

T (rn, aj) ≤ expn−1

(
1

1− rn

)b+ε
.

Hence we get

max
{
T (rn, F )
T (rn, f)

,
T (rn, aj)
T (rn, f)

}
≤

expn−1

(
1

1−rn
)b+ε

expn−1

(
1

1−rn
)σ−ε → 0 (rn → 1−).
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Hence for rn → 1−, we obtain

(8)
T (rn, F ) ≤ 1

k + 3
T (rn, f),

T (rn, aj) ≤
1

k + 3
T (rn, f) (j = 0, . . . , k − 1).

Furthermore, since σn(f) > 0, by Lemma 2.1 we get

O

{
log
(

1
1− rn

T (rn, f)
)}

= o(T (rn, f)).

Thus for rn → 1−, we have

(9) O

{
log
(

1
1− rn

T (rn, f)
)}
≤ 1
k + 3

T (rn, f).

Now we deduce from (7)–(9) that T (rn, f) ≤ k(k+ 3)N(rn, 1/f). This gives
λn(f) = λn(f) = σn(f).

3. Proofs.

Proof of Theorem 1.1. From the equation (2), we see that σ1(f) ≥ σ1(F ).
Let f1, . . . , fk be a solution base of (1). Then by the elementary theory of
differential equations (see, e.g., [14]), any solution of (2) can be represented
in the form

(10) f = (A1 + C1)f1 + (A2 + C2)f2 + · · ·+ (Ak + Ck)fk,

where C1, . . . , Ck ∈ C and A1, . . . , Ak are analytic in D given by the system
of equations

(11)



A′1f1 +A′2f2 + · · ·+A′kfk = 0,
A′1f

′
1 +A′2f

′
2 + · · ·+A′kf

′
k = 0,

. . .

A′1f
(k−2)
1 +A′2f

(k−2)
2 + · · ·+A′kf

(k−2)
k = 0,

A′1f
(k−1)
1 +A′2f

(k−1)
2 + · · ·+A′kf

(k−1)
k = F.

Since the Wronskian of f1, . . . , fk satisfies W (f1, . . . , fk) = exp(−
	
ak−1 dz),

we obtain

(12) A′j = F ·Gj(f1, . . . , fk) · exp
( �
ak−1 dz

)
(j = 1, . . . , k),

where Gj(f1, . . . , fk) is a differential polynomial of f1, . . . , fk and of their
derivatives, with constant coefficients. From Theorem 1 in [13], all solutions
f1, . . . , fk of the homogeneous differential equation (1) satisfy

σ1(fi) ≤ σM,1(fi) ≤ γ := max
{

0, max
j=0,...,k−1

DM (aj)
k − j

− 1
}
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for i = 1, . . . , k. For an analytic function g in D, we get σ1(g) = σ1(g′) (see
[18, Theorem V.28]), σM,1(g) = σM,1(g′) (see [5, Proposition 1.2(ii)]), and
so inductively, σ1(g) = σ1(g(n)) and σM,1(g) = σM,1(g(n)) for any n ∈ N. By
Proposition 2(ii) in [7], we get DM (

	
ak−1 dz) = DM (ak−1) − 1 ≤ γ. Thus

σM,1(exp(
	
ak−1 dz)t) ≤ γ. Therefore, all solutions f of the non-homogeneous

differential equation (2) satisfy

σ1(F ) ≤ σ1(f) ≤ σM,1(f) ≤ γ := max
{

0, max
j=0,...,k−1

DM (aj)
k − j

− 1
}
.

If σ1(f) > σ1(F ), then we see immediately from Lemma 2.5 that λ1(f) =
λ1(f) = σ1(f). Next we assume that F is an H-function. Since all solutions
of (2) are of finite order by the above growth estimate of solutions, we can
immediately conclude from Lemma 2.1 and (4) that

m(r, 1/f) ≤ m(r, 1/F ) +m(r, F/f) ≤
k−1∑
i=0

m(r, ai) +
k∑
j=1

m(r, f (j)/f)

= O

(
log

1
1− r

)
.

Hence we get λ1(f) = σ1(f). Moreover, we see from (2) that any solution f
has at most finitely many zeros of multiplicity ≥ k + 1 in D, and that if f
has a zero at z0 ∈ D of order α (> k), then F has a zero at z0 of order at
least α− k. Hence

N(r, 1/f) ≤ k ·N(r, 1/f) +N(r, 1/F ) = k ·N(r, 1/f) +O

(
log

1
1− r

)
,

and so λ1(f) = λ1(f). Therefore λ1(f) = λ1(f) = σ1(f).

Proof of Theorem 1.2. Assume that {f1, . . . , fk} is a solution base of (1).
By Lemma 2.2, we know that σM,n+1(fj) = σM,n(a0) (j = 1, . . . , k). Thus
we also get the equations (10)–(12), and hence

(13) σM,n+1(f) ≤ max{σM,n+1(F ), σM,n(a0)}.
(i) If σM,n+1(F ) > σM,n(a0), it follows from (13) and (2) that σM,n+1(f)

= σM,n+1(F ).
(ii) If σM,n+1(F ) < σM,n(a0), it follows immediately from (13) that all

solutions f(z) of (2) satisfy σM,n+1(f) ≤ σM,n(a0).
Now we assert that all solutions f of (2) satisfy σM,n+1(f) = σM,n(a0)

with at most one exception. In fact, if there exist two distinct solutions
g1, g2 of (2) that satisfy σM,n+1(gi) < σM,n(a0) (i = 1, 2), then g = g1 − g2
satisfies σM,n+1(g) = σM,n+1(g1 − g2) < σM,n(a0). But g = g1 − g2 is a
nonzero solution of (1) satisfying σM,n+1(g) = σM,n+1(g1 − g2) = σM,n(a0)
by Lemma 2.2. This is a contradiction.
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By Lemma 2.5, we infer that all solutions f of (2) with σM,n+1(f) =
σM,n(a0) satisfy σM,n+1(f) = λn+1(f) = λn+1(f).

Proof of Theorem 1.3. Assume that {f1, . . . , fk} is a solution base of (1).
Then by Lemma 2.3, we know that αM ≥ σM,n+1(fj) ≥ σn(a0). Thus we
also get the equations (10)–(12), and hence

(14) σM,n+1(f) ≤ max{σM,n+1(F ), αM}.
(i) If σM,n+1(F ) > αM , it follows from (14) and (2) that σM,n+1(f) =

σM,n+1(F ).
(ii) If σM,n+1(F ) < αM , it follows from (14) and (2) that all solutions

f(z) of (2) satisfy σM,n+1(f) ≤ αM .
Now we assert that all solutions f of (2) satisfy σM,n+1(f) ≥ σn(a0)

with at most one exception. In fact, if there exist two distinct solutions
g1, g2 of (2) with σM,n+1(gi) < σn(a0) (i = 1, 2), then g = g1 − g2 satisfies
σM,n+1(g) = σM,n+1(g1 − g2) < σn(a0). But g is a nonzero solution of (1)
satisfying σM,n+1(g) = σM,n+1(g1 − g2) ≥ σn(a0) by Lemma 2.3. This is a
contradiction.

(iii) If σM,n+1(F ) < σn(a0) ≤ αM , then by (ii) and Lemma 2.5, all
solutions f of (2) satisfy αM ≥ σM,n+1(f) = λn+1(f) = λn+1(f) ≥ σn(a0),
with at most one exception f0 satisfying σM,n+1(f0) < σn(a0).

Proof of Theorem 1.4. Set g(z) = f(z) − z, z ∈ D. It is obvious that
λ1(f − z) = λ1(g) and σ1(f) = σ1(g). The equation (2) becomes

g(k) + ak−1(z)g(k−1) + · · ·+ a0(z)g = F (z)− (a1(z) + za0(z)).

Assume that F (z)− (a1(z) + za0(z)) 6≡ 0. Then by Theorem 1.1 we have

σ1(g) = λ1(f) = σ1(f) > max{σ1(aj), σ1(F −a1−za0) : j = 0, 1, . . . , k−1}.
Hence, we deduce by Lemma 2.5 that λ1(g) = σ1(g). Therefore, we obtain
λ1(f − z) = λ1(g) = σ1(g) = λ1(f) = σ1(f).

Proof of Theorem 1.5. Set g(z) = f(z) − z, z ∈ D. It is obvious that
λn+1(f − z) = λn+1(g) and σn+1(f) = σn+1(g). The equation (2) becomes

g(k) +Ak−1(z)g(k−1) + · · ·+ a0(z)g = F (z)− (a1(z) + za0(z)).

Assume that F (z) − (a1(z) + za0(z)) 6≡ 0. Then by Theorem 1.2(ii) or
Theorem 1.3(iii), with at most one exceptional solution, all solutions f of (2)
satisfy σn+1(f) = λn+1(f). Now we may assume that f is not the exceptional
solution, and thus for all j = 0, 1, . . . , k − 1, we have

σn+1(g) = λn+1(f) = σn+1(f) > max{σn+1(aj), σn+1(F − a1 − za0)}.
Hence, we deduce by Lemma 2.5 that λn+1(g) = σn+1(g). Therefore, we
obtain λn+1(f − z) = λn+1(g) = σn+1(g) = λn+1(f) = σn+1(f), with at
most one exceptional solution.
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ferential equations in the unit disc, Results Math. 49 (2006), 265–278.
[12] —, —, —, Linear differential equations with coefficients in weighted Bergman and

Hardy spaces, Trans. Amer. Math. Soc. 360 (2007), 1035–1055.
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