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Some convergence theorems for HK-integral
in locally convex spaces

by SokoL BusH MEMETAJ (Elbasan)

Abstract. We present some convergence theorems for the HK-integral of functions
taking values in a locally convex space. These theorems are based on the concept of
HK-equiintegrability.

1. Introduction. We define the HK-integral of functions defined on
a compact subinterval S of R™, m > 1, and taking values in a locally
convex space V. In the case of functions taking values in a Banach space,
our definition is equivalent to [I0, Definition III.2.2], and for the case when
m =1 and S = [0, 1], it is equivalent to [7, Definition 4].

We present three convergence theorems for HK-integral which are based
on the notion of HK-equiintegrability of a sequence f, : S — V that con-
verges pointwise to a function f : .S — V in the standard topology or in the
weak topology of the locally convex space V. These are Theorems
and For functions taking values in a Banach space, our Definition (1.3
of HK-equiintegrability is equivalent to [10, Definition II1.5.1]. This notion
was first introduced in [6] for real valued functions and permitted the proof
of a convergence theorem for a pointwise convergent sequence of Henstock—
Kurzweil integrable functions (see also [I], [10], [3], [4] and [2]). Another
convergence theorem of this sort for functions taking values in a complete
locally convex space has been shown in [8, Theorem 5].

The differences between Theorems and consist in the com-
pleteness assumptions on V' (sequential completeness, completeness and
weak sequential completeness), and the topology on the space V' (standard
or weak). In Theorem we assume that a sequence (f,) converges point-
wise to a function f in the standard topology of V (V is a sequentially
complete locally convex space). In Theorems and we assume that
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(fn) converges pointwise to f in the weak topology of V', under different
completeness assumptions on V.

Theorem is a generalization of [10, Theorem II1.5.2]. For the case
when m = 1 and S = [0,1], Theorem [2.5| was proved in [8, Theorem 5],
by a different approach. It can be proved that Theorem [2.1] follows from
Lemma (the Banach version of Theorem .

Theorem and Lemma [2.3| are used in the proof of Theorem [2.6
Theorem [2.6] is useful for the case when V is weakly sequentially complete
but not complete. In this case we use Theorem instead of Theorem
Do locally convex spaces of this type exist? According to [5, p. 159],
there exist locally convex spaces that are reflexive but not complete. Since a
reflexive space is semi-reflexive (see [9 p. 144]), we deduce by [9, Theorem
IV.5.5] that a reflexive locally convex space is weakly quasi-complete. Since a
quasi-complete space is sequentially complete or semi-complete, a reflexive
locally convex space is weakly sequentially complete. Consequently, there
exist locally convex spaces that are weakly sequentially complete but not
complete.

Throughout this paper, V' is a locally convex space with its topology
7 and topological dual V’. By P we denote the family of all continuous
seminorms in V; for every p € P, VP denotes the quotient vector space of
V' with respect to the equivalence relation z ~P y < p(x — y) = 0; the map
¢p:V — V? is the canonical quotient map, thus ¢,(x) is the equivalence
class of x € V with respect to “~P”; the quotient normed space (177’, p) is
called the normed component of V', where p(¢p(x)) = p(x) for each z € V;
the Banach space (V*,p) which is the completion of (V?,p) is called the
Banach component of V; V;f, f/p’ and V; are the topological duals of (V,p),
(Y7p,f5) and (V?,p), respectively; o(V, V') is the weak topology of V. It is
easy to see that

(1.1) V' ={t,0¢,: 0, €V pe P},

because for every v’ € V', we have [V/(-)| € P.
For every p,q € P such that p < g, we define the map

Gpq : V= VP gpe(wg) = wp,  wg € VY,

where wy, = ¢p(z) for some = € w,. Since for every y € w, we have ¢,(y) =
wp, the map gy, is well defined. It is easily proved that g, is a continuous
linear map. We also define the map g, : V? — V? as the continuous linear

. ~ . —=D _\ _
extension of g, for every p,q € P such that p < ¢q. By @((V s D)5 Opg)s We

denote the projective limit of the family {(ij)) : p € P} with respect to
the mappings g, (p,q € P, p < q). For the definition of the projective limit
see [9] p. 52].
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Assume that a compact subinterval S = [a1,b1] X - -+ X [am, byy| of R™,
m > 1, and a function f : S — V are given. Let D = {(s;,J;) :i =1,...,n}
be a set such that s; € S and J; is a compact subinterval of S fori =1,... n;
then D is called an HK-partition of S if:

1. UL, Ji=S,

2. s, € Jyfori=1,...,n,
3. (J;)i, is a finite sequence of pairwise non-overlapping intervals (i.e.,
with pairwise disjoint interiors).
A function § : S — (0,400) is called a gauge on S; an HK-partition
D = {(si,J;) :i=1,...,n} of S is called J-fine (written D < §) if
JZ’ C B(Si,é(si)),

where B(s;,0(s;)) is the ball in R™ centered at s; with radius d(s;), for
i=1,...,n. We set

S(f,D) =Y f(s)ur(Ja),
i=1

where py, is the Lebesgue outer measure in S.

DEFINITION 1.1. A function f : S — V is called HK-integrable in V if
there exists a vector Iy € V with the following property: for every p € P

and € > 0 there exists a gauge 590 ) on S such that
p(S(f, D) —1Iy) <e

for every HK-partition D of S such that D <« 521) ). Since the family P is
separated, the vector I; is uniquely determined and it is called the HK-
integral of f on S in V, and denoted

(HK) | £ = ;.
S

From Definition (1.1, we obtain Theorem below. This theorem guar-
antees a simple and important relation between HK-integral in a locally
convex space and HK-integral in the normal components of this locally con-
vex space.

THEOREM 1.2. A function f:S — V is HK-integrable in V if and only
if there exists a vector Iy € V' such that for every p € P the function ¢, o f
is HK-integrable in the normed component (VP,p) and
(HK) S ppo f = op(ly).
S

DEerFINITION 1.3. A family M of functions f : S — V is called HK-
equiintegrable in 'V if every f € M is HK-integrable in V and for every
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p € P and € > 0 there exists a gauge 5£p) on S such that
p(S(£.0) - (HK) | £) <«

S
for every HK-partition D of S such that D < 5% and for all feM.

2. Some convergence theorems for the HK-integral. In the first
convergence theorem we assume that a sequence (f,) converges pointwise
to a function f in V with respect to the standard topology.

THEOREM 2.1. Let V' be a sequentially complete locally convex space. If
a sequence (fn), where f, : S — V', is HK-equiintegrable in V' and converges
to a function f: S —V inV, then f is HK-integrable in V and

lim (HK) | f, = (HK) | f
S S

mV.

Proof. The sequence (fy,) converges to f in V if and only if for each
p € P the sequence (¢, o f,) converges to ¢, o f in the normed component
(17”, p). Therefore, (f,,) converges to f in V' if and only if (¢, 0 f;,) converges
to ¢p o f in the Banach component (V. p), for each p € P.

By Deﬁnition for each p € P the sequence (¢, o0 fy,) is HK-equiintegr-
able in the Banach component (V*,7).

Thus, for each p € P the conditions of Theorem II1.5.2 in [10] are sat-
isfied. Hence, for each p € P the function ¢, o f is HK-integrable in the
Banach component (Vp,ﬁ) and

(2.1) lim (HK) | ¢ 0 fo = (HK) | ¢po f
S S
in (V*,p).
According to Theorem we have
(HK) § 6y 0 fu = 6, ((HE) | f) € V7
S S

for each n € N and p € P. Therefore, for each p € P the sequence
(¢p((HK) {4 fn)) is a Cauchy sequence in (V?,p). Hence ((HK) {4 fn) is a
Cauchy sequence in the sequentially complete locally convex space V and
so it converges to Iy € V in V. By , this implies that

¢p(Iy) = (HK) S ppof

S
for every p € P. Consequently, by Theorem the function f is HK-
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integrable in V' and
lim (HK) | f, = (HK) | f

n—00
S S

mV.n

In Theorems and below we assume that (f,,) converges pointwise
to f in V with respect to the weak topology o(V, V'). The following lemmas
prepare the proof of Theorem

LEMMA 2.2. Assume that a locally convex space L is given and let T :
V' — L be a continuous linear function. If a function f : S — V is HK-
integrable in V', then the function T(f) is HK-integrable in L and

(1K) | T(f) = T((EK) § £).
S S

Proof. Let Q be the family of all continuous seminorms in L. Let ¢ be an
arbitrary element of (). Since T is a continuous linear function, for a given
€ > 0 there exist p € P and € > 0 such that

(2.2) px) < = q(T(x))<e, x€EV.
According to Definition there exists a gauge 537 ) on S such that
p(S(f,D) —I) <€
for every HK-partition D of S such that D <« (59 ). Therefore, by ,
q(S(T(f), D) = T(If)) < e

for every such D. Because of the arbitrariness of ¢ the function T'(f) is
HK-integrable in L and

(HK) | 7(f) = T((HK) | ). =
S S
In the next lemma, (X, |- ||) is a Banach space, X’ is its topological dual
and B(X') is the closed unit ball in X”.

LEMMA 2.3. If the sequence of functions f, : S— X is HK-equiintegrable
in (X,||-]]) and converges to f : S — X in the weak topology o(X, X"), then
f is HK-integrable in (X, || - ||) and

lim (HK) | f, = (HK) | f
n—oo
S S
in the weak topology o(X, X').
Proof. According to the definition of HK-equiintegrability in Banach
spaces, for a given € > 0 there exists a gauge d. on S such that

|8t ) - ®K) § 1,

S

<€
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for every HK-partition D of S such that D < §. and for all n € N. According
to Lemma for every ' € X' the inequality

(2.3) |S@(fa), D) = (HK) [ @'(f)| = |o/ (S(fas D) = (HK) | 1)
S S

holds for every D as above and for all n € N. Therefore, for every 2’ € X’ the
sequence (z'(fy,)) is HK-equiintegrable in (R, |-|). Thus, for every 2’ € X’ this
sequence is HK-equiintegrable in (R, |- |) and converges to z/(f) in (R, |-|).
Then, according to [10, Theorem II1.5.2], the function z'( f) is HK-integrable
in (R,|-]) and

(2.4) lim (HK) | 2/(f,) = (HK) | /(f)

n—o00
S S

< [la']le

for every 2’ € X'.
If we prove that the family {2/(f) : 2’ € B(X’)} is HK-equiintegrable in
(R,|-), then by [10, Proposition III.5.4] the function f is HK-integrable in

X - 1-
Notice that

[S(@'(£). D) = (HK) [ 2'(f)]

S

< 1S@/(£). D) = S(@'(f2). D)| + |S(@'(f2). D) — (HK) | 2'(f2)
S

+ |(HK) § 2/ (f) = (HK) [ /(1))

S S

Assume that an arbitrary ' € B(X’) and an arbitrary HK-partition D
of S such that D <« 4, are given. Since

lim S(a'(fn), D) = S(2'(f),D) and lim (HK)|a/(f,) = (HK) | 2/(f),
S S
there exists n,s py € N such that

’S(xl(f’VZ(z/’D))?D) - S((I}I(f),D)‘ <e€
and

(HK) (' (fa,r ) = (HE) [ /()] < e

S S
Also, by (2.3]), we have

S (Ja ) D) = (HK) § 2/ (fu 0 )| <
S
Consequently, because of the arbitrariness of 2’ and D, we see that
[S(/(/), D) = (HK) [ /()| < 3¢
S
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for every HK-partition D of S such that D < §. and for all ' € B(X’). This
means that {z/(f) : 2’ € B(X’)} is HK-equiintegrable in (R, |- |). Hence, f
is HK-integrable in (X, || - ||). According to (2.4) and Lemma we obtain
lim x’((HK) | fn> - x’((HK) | f)
n—oo
S S
for every ' € X'. Consequently,

lim (HK) | f, = (HK) | f

n—00
S S

in the weak topology (X, X’) and the proof is finished. =

LEMMA 2.4. Let V be a complete locally convex space. A function f :
S — V is HK-integrable in V if and only if for every p € P the function
¢p o f is HK-integrable in the Banach component (Vp,ﬁ). In this case,

b ((HK) | 1) = (HK) [ 60 f
S S
for every p € P.

Proof. The “only if” part is easily proved by applying Theorem

Conversely, assume that for every p € P the function ¢, o f is HK-
integrable in (V”,p). We set (HK) gopof=1I,forpeP.

Assume that two arbitrary continuous seminorms p and ¢ such that p < ¢
are given. According to Lemma [2.2] we have

Gpg (K [ &0 f) = (HK) {(@ 000 1

S
= (HK) | (Gpg © 6) o f = (HK) | ¢, 0 f
S S

or g,,(I4) = I,. Consequently, we obtain

(Tp) € liin((vpvﬁ)agpq)a
and by [9, Theorem I1.5.4], there exists Iy € V such that ¢,(Iy) = I, for

each p € P. Hence, by Theorem the function f is HK-integrable in V
and the proof is finished. =

Now, we are ready to present the second convergence theorem.

THEOREM 2.5. Let V' be a complete locally convex space. If a sequence
(fn), where f,:S — V, is HK-equiintegrable in V and converges to f:S — V
in the weak topology o(V, V'), then f is HK-integrable in V and

lim (HK) | f, = (HK) | f

n—0o0
S S

in the weak topology o(V,V').
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Proof. According to Definition the sequence (¢ o fy,) is HK-equi-
integrable in the Banach component (V,T)) for each p € P.

By , for every p € P the sequence (¢p,0 fy,) converges to ¢po f in the
normed component (‘71’ ,p) in the weak topology. Therefore, for every peP
this sequence also converges to ¢, o f in the Banach component (V ,P) in
the weak topology.

Thus, for every p € P the conditions of Lemma [2.3] are satisfied. Hence
for every p € P the function ¢, o f is HK-integrable in (Vp,ﬁ) and

(2.5) Tim 7, ((HK) [ ¢y 0 ) = 5, ((HEK) [ ¢ 0 1)
S S

for every 7, € V;,.

We know that for every p € P the function ¢, o f is HK-integrable in
the Banach component (V 7). Then, by Lemma 2.4, f is HK-integrable in
V and

(2.6 (HK) | &, 0 f = 6,((HK) | ) € V7
S S
for every p € P. Again by applying Lemma for every f,, we also obtain
(2.7) (HK) { ¢p o frn = q§p<(HK) | fn> e VP
S S

for every p € P.
Since every v V is the continuous extension of an element v/ v € V’
by ., and it follows that for every p € P, the equahty

(2.8) lim (7,0 ¢p>(< K) { fa) = (5 0 6,) (HE) 1)
S S

holds for every v, € V’
Now, let v be an arbltrary element of V’. According to . there exist
p € P and v vp € V; such that v = vp o ¢p. The last equality together with

(2.8) implies
" i o (HK) § f2) = (150§ £)
S S

n—oo

for every v/ € V/ and the proof is finished. m
Finally, we present the third convergence theorem.

THEOREM 2.6. Let V' be a locally conver space which is sequentially
complete with respect to the weak topology o(V,V'). If a sequence (fy), where
fn S — V, is HK-equiintegrable in V and converges pointwise to the
function f:S — V in the weak topology, then f is HK-integrable in V and

lim (HK) | f, = (HK) | f
S S
in the weak topology.
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Proof. The locally convex space (V,o(V, V")) is Hausdorff (see [LI], Cor.
IV.6.1, p. 107]). Denote by P’ the family of all continuous seminorms in
(V,o(V,V")). Since P’ C P, the sequence (f,) is HK-equiintegrable in
(V,o(V, V")) and converges to f in this space. Thus, the conditions of The-
orem are satisfied. Hence there exists Iy € V such that

lim p’<(HK) | - If) =0

n—oo

S
for every p’ € P’, and consequently
(2.9) Tim. v’((HK) g fn) = /(Iy)

for every v' € V', because [v/(-)| € P'.

Let p be any continuous seminorm in V. According to , the sequence
(¢p o fn) converges to ¢, o f in the normed component (‘77’ ,p) with respect
to the weak topology. Consequently, (¢, o f,) also converges to ¢, o f in
the Banach component (Vp,ﬁ) with respect to the weak topology. Thus,
(¢p © fn) is HK-equiintegrable in (171”,@ and converges to ¢, o f in (V. p)
with respect to the weak topology. Then, by Lemma the function ¢, o f
is HK-integrable in (V*,7) and

lim 9, ((HK) [ @0 fu) =, ((HK) [ ¢, 0 f)
S S

_ e _ =/ . . .
for every v; € V,; since every v]’D € V, is the continuous extension of an

element vy, € ‘7[,’, it follows that

(2.10) Tim. ’5;((HK) f 6p0 fn> - %((HK) {650 f)
S S

for every v, € V;, where ©), is the continuous extension of .

By applying Lemma for every ¢, o f, we obtain
5 ((HK) § 6, 0 f) =(HK) [, 0 (6, 0 fu) = (HK) | o} 0 fo,
S S S
where UI’J = i;) o ¢p, and again by applying Lemma for every n,
(HK) § ef 0 fu = v, ((HK) | £2),
S

S

and consequently

(2.11) 5;((HK) {650 fn> - %((HK) { fn>.

S S
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Hence, by (2.10) and (2.11)), we get

(2.12) Tim %((HK) { fn> - @;((HK) {60 f).
S S
Also, according to , we have
(2.13) Tim o) (HK) § £) = (1) = 5(6,(1))
S

for every v;, € V). Hence, by (2.12)) and (2.13)), we obtain
F(0p(17)) =7, ((HK) § 60 1)

S
for every v;, € 17];, where 7, is the continuous extension of v;,. Consequently,
w(0n(1)) = 7, ((HK) [ ¢, 0 f)
S

for every ), € V; and according to [11 Corollary IV.6.2], this means that

(HK) { ¢p o f = dp(If) € V2.

S
Therefore, by Theorem the function f is HK-integrable and
(HK) | f=1I;. »

S

Acknowledgments. The author thanks the referee for his careful read-
ing of the manuscript and a number of valuable suggestions which helped
to improve the paper.

References

[1] B. Bongiorno and L. Di Piazza, Convergence theorem for generalized Riemann—
Stieltjes integrals, Real Anal. Exchange 17 (1991-92), 339-361.

[2] L. Di Piazza, Kurzweil-Henstock type integration on Banach spaces, ibid. 29
(2003/2004), 543-555.

[3] R.A. Gordon, Another look at a convergence theorem for the Henstock integral, ibid.
15 (1989/90), 724-728.

[4] —, The Integrals of Lebesgue, Denjoy, Perron and Henstock, Grad. Stud. Math. 4,
Amer. Math. Soc., 1991.

[5] Y. Komura, Some examples on linear topological spaces, Math. Ann. 153 (1964),
150-162.

[6] J. Kurzweil, Nichtabsolut Konvergente Integrale, Teubner-Texte Math. 26, Teubner,
Leipzig, 1980.

[7] V. Marraffa, Riemann type integrals for functions taking values in a locally convex
space, Czechoslovak Math. J. 56 (2006), 445-490.


http://dx.doi.org/10.1007/BF01361183

Convergence theorems for HK-integral 43

[8] V. Marraffa, Non absolutely convergent integrals of functions taking values in a
locally convex space, Rocky Mountain J. Math. 36 (2006), 1577-1593.
[9] H. H. Schaefer, Topological Vector Spaces, Springer, New York, 1971.
[10] S. Schwabik and G. J. Ye, Topics in Banach Space Integration, Ser. Real Anal. 10,
World Sci., Singapore, 2005.
[11] K. Yosida, Functional Analysis, Springer, Berlin, 1980.

Sokol Bush Memetaj
Mathematics Department
Science Natural Faculty
University of Elbasan
Elbasan, Albania

E-mail: alb_sokol@yahoo.co.uk

Received 12.11.2009
and in final form 12.2.2010 (2113)


http://dx.doi.org/10.1216/rmjm/1181069383




	Introduction
	Some convergence theorems for the HK-integral

