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On the geometry of tangent bundles with
the metric II + III
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Abstract. The main purpose of this paper is to investigate some relations between
the flatness or locally symmetric property on the tangent bundle TM equipped with the
metric II + III and the same property on the base manifold M and study geodesics by
means of the adapted frame on TM .

1. Introduction. Let M be an n-dimensional manifold and TM its
tangent bundle. We denote by =rs(M) the set of all tensor fields of type
(r, s) on M . Similarly, we denote by =rs(TM) the corresponding set on TM .

Tangent bundles of differentiable manifolds are of great importance in
many areas of mathematics and physics. The geometry of tangent bundles
goes back to the fundamental paper [11] of Sasaki published in 1958. He uses
a given Riemannian metric g on a differentiable manifold M to construct a
metric g̃ on the tangent bundle TM of M . Today this metric is a standard
notion in the differential geometry called the Sasaki metric (or the metric
I + III). Its construction is based on a natural splitting of the tangent
bundle TTM of TM into its vertical and horizontal subbundles by means
of the Levi-Civita connection ∇ on (M, g). The Sasaki metric is defined by

g̃(XH , Y H) = gx(X,Y ),
g̃(XH , Y V ) = g̃(XV , Y H) = 0,
g̃(XV , Y V ) = gx(X,Y ),

for all X,Y ∈ =1
0(M) and x ∈ M . The Sasaki metric has been extensively

studied by several authors, including Yano and Davies [12], Kowalski [9],
Musso and Tricerri [10], and Aso [1]. Kowalski [9] calculated the Levi-Civita
connection ∇̃ of the Sasaki metric on TM and its Riemannian curvature
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tensor R̃. With this in hand Kowalski, Aso [1], Musso and Tricerri [10]
derived interesting connections between the geometric properties of (M, g)
and (TM, g̃).

Given a Riemannian metric g on a differentiable manifold M , other well
known classical Riemannian metrics on TM , which are not necessarily pos-
itive definite, are as follows.

(a) The metric II is defined by

g̃(XH , Y H) = 0,
g̃(XH , Y V ) = g̃(XV , Y H) = gx(X,Y ),
g̃(XV , Y V ) = 0,

for all X,Y ∈ =1
0(M) and x ∈M .

(b) The metric I + II is defined by

g̃(XH , Y H) = gx(X,Y ),
g̃(XH , Y V ) = g̃(XV , Y H) = gx(X,Y ),
g̃(XV , Y V ) = 0,

for all X,Y ∈ =1
0(M) and x ∈ M . The metric I + II was introduced by

Yano and Ishihara [13, pp. 147–155]. Also, they proved that the tangent
bundle TM with the metric I + II or the metric II has vanishing scalar
curvature. In [4], Eni considered a pseudo-Riemannian metric on the tangent
bundle over a Riemannian manifold, which is a generalization of the metric
I + II, depending on a symmetric tensor field on the base manifold and on
four real-valued smooth functions defined on [0,∞] and studied the condi-
tions under which the pseudo-Riemannian manifold has constant sectional
curvature.

(c) The metric II + III is defined by

g̃(XH , Y H) = 0,
g̃(XH , Y V ) = g̃(XV , Y H) = gx(X,Y ),
g̃(XV , Y V ) = gx(X,Y ),

for all X,Y ∈ =1
0(M) and x ∈M [13, p. 138]. Hasegawa and Yamauchi [6, 7]

investigated infinitesimal projective transformations on the tangent bundle
TM with the metric II + III. In this paper, we study some properties of
the curvature tensor of the metric II + III and geodesics by means of the
adapted frame on TM .

2. Basic formulas on the tangent bundle. Let ∇ be the Levi-Civita
connection of g. Then the tangent space of TM at any point (x, u) ∈
TM splits into the horizontal and vertical subspaces with respect to ∇:
(TM)(x,u) = H(x,u) ⊕ V(x,u).
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If (x, u) ∈ TM is given, then for any vector X ∈ =1
0(M) there exists

a unique vector XH ∈ H(x,u) such that π∗XH = X, where π : TM → M

is the natural projection. We call XH the horizontal lift of X to the point
(x, u) ∈ TM . The vertical lift of a vector X ∈ =1

0(M) to (x, u) ∈ TM is
a vector XV ∈ V(x,u) such that XV (df) = Xf for all functions f on M .
Here we consider 1-forms df on M as functions on TM (i.e. df(x, u) = uf).
Note that the map X 7→ XH is an isomorphism between the vector spaces
Mx and H(x,u). Similarly, the map X → XV is an isomorphism between the
vector spaces Mx and V(x,u). Obviously each tangent vector Z̃ ∈ (TM)(x,u)

can be written in the form Z̃ = XH + Y V , where X,Y ∈ Mx are uniquely
determined vectors.

If φ is a smooth function on M , then

(2.1) XH(φ ◦ π) = (Xφ) ◦ π and XV (φ ◦ π) = 0

for every vector field X on M .
A system of local coordinates

{
(U ;xi, i = 1, . . . , n)

}
in M induces on

TM a system of local coordinates
{

(π−1(U);xi, ui, i = 1, . . . , n)
}

. Let X =∑
Xi ∂

∂xi be the local expression in U of a vector field X on M . Then the
horizontal lift XH and the vertical lift XV of X are given, in the induced
coordinates, by

(2.2) XH =
∑

Xi ∂

∂xi
−
∑

Γ ijku
jXk ∂

∂ui

and

(2.3) XV =
∑

Xi ∂

∂ui

respectively, where Γ ijk denote the Christoffel symbols of ∇.
Now, let r be the norm of a vector u. Then, for any smooth function f

from R to R, we have

XH
(x,u)(f(r2)) = 0,(2.4)

XV
(x,u)(f(r2)) = 2f ′(r2)gx(Xx, u),(2.5)

and in particular,

XH
(x,u)(r

2) = 0,(2.6)

XV
(x,u)(r

2) = 2gx(Xx, u).(2.7)

Let X, Y and Z be any vector fields on M . If FY is the function on TM
defined by FY (x, u) = gx(Yx, u) for all (x, u) ∈ TM , then
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XH
(x,u)(FY ) = gx((∇XY )x, u) = F∇XY (x, u),(2.8)

XV
(x,u)(FY ) = gx(X,Y ),(2.9)

XH
(x,u)(g(Y,Z) ◦ π) = Xx(g(Y, Z)),(2.10)

XV
(x,u)(g(Y,Z) ◦ π) = 0.(2.11)

The formulas (2.4)–(2.9) follow from (2.1) and

XHui = −
∑

XλuµΓ iλµ and XV ui = Xi,

and the relations (2.10) and (2.11) follow from (2.1) [2].
Suppose that F ∈ =1

1(M). Using (2.2) and (2.3), we define vector fields
(F (u))V and (F (u))H on the tangent bundle TM by

(F (u))V =
∑

F imu
m ∂

∂ui
,

(F (u))H =
∑

F imu
m ∂

∂xi
−
∑

Γ ijku
jF kmu

m ∂

∂ui
,

for any u ∈ TM .
Explicit expressions for the Lie bracket [ , ] of the tangent bundle TM are

given by Dombrowski in [3]. The bracket operation of vertical and horizontal
vector fields is given by the formulas

[XH , Y H ](x,u) = [X,Y ]H(x,u) − (R(Xx, Yx)u)V ,
[XH , Y V ](x,u) = (∇XY )V(x,u),

[XH , Y V ](x,u) = 0,
(2.12)

for all vector fields X and Y on M , where R is the Riemannian curvature
of g defined by

R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ].

Finally, the following Koszul formula holds:

2g(∇XY,Z) = X(g(Y, Z)) + Y (g(Z,X))− Z(g(X,Y ))− g(X, [Y,Z])
+ g(Y, [Z,X]) + g(Z, [X,Y ])

for all vector fields X,Y and Z on M [8, p. 160].

3. Levi-Civita connection on TM . Let (M, g) be a Riemannian man-
ifold. The metric II+III is a well defined Riemannian metric on the tangent
bundle TM of M by the identities:

g̃(x,u)(X
H , Y H) = 0,

g̃(x,u)(X
H , Y V ) = g̃(x,u)(X

V , Y H) = gx(X,Y ),

g̃(x,u)(X
V , Y V ) = gx(X,Y ),

for all vector fields X,Y ∈ =1
0(TM) and x ∈M .
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Theorem 3.1. Let (M, g) be a Riemannian manifold and ∇̃ be the Levi-
Civita connection of the tangent bundle (TM, g̃) equipped with the metric
II + III. Then

(∇̃XHY H)(x,u) = (∇XY )H(x,u) −
1
2(Rx(u,X)Y +Rx(u, Y )X)H(i)

+ (Rx(u,X)Y )V ,

(∇̃XHY V )(x,u) = − 1
2(Rx(u, Y )X)H + (∇XY )V(x,u)(ii)

+ 1
2(Rx(u, Y )X)V ,

(∇̃XV Y H)(x,u) = − 1
2(Rx(u,X)Y )H + 1

2(Rx(u,X)Y )V ,(iii)

(∇̃XV Y V )(x,u) = 0,(iv)

for all vector fields X,Y ∈ =1
0(M), where R is the Riemannian curvature

of ∇.

Since the horizontal and the vertical lifts to TM of vector fields on M
generate the C∞(TM,R)-module of vector fields on TM , formulas (i)–(iv)
above completely determine the Levi-Civita connection ∇̃ of the metric
II + III on TM .

Proof. The statement is a direct consequence of usual calculations using
the Koszul formula.

4. Curvature tensor on TM . Let G be a tensor field of type (1, 2)
on M . Then we define vector fields (G(u, v))V and (G(u, v))H on the tangent
bundle TM by

(G(u, v))V =
∑

Gkiju
ivj

∂

∂uk
,

(G(u, v))H =
∑

Gkiju
ivj

∂

∂xk
−
∑

Γ kslu
sGliju

ivj
∂

∂uk
,

for any u, v ∈ TM .
We now turn to the Riemannian curvature tensor R̃ of the tangent bundle

TM equipped with the metric II+III. For this we need the following useful
lemma:

Lemma 4.1. Let (M, g) be a Riemannian manifold and ∇̃ be the Levi-
Civita connection of the tangent bundle (TM, g̃) with the metric II + III.
Let F : TM → TM be a smooth bundle endomorphism. Then

∇̃XV (F (u))V = F (X)V ,

∇̃XV (F (u))H = F (X)H − 1
2(R(u,X)F (u))H + 1

2(R(u,X)F (u))V ,
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∇̃XH (F (u))V = ((∇XF )(u))V + 1
2(R(u, F (u))X)V − 1

2(R(u, F (u))X)H ,

∇̃XH (F (u))H = (R(u,X)F (u))V + ((∇XF )(u))H

− 1
2(R(u,X)F (u) +R(u, F (u))X)H ,

∇̃(F (u))V XV = 0,

∇̃(F (u))V XH = 1
2(R(u, F (u))X)V − 1

2(R(u, F (u))X)H ,

for any X ∈ =1
0(M) and u ∈ TM (for natural metrics, see [5]).

Proof. The statement is a direct consequence of Theorem 3.1.

Theorem 4.2. Let (M, g) be a Riemannian manifold and R̃ be the Rie-
mannian curvature tensor of the tangent bundle (TM, g̃) equipped with the
metric II + III. Then

R̃(x,u)(X
V , Y V )ZV = 0,(i)

R̃(x,u)(X
V , Y V )ZH =(ii)

[R(X,Y )Z + 1
4R(u, Y )(R(u,X)Z)− 1

4R(u,X)(R(u, Y )Z)]Vx
+ [−R(X,Y )Z + 1

4R(u,X)(R(u, Y )Z)− 1
4R(u, Y )(R(u,X)Z)]Hx ,

R̃(x,u)(X
H , Y V )ZV = [−1

2R(Y,Z)X + 1
4R(u, Y )(R(u, Z)X)]Vx(iii)

+ [1
2R(Y, Z)X − 1

4R(u, Y )(R(u, Z)X)]Hx ,

R̃(x,u)(X
H , Y V )ZH = [R(X,Y )Z + 1

2(∇xR)(u, Y )Z(iv)

+ 1
4R(u, Y )(R(u,X)Z) + 1

4R(u, Y )(R(u, Z)X)

+ 1
4R(u,R(u, Y )Z)X − 1

2R(u,X)(R(u, Y )Z)]Vx
+ [1

2R(Y,X)Z + 1
2R(Y, Z)X

− 1
2(∇XR)(u, Y )Z + 1

4R(u,X)(R(u, Y )Z)− 1
4R(u, Y )(R(u,X)Z)

− 1
4R(u, Y )(R(u, Z)X)]Hx ,

R̃(x,u)(X
H , Y H)ZV =(v)

[R(X,Y )Z + 1
2(∇XR)(u, Z)Y − 1

2(∇YR)(u, Z)X

+ 1
4R(u,R(u, Z)Y )X − 1

4R(u,R(u, Z)X)Y + 1
2R(u, Y )(R(u, Z)X)

− 1
2R(u,X)(R(u, Z)Y )]Vx + [1

2(∇YR)(u, Z)X − 1
2(∇XR)(u, Z)Y

+ 1
4R(u,X)(R(u, Z)Y )− 1

4R(u, Y )(R(u, Z)X)]Hx ,

R̃(x,u)(X
H , Y H)ZH =(vi)

[(∇XR)(u, Y )Z − (∇YR)(u,X)Z + 1
2R(u, Y )(R(u,X)Z)

+ 1
2R(u, Y )(R(u, Z)X)− 1

2R(u,X)(R(u, Y )Z)
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− 1
2R(u,X)(R(u, Z)Y ) + 1

2R(u,R(u, Y )Z)X

+ 1
2R(u,R(X,Y )u)Z − 1

2R(u,R(u,X)Z)Y ]Vx
+ [R(X,Y )Z + 1

2(∇YR)(u,X)Z + 1
2(∇YR)(u, Z)X

− 1
2(∇XR)(u, Y )Z − 1

2(∇XR)(u, Z)Y + 1
4R(u,X)(R(u, Y )Z)

+ 1
4R(u,X)(R(u, Z)Y )− 1

4R(u, Y )(R(u,X)Z)

− 1
4R(u, Y )(R(u, Z)X) + 1

4R(u,R(u, Z)Y )X

+ 1
4R(u,R(u,X)Z)Y − 1

4R(u,R(u, Y )Z)X

− 1
4R(u,R(u, Z)X)Y − 1

2R(u,R(X,Y )u)Z]Hx ,

for vectors X,Y, Z ∈ =1
0(M).

Proof. (i) The result follows directly from Theorem 3.1 and (2.12).
(iii) Let F : TM → TM be the bundle endomorphism given by

F : u 7→ 1
2R(u, Z)X.

Applying Theorem 3.1 and Lemma 4.1 we see that

∇̃Y V (F (u))H = F (Y )H − 1
2(R(u, Y )F (u))H + 1

2(R(u, Y )F (u))V .

This implies that

R̃(XH , Y V )ZV = ∇̃XH ∇̃Y V ZV − ∇̃Y V ∇̃XHZV − ∇̃[XH ,Y V ]Z
V

= −∇̃Y V ((∇XZ)V + 1
2(R(u, Z)X)V − 1

2(R(u, Z)X)H)− ∇̃(∇XY )V ZV

= −∇̃Y V (F (u))V + ∇̃Y V (F (u))H

= −F (Y )V + F (Y )H − 1
2(R(u, Y )F (u))H + 1

2(R(u, Y )F (u))V

= [−1
2R(Y, Z)X + 1

4R(u, Y )(R(u, Z)X)]V

+ [1
2R(Y,Z)X − 1

4R(u, Y )(R(u, Z)X)]H .

By the calculations similar to those in (i) and (iii), the proofs of (ii) and
(iv)–(vi) are obtained easily.

We shall now compare the geometries of the manifold (M, g) and its
tangent bundle (TM, g̃) with the metric II + III.

Theorem 4.3. Let (M, g) be a Riemannian manifold and (TM, g̃) be its
tangent bundle with the metric II + III. Then TM is flat if and only if M
is flat.

Proof. From Theorem 4.2 it is clear that (M, g) is flat, then (TM, g̃)
is also flat. Conversely, if we assume R̃ = 0 and calculate the Riemannian
curvature tensor for three horizontal vector fields at (x, 0) we get

Rx(X,Y )Z = R̃(x,0)(X
H , Y H)ZH = 0.

Hence (M, g) is flat.
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Theorem 4.4. Let (M, g) be a Riemannian manifold and (TM, g̃) be its
tangent bundle with the metric II + III. If (TM, g̃) is locally symmetric,
then (M, g) is also locally symmetric.

Proof. We begin by calculating (∇̃WH R̃)(XH , Y H)ZH for all X,Y, Z ∈
=1

0(M). If we extend X,Y, Z to vectors on TM , then we can write

(∇̃WH R̃)(XH , Y H)ZH = ∇̃WH (R̃(XH , Y H)ZH)− R̃(∇̃WHXH , Y H)ZH

− R̃(XH , ∇̃WHY H)ZH − R̃(XH , Y H)∇̃WHZH .

Using Theorems 3.1(i) and 4.2(vi), we deduce that

(4.1) (∇̃WH R̃)(XH , Y H)ZH = ∇̃WH [((∇XR)(u, Y )Z − (∇YR)(u,X)Z

+ 1
2R(u, Y )(R(u,X)Z) + 1

2R(u, Y )(R(u, Z)X)− 1
2R(u,X)(R(u, Y )Z)

− 1
2R(u,X)(R(u, Z)Y ) + 1

2R(u,R(u, Y )Z)X + 1
2R(u,R(X,Y )u)Z

− 1
2R(u,R(u,X)Z)Y )Vx +(R(X,Y )Z+ 1

2(∇YR)(u,X)Z+ 1
2(∇YR)(u, Z)X

− 1
2(∇XR)(u, Y )Z − 1

2(∇XR)(u, Z)Y + 1
4R(u,X)(R(u, Y )Z)

+ 1
4R(u,X)(R(u, Z)Y )− 1

4R(u, Y )(R(u,X)Z)− 1
4R(u, Y )(R(u, Z)X)

+ 1
4R(u,R(u, Z)Y )X + 1

4R(u,R(u,X)Z)Y − 1
4R(u,R(u, Y )Z)X

− 1
4R(u,R(u, Z)X)Y − 1

2R(u,R(X,Y )u)Z)Hx ]− R̃((∇WX)H(x,u), Y
H)ZH

+ R̃(1
2(Rx(u,W )X +Rx(u,X)W )H , Y H)ZH − R̃((Rx(u,W )X)V , Y H)ZH

− R̃(XH , (∇WY )H(x,u))Z
H + R̃(XH , 1

2(Rx(u,W )Y +Rx(u, Y )W )H)ZH

− R̃(XH , (Rx(u,W )Y )V )ZH − R̃(XH , Y H)(∇WZ)H(x,u)

− R̃(XH , Y H)(Rx(u,W )Z)V + 1
2R̃(XH , Y H)(Rx(u,W )Z+Rx(u, Z)W )H .

If we restrict ourselves to the zero section of TM which is the base manifold
M , then from (4.1) we can write

[(∇̃WH R̃)(XH , Y H)ZH ](x,0)

= ∇̃WH [R(X,Y )Z]H(x,0) − R̃(x,0)((∇WX)H , Y H)ZH

− R̃(x,0)(X
H , (∇WY )H)ZH − R̃(x,0)(X

H , Y H)(∇WZ)H .

By Theorem 3.1(i), we have

∇̃WH [R(X,Y )Z]H(x,0) = [∇W (R(X,Y )Z)]H(x,0),(4.2)

R̃(x,0)((∇WX)H , Y H)ZH = [R(∇WX,Y )Z]H(x,0),(4.3)

R̃(x,0)(X
H , (∇WY )H)ZH = [R(X,∇WY )Z]H(x,0),(4.4)

R̃(x,0)(X
H , Y H)(∇WZ)H = [R(X,Y )∇WZ]H(x,0).(4.5)
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By substituting (4.2)–(4.5) to the above formula, we conclude that

[(∇̃WH R̃)(XH , Y H)ZH ](x,0) = [∇W (R(X,Y )Z)]H(x,0) − [R(∇WX,Y )Z]H(x,0)

− [R(X,∇WY )Z]H(x,0) − [R(X,Y )∇WZ]H(x,0).

It follows that

(4.6) [(∇̃WH R̃)(XH , Y H)ZH ](x,0) = [(∇WR)(X,Y )Z]H(x,0)

for all X,Y, Z,W ∈ =1
0(M). Hence, if we suppose that (TM, g̃) is locally

symmetric, i.e. ∇̃R̃ = 0 identically, then by (4.6), ∇R = 0 identically.

5. Geodesics on the tangent bundle with the metric II + III.
Let (M, g) be a Riemannian manifold, ∇ the Riemannian connection of g,
and Γ aji the coefficients of ∇, i.e. ∇∂j

∂i = Γ aji∂a with respect to the nat-
ural frame {∂h}. The curvature tensor R of ∇ has components Rhkji. The
indices i, j, h, . . . range in {1, . . . , n} while the indices α, β, λ, . . . range in
{1, . . . , n;n+1, . . . , 2n}. We put ī = n+ i. Summation over repeated indices
is always implied.

With the Riemannian connection ∇ given on M , we can introduce on
each induced coordinate neighbourhood π−1(U) of TM a frame field which
is very useful in our computation. In each local chart U(xh) of M , we put

X(j) =
∂

∂xj
= δhj

∂

∂xh
∈ =1

0(M).

We now define 2n local vector fields XH
(j) and XV

(j) which form a basis of

the tangent space Tp̃TM at each point P̃ ∈ π−1(P ). Their components are
given respectively by

XH
(j) = δhj ∂h − ysΓ hsj∂h̄, XV

(j) = δhj ∂h̄

with respect to the natural frame {∂/∂xH} = {∂/∂xh, ∂/∂xh} on TM ,
where δji is the Kronecker delta and ys = xs̄. These 2n vector fields are
linearly independent and generate, respectively, the horizontal distribution
of ∇ and the vertical distribution of TM . We call the set {XH

(j), X
V
(j)} the

frame adapted to the affine connection ∇ in π−1(U) ⊂ TM . On putting
e(j) = XH

(j), e(j̄) = XV
(j), we write the adapted frame as {eβ} = {e(j), e(j̄)}.

We now consider local 1-forms ωα defined by

ωα = ÃαB dx
B

in π−1(U), where

ÃαB =

(
Ãhj Ãhj̄

Ãh̄j Ãh̄j̄

)
=

(
δhj 0

ysΓ hsj δhj

)
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is the inverse matrix of the matrix

Aβ
A =

(
Aj

h Aj̄
h

Aj
h̄ Aj̄

h̄

)
=

(
δhj 0

−ysΓ hsj δhj

)
of frame changes eβ = Aβ

A ∂A. These 2n 1-forms ωα are linearly independent
on TM . We call the set {ωα} the dual adapted co-frame.

For various types of indices, we have{
ej = Aj

A ∂A = ∂j − ysΓ hsj∂h̄,
ej̄ = Aj̄

A ∂A = ∂j̄ ,

and

(5.1)
{
ωj = ÃjB dx

B = dxj ,

ωj̄ = Ãj̄B dx
B = δyh,

where δyh = dyh + ybΓ hbadx
a.

Let Γ̃ γαβ denote the components of the Riemannian connection ∇̃ deter-
mined by the metric II + III. If we take ej and ej̄ instead of XH and XV

in Theorem 3.1, then we get

(5.2)


Γ̃ hji = Γ hji − 1

2y
b(Rhbji +Rhbij), Γ̃ h̄ji = ybRhbji, Γ̃ h̄

j̄ī
= 0,

Γ̃ h
j̄ī

= 0, Γ̃ h̄
jī

= Γ hji + 1
2y

bΓ hbij , Γ̃ h
jī

= −1
2y

bRhbij ,

Γ̃ h̄
j̄i

= 1
2y

bRhbji, Γ̃ h
j̄i

= −1
2y

bRhbji,

with respect to the adapted frame, where Γ hji denote the Levi-Civita con-
nection components constructed with g on M with respect to the natural
frame {∂i} (see also [6, 7]).

Let γ̃ = γ̃(t) be a curve on TM and suppose that γ̃ is locally expressed
by xR = xR(t), i.e. xr = xr(t), yr = Xr(t) with respect to the natural frame
{∂/∂xI} = {∂/∂xi, ∂/∂xī}, t being the arc length of γ̃. Then the curve
γ = π ◦ γ̃ on M is called the projection of the curve γ̃ and denoted by πγ̃;
it is expressed locally by xr = xr(t).

Let ∇ be a Riemannian connection on M . Then a curve γ̃ is, by defi-
nition, a geodesic on TM with respect to ∇̃ if and only if it satisfies the
differential equations

(5.3)
δ2xR

dt2
=
d2xR

dt2
+ Γ̃RCB

dxC

dt

dxB

dt
= 0.

We find it more convenient to refer equations (5.3) to the adapted frame.
Using (5.1), we now put

(5.4)
ωr

dt
=
dxr

dt
,

ωr̄

dt
=
δyr

dt
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along a curve γ̃. The equation (5.3) can be transformed, using (5.4), into

(5.5)
d

dt

(
ωε

dt

)
+ Γ̃ εαβ

ωα

dt

ωβ

dt
= 0

with respect to the adapted frame.
By means of (5.2), (5.5) reduces to

(5.6)
d2xr

dt2
+Γ rji

dxj

dt

dxi

dt
− 1

2
yb(Rrbji +Rrbij)

dxj

dt

dxi

dt
− ybRrbji

dxi

dt

δyj

dt
= 0,

(5.7)
d

dt

(
δyr

dt

)
+ Γ rij

dxi

dt

δyj

dt
+ ybRrbji

dxj

dt

dxi

dt
+ ybRrbji

dxi

dt

δyj

dt
= 0.

Let now γ̃ be a geodesic of ∇̃. If γ̃ lies on a fibre π−1(P ) = T (P ),
P = P (xh) given by xh = ch = const, then (5.7) reduces to

d2yr

dt2
= 0

(
dxh

dt
= 0
)
,

from which we have

xr̄ = ar̄t+ br̄, r̄ = n+ 1, . . . , 2n

ar̄ and br̄ being constant. Hence we have

Theorem 5.1. If a geodesic γ̃ lies on a fibre of TM with respect to the
metric II + III, then the geodesic is expressed by linear equations{

xh = ch,

xh̄ = ah̄t+ bh̄,

with respect to the natural frame, where ch, ah̄ and bh̄ are constant.

Next, let γ be a curve on M expressed locally by xh = xh(t) and Xh(t) be
a vector field along γ. Then, on the tangent bundle TM over the Riemannian
manifold M , we define a curve γH by{

xh = xh(t),
xh̄ = Xh(t).

If the curve γH satisfies at all points the relation

δXh

dt
= 0,

i.e. Xh(t) is a parallel vector field along γ, then the curve γH is said to be
a horizontal lift of γ. From (5.6) and (5.7), we easily deduce

Theorem 5.2. The horizontal lift of a geodesic on M need not be a
geodesic on TM with respect to the connection ∇̃.
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The natural lift of the curve γ having the local expression xh = xh(t) is
defined by

γ̃ :

xh = xh(t),

xh̄ =
dxh

dt
(t).

For the natural lift of the curve γ, from (5.6) and (5.7), we obtain

δ2xr

dt2
−Rrbji

dxi

dt

δ2xj

dt2
dxb

dt
= 0,(5.8)

δ3xr

dt3
+Rrbji

dxi

dt

δ2xj

dt2
dxb

dt
= 0,(5.9)

which shows that the natural lift of the curve γ is a geodesic if and only if
the equations (5.8) and (5.9) hold.

Let now γ be a geodesic on M . Then

(5.10)
δ2xr

dt2
=
d2xr

dt2
+ Γ rji

dxj

dt

dxi

dt
= 0.

Substituting (5.10) into (5.8) and (5.9), we have

Theorem 5.3. The natural lift of any geodesic on M is a geodesic on
TM with the metric II + III.
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