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A note on the number of zeros of polynomials in an annulus
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Abstract. Let p(z) be a polynomial of the form
p(z)zzajzjv aj € {_171}
j=0

We discuss a sufficient condition for the existence of zeros of p(z) in an annulus
{zeC:1—-c<|z| <1+¢},

where ¢ > 0 is an absolute constant. This condition is a combination of Carleman’s formula
and Jensen’s formula, which is a new approach in the study of zeros of polynomials.

1. Introduction. Let p denote a polynomial of the form
n
p(z) = Zajzj, laj| <1, a; €C.
j=0

Such polynomials and various related classes have been studied from a num-
ber of points of view. In [2]-[6] and [8], the number and location of zeros of
polynomials with bounded coefficients are considered. Many problems con-
cerning polynomials with restricted coefficients are explored in [2] and [5].

In this paper, we are concerned with one of the open problems which
are listed in [B]. We try to attack Question 4 in [5] which seems to be quite
interesting (see Question A below).

Many results in this direction are based on Jensen’s formula. Our purpose
here is to determine whether the polynomials with coefficients —1 or 1 have
at least one zero in some annulus by Carleman’s formula approach. We
will prove that the existence of zeros for such a polynomial in an annulus
{z€C:1-c<|z] <1+ ¢} can be determined by the averaged number of
zeros in |z| < 14 ¢ and the sine value of the zeros in |z| <1 —c.

2010 Mathematics Subject Classification: Primary 30B30; Secondary 11C08, 30C15.
Key words and phrases: polynomials, zeros, Carleman’s formula.

DOI: 10.4064/ap100-1-3 [25] © Instytut Matematyczny PAN, 2011



26 X. D. Yang et al.

Let us consider in greater detail the question of the number of polyno-
mials in an annulus. The following earlier result related to this question is
proved in [§].

THEOREM A ([8]). For everyn € N there is a polynomial py, of the form

n

pn(z) = Zajmzj, lajnl =1, aj€C,
§=0
such that p, has no zeros in the annulus

1 1
{zEC:l—COgn<|z|<1+COgn},
n n

where ¢ > 0 is an absolute constant.

Furthermore, the following conjecture is put forward in [g].

CONJECTURE A ([8]). Every polynomial of the form
p(z) = az’, a;€{-1,1},
§=0

has at least one zero in the annulus
{zeC:1—-¢/n<|z| <14c¢/n},
where ¢ > 0 is an absolute constant.
In the recent paper [5], the following question is presented.

QUESTION A ([5]). Establish whether every polynomial p of degree n with
coefficients in the set {—1,1} has at least one zero in the annulus

{zeC:1-¢/n<|z| <1+c¢/n},
where ¢ > 0 is an absolute constant.

Let us present the main result of this paper. With a sequence of numbers
A=\ = M€ :n =1,2,...}, \, € C, we associate the averaged
counting function ([10])

1) M) = {220 g g = 301,
0 t [An|<t

and

(2) Ca(t)= Y [sinfy].

|An|<t

THEOREM 1. Let p be a polynomial of the form

(3) p(z) = Zajzj, aj € {—1,1},
5=0
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and let A = {by}}_, be its zero sequence. If for some ¢ > 0,
16
NA<1 + C) — KCA(I — C) > 0,

where Ny and Cj are defined in (1) and (2) respectively, then p(z) has at
least one zero in the annulus {z € C:1—c < |z| <1+ c}.

REMARK 1. We will show the existence of a positive constant ¢ satisfying
the condition in Theorem 1.

It is easy to see that

T nalt) . . T na(l—c) T Ca(l—c)

1—c 1—c 1—c

If we choose ¢ satisfying

e16/9 _ 1
1>c> /9 11’
then
1+4+c 1+ 1+4c
1—
Ny(lt o) = S n/lt(t> gt > S na(l —c) it > S Ca(l —c¢) dt.
0 1—c 1—c

thus, we have

1
Na(l+¢)— 660/1(1 _o)>o0.

2. Proof of the Theorem. In contrast to previous works on the num-
ber of zeros of polynomials, we will apply Carleman’s formula which is often
used to describe the property of functions analytic in a half annulus.

LEMMA 1 ([7], [10]). Let f(2) be a function analytic on S = {z: Iz >0,
|z| < R}. Then

™

1 N . .
Z (|bn|_]b{2|> Sme":ﬁSIOgV(RGZ&)\SdeG
Ib"|<R7 0<Onp<m o

or I\ 22 R2

R
s (5= ) R lF@ (0l ds + 3370
0

where {by,} is the zero of f(z) in S and {0,} is the corresponding sequence
of arguments.
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LemMA 2 ([I0]). Let f(z) be a function analytic on {z : |z| < R}, with
f(0) # 0, and let A be the zero sequence of f. Then

2m
1 ,
5= ) log| f(Re™)|d0 = No(R) +log | £(0)],
0
where Ny is defined in (1).
We are now ready to prove Theorem 1.

Proof of Theorem 1. Without loss of generality, we may assume that
p(1—c¢) # 0 and p(1 + ¢) # 0. Applying Carleman’s formula of Lemma 1 to

P(z):%onS:{z:%zZO,]z\§1+C}, we have

1 123 .
(4) Z (’bk| - § —|—kc)2> sin 0y,

|br|<1l4c, 0<Op<m

Slog\P (1 + ¢)e'?)| sin 6 do
0

1

+¢)
179/ 1 1
e § ( —(1+C)2>log|P(aj)P(—x)|d1:

where {by} are the zeros of f(z) in S and {6x} are the arguments of {b}.
By the same reasoning on S’ = {2z : 3z <0, |z| <1+ ¢}, we have

1 || .
(5) Z (|bk\ — a +kc)2) sin 0},

|br|<14c, m<Or<2m

2w
1 14c 1 1
o (2~ 13 o ) 1o PO P(-0) o

where {by} are the zeros of f(z) in S" and {6y} are the arguments of {b}.
From (4) and (5), we have

1 |0 | :
(6) Z (’bk| — i+ c)2> sin 0,

|br|<14c, 0<Of <m
> 1 |0 | > ,
- bl sin 0y,
2
[bg|<1+4ec, T<Op<2m <|bk| (1 + c)
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! ( LAY
B 7r(1+c)§)logp((1+c)€ )| sin 0 df

2
- 7T(11+C) §r log [ P((1 + c)e™)|sin 6 d.
Since loga < 0 for 0 < a < 1, from (3) it is obvious that
v log |P((1+ c)e™®)| < 0.
By (6) and (7), we have

1 |0 | :
(8) Z (|bk| — i+ c)2> |sin 6y |

|bk|<1—c
1 || > :
+ Z < — 5 | [sin O]
1—c<|b|<1+c bkl (L +c)
2w
— | log |P((1 )| de.
> g ) lelP e

We claim that all the zeros of P(z) are located in the annulus cy < |z| < 2
where ¢y is some positive constant satisfying ¢ < co < 1. Actually, the zeros
of p(z) and P(z) are the same. If 0 < r = |z] < ¢y and

n
p(z) =Y a;2l, ;€ {-1,1},
j=0

then
[p(2)| > lao| = larz| = —Jan2"| = 1= (co+ €+ + )
o909 gy s
1—cg
And for r = |z| > 2,

p(2)| = |anz"| = |an—12" " = -+ = |ar2| — |ag|
r* —1

r—1

:Tn_Tnfl .

> 0.

cee—r—1=7r"—
Whence, by combining (8) and Lemma 2, we have

1 |0k | .
(9) Z (|bk;| — i+ c)2> |sin 6|

1—c<|bg|<1+c

2 1 |br| .
> Na(l+o)— > ( - 2>|sm9ky.
1+e 1/2<|bg|<1—c |bk‘ (1+C)
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Let m denote the number of zeros of p(z) in {z€ C:1—-c < |z] <1+ c}.
By (9), we have

1 123 ) . 4c
> (- mar)mel s> s
edlarice N (1HE) 1e<ii<rpe L 7L+
4c

(1—c)(1+c)?

=m

Since ¢ < 1 and

1 b ) 16
_ Z <—(1|+k|c)2>|sm9n] > _KCA(l_C%

1/2<|bg|<1—c |bk|
if
16
Na(l+¢) — 5CA(1 —¢)>0
then p(z) has at least one zero in the annulus {z € C: 1 —c < |2| <1+ ¢}.
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