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Some convergence theorems for HK-integral
in locally convex spaces

by Sokol Bush Memetaj (Elbasan)

Abstract. We present some convergence theorems for the HK-integral of functions
taking values in a locally convex space. These theorems are based on the concept of
HK-equiintegrability.

1. Introduction. We define the HK-integral of functions defined on
a compact subinterval S of Rm, m ≥ 1, and taking values in a locally
convex space V . In the case of functions taking values in a Banach space,
our definition is equivalent to [10, Definition III.2.2], and for the case when
m = 1 and S = [0, 1], it is equivalent to [7, Definition 4].

We present three convergence theorems for HK-integral which are based
on the notion of HK-equiintegrability of a sequence fn : S → V that con-
verges pointwise to a function f : S → V in the standard topology or in the
weak topology of the locally convex space V . These are Theorems 2.1, 2.5
and 2.6. For functions taking values in a Banach space, our Definition 1.3
of HK-equiintegrability is equivalent to [10, Definition III.5.1]. This notion
was first introduced in [6] for real valued functions and permitted the proof
of a convergence theorem for a pointwise convergent sequence of Henstock–
Kurzweil integrable functions (see also [1], [10], [3], [4] and [2]). Another
convergence theorem of this sort for functions taking values in a complete
locally convex space has been shown in [8, Theorem 5].

The differences between Theorems 2.1, 2.5 and 2.6 consist in the com-
pleteness assumptions on V (sequential completeness, completeness and
weak sequential completeness), and the topology on the space V (standard
or weak). In Theorem 2.1 we assume that a sequence (fn) converges point-
wise to a function f in the standard topology of V (V is a sequentially
complete locally convex space). In Theorems 2.5 and 2.6 we assume that
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(fn) converges pointwise to f in the weak topology of V , under different
completeness assumptions on V .

Theorem 2.1 is a generalization of [10, Theorem III.5.2]. For the case
when m = 1 and S = [0, 1], Theorem 2.5 was proved in [8, Theorem 5],
by a different approach. It can be proved that Theorem 2.1 follows from
Lemma 2.3 (the Banach version of Theorem 2.5).

Theorem 2.1 and Lemma 2.3 are used in the proof of Theorem 2.6.
Theorem 2.6 is useful for the case when V is weakly sequentially complete
but not complete. In this case we use Theorem 2.6 instead of Theorem
2.5. Do locally convex spaces of this type exist? According to [5, p. 159],
there exist locally convex spaces that are reflexive but not complete. Since a
reflexive space is semi-reflexive (see [9, p. 144]), we deduce by [9, Theorem
IV.5.5] that a reflexive locally convex space is weakly quasi-complete. Since a
quasi-complete space is sequentially complete or semi-complete, a reflexive
locally convex space is weakly sequentially complete. Consequently, there
exist locally convex spaces that are weakly sequentially complete but not
complete.

Throughout this paper, V is a locally convex space with its topology
τ and topological dual V ′. By P we denote the family of all continuous
seminorms in V ; for every p ∈ P , Ṽ p denotes the quotient vector space of
V with respect to the equivalence relation x ∼p y ⇔ p(x− y) = 0; the map
φp : V → Ṽ p is the canonical quotient map, thus φp(x) is the equivalence
class of x ∈ V with respect to “∼p”; the quotient normed space (Ṽ p, p̃) is
called the normed component of V , where p̃(φp(x)) = p(x) for each x ∈ V ;
the Banach space (V p

, p) which is the completion of (Ṽ p, p̃) is called the
Banach component of V ; V ′p , Ṽ ′p and V

′
p are the topological duals of (V, p),

(Ṽ p, p̃) and (V p
, p), respectively; σ(V, V ′) is the weak topology of V . It is

easy to see that

(1.1) V ′ = {ṽ′p ◦ φp : ṽ′p ∈ Ṽ ′p , p ∈ P},

because for every v′ ∈ V ′, we have |v′(·)| ∈ P .
For every p, q ∈ P such that p ≤ q, we define the map

g̃pq : Ṽ q → Ṽ p, g̃pq(wq) = wp, wq ∈ Ṽ q,

where wp = φp(x) for some x ∈ wq. Since for every y ∈ wq we have φp(y) =
wp, the map g̃pq is well defined. It is easily proved that g̃pq is a continuous
linear map. We also define the map gpq : V q → V

p as the continuous linear
extension of g̃pq, for every p, q ∈ P such that p ≤ q. By lim←−((V p

, p), gpq), we
denote the projective limit of the family {(V p

, p) : p ∈ P} with respect to
the mappings gpq (p, q ∈ P, p ≤ q). For the definition of the projective limit
see [9, p. 52].
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Assume that a compact subinterval S = [a1, b1] × · · · × [am, bm] of Rm,
m ≥ 1, and a function f : S → V are given. Let D = {(si, Ji) : i = 1, . . . , n}
be a set such that si ∈ S and Ji is a compact subinterval of S for i = 1, . . . , n;
then D is called an HK-partition of S if:

1.
⋃n
i=1 Ji = S,

2. si ∈ Ji for i = 1, . . . , n,
3. (Ji)ni=1 is a finite sequence of pairwise non-overlapping intervals (i.e.,

with pairwise disjoint interiors).

A function δ : S → (0,+∞) is called a gauge on S; an HK-partition
D = {(si, Ji) : i = 1, . . . , n} of S is called δ-fine (written D � δ) if

Ji ⊂ B(si, δ(si)),

where B(si, δ(si)) is the ball in Rm centered at si with radius δ(si), for
i = 1, . . . , n. We set

S(f,D) =
n∑
i=1

f(si)µL(Ji),

where µL is the Lebesgue outer measure in S.

Definition 1.1. A function f : S → V is called HK-integrable in V if
there exists a vector If ∈ V with the following property: for every p ∈ P
and ε > 0 there exists a gauge δ(p)ε on S such that

p(S(f,D)− If ) < ε

for every HK-partition D of S such that D � δ
(p)
ε . Since the family P is

separated, the vector If is uniquely determined and it is called the HK-
integral of f on S in V , and denoted

(HK)
�

S

f = If .

From Definition 1.1, we obtain Theorem 1.2 below. This theorem guar-
antees a simple and important relation between HK-integral in a locally
convex space and HK-integral in the normal components of this locally con-
vex space.

Theorem 1.2. A function f : S → V is HK-integrable in V if and only
if there exists a vector If ∈ V such that for every p ∈ P the function φp ◦ f
is HK-integrable in the normed component (Ṽ p, p̃) and

(HK)
�

S

φp ◦ f = φp(If ).

Definition 1.3. A family M of functions f : S → V is called HK-
equiintegrable in V if every f ∈ M is HK-integrable in V and for every
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p ∈ P and ε > 0 there exists a gauge δ(p)ε on S such that

p
(
S(f,D)− (HK)

�

S

f
)
< ε,

for every HK-partition D of S such that D � δ
(p)
ε and for all f ∈M.

2. Some convergence theorems for the HK-integral. In the first
convergence theorem we assume that a sequence (fn) converges pointwise
to a function f in V with respect to the standard topology.

Theorem 2.1. Let V be a sequentially complete locally convex space. If
a sequence (fn), where fn : S → V , is HK-equiintegrable in V and converges
to a function f : S → V in V , then f is HK-integrable in V and

lim
n→∞

(HK)
�

S

fn = (HK)
�

S

f

in V .

Proof. The sequence (fn) converges to f in V if and only if for each
p ∈ P the sequence (φp ◦ fn) converges to φp ◦ f in the normed component
(Ṽ p, p̃). Therefore, (fn) converges to f in V if and only if (φp ◦fn) converges
to φp ◦ f in the Banach component (V p

, p), for each p ∈ P .
By Definition 1.3, for each p ∈ P the sequence (φp◦fn) is HK-equiintegr-

able in the Banach component (V p
, p).

Thus, for each p ∈ P the conditions of Theorem III.5.2 in [10] are sat-
isfied. Hence, for each p ∈ P the function φp ◦ f is HK-integrable in the
Banach component (V p

, p) and

(2.1) lim
n→∞

(HK)
�

S

φp ◦ fn = (HK)
�

S

φp ◦ f

in (V p
, p).

According to Theorem 1.2 we have

(HK)
�

S

φp ◦ fn = φp

(
(HK)

�

S

fn

)
∈ Ṽ p

for each n ∈ N and p ∈ P . Therefore, for each p ∈ P the sequence
(φp((HK)

	
S fn)) is a Cauchy sequence in (Ṽ p, p̃). Hence ((HK)

	
S fn) is a

Cauchy sequence in the sequentially complete locally convex space V and
so it converges to If ∈ V in V . By (2.1), this implies that

φp(If ) = (HK)
�

S

φp ◦ f

for every p ∈ P . Consequently, by Theorem 1.2, the function f is HK-
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integrable in V and
lim
n→∞

(HK)
�

S

fn = (HK)
�

S

f

in V .

In Theorems 2.5 and 2.6 below we assume that (fn) converges pointwise
to f in V with respect to the weak topology σ(V, V ′). The following lemmas
prepare the proof of Theorem 2.5.

Lemma 2.2. Assume that a locally convex space L is given and let T :
V → L be a continuous linear function. If a function f : S → V is HK-
integrable in V , then the function T (f) is HK-integrable in L and

(HK)
�

S

T (f) = T
(

(HK)
�

S

f
)
.

Proof. Let Q be the family of all continuous seminorms in L. Let q be an
arbitrary element of Q. Since T is a continuous linear function, for a given
ε > 0 there exist p ∈ P and ε′ > 0 such that

(2.2) p(x) < ε′ ⇒ q(T (x)) < ε, x ∈ V.

According to Definition 1.1, there exists a gauge δ(p)ε′ on S such that

p(S(f,D)− If ) < ε′

for every HK-partition D of S such that D � δ
(p)
ε′ . Therefore, by (2.2),

q(S(T (f), D)− T (If )) < ε

for every such D. Because of the arbitrariness of q the function T (f) is
HK-integrable in L and

(HK)
�

S

T (f) = T
(

(HK)
�

S

f
)
.

In the next lemma, (X, ‖ ·‖) is a Banach space, X ′ is its topological dual
and B(X ′) is the closed unit ball in X ′.

Lemma 2.3. If the sequence of functions fn : S→X is HK-equiintegrable
in (X, ‖ · ‖) and converges to f : S → X in the weak topology σ(X,X ′), then
f is HK-integrable in (X, ‖ · ‖) and

lim
n→∞

(HK)
�

S

fn = (HK)
�

S

f

in the weak topology σ(X,X ′).

Proof. According to the definition of HK-equiintegrability in Banach
spaces, for a given ε > 0 there exists a gauge δε on S such that∥∥∥S(fn, D)− (HK)

�

S

fn

∥∥∥ < ε
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for every HK-partition D of S such that D � δε and for all n ∈ N. According
to Lemma 2.2, for every x′ ∈ X ′ the inequality∣∣∣S(x′(fn), D)− (HK)

�

S

x′(fn)
∣∣∣ =

∣∣∣x′(S(fn, D)− (HK)
�

S

fn

)∣∣∣ ≤ ‖x′‖ε(2.3)

holds for every D as above and for all n ∈ N. Therefore, for every x′ ∈ X ′ the
sequence (x′(fn)) is HK-equiintegrable in (R, |·|). Thus, for every x′ ∈ X ′ this
sequence is HK-equiintegrable in (R, | · |) and converges to x′(f) in (R, | · |).
Then, according to [10, Theorem III.5.2], the function x′(f) is HK-integrable
in (R, | · |) and

(2.4) lim
n→∞

(HK)
�

S

x′(fn) = (HK)
�

S

x′(f)

for every x′ ∈ X ′.
If we prove that the family {x′(f) : x′ ∈ B(X ′)} is HK-equiintegrable in

(R, | · |), then by [10, Proposition III.5.4] the function f is HK-integrable in
(X, ‖ · ‖).

Notice that∣∣∣S(x′(f), D)− (HK)
�

S

x′(f)
∣∣∣

≤ |S(x′(f), D)− S(x′(fn), D)|+
∣∣∣S(x′(fn), D)− (HK)

�

S

x′(fn)
∣∣∣

+
∣∣∣(HK)

�

S

x′(fn)− (HK)
�

S

x′(f)
∣∣∣.

Assume that an arbitrary x′ ∈ B(X ′) and an arbitrary HK-partition D
of S such that D � δε are given. Since

lim
n→∞

S(x′(fn), D) = S(x′(f), D) and lim
n→∞

(HK)
�

S

x′(fn) = (HK)
�

S

x′(f),

there exists n(x′,D) ∈ N such that

|S(x′(fn(x′,D)
), D)− S(x′(f), D)| < ε

and ∣∣∣(HK)
�

S

x′(fn(x′,D)
)− (HK)

�

S

x′(f)
∣∣∣ < ε.

Also, by (2.3), we have∣∣∣S(x′(fn(x′,D)
), D)− (HK)

�

S

x′(fn(x′,D)
)
∣∣∣ ≤ ε.

Consequently, because of the arbitrariness of x′ and D, we see that∣∣∣S(x′(f), D)− (HK)
�

S

x′(f)
∣∣∣ < 3ε
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for every HK-partition D of S such that D � δε and for all x′ ∈ B(X ′). This
means that {x′(f) : x′ ∈ B(X ′)} is HK-equiintegrable in (R, | · |). Hence, f
is HK-integrable in (X, ‖ · ‖). According to (2.4) and Lemma 2.2, we obtain

lim
n→∞

x′
(

(HK)
�

S

fn

)
= x′

(
(HK)

�

S

f
)

for every x′ ∈ X ′. Consequently,

lim
n→∞

(HK)
�

S

fn = (HK)
�

S

f

in the weak topology σ(X,X ′) and the proof is finished.

Lemma 2.4. Let V be a complete locally convex space. A function f :
S → V is HK-integrable in V if and only if for every p ∈ P the function
φp ◦ f is HK-integrable in the Banach component (V p

, p). In this case,

φp

(
(HK)

�

S

f
)

= (HK)
�

S

φp ◦ f

for every p ∈ P .

Proof. The “only if” part is easily proved by applying Theorem 1.2.
Conversely, assume that for every p ∈ P the function φp ◦ f is HK-

integrable in (V p
, p). We set (HK)

	
S φp ◦ f = Ip for p ∈ P .

Assume that two arbitrary continuous seminorms p and q such that p ≤ q
are given. According to Lemma 2.2, we have

gpq

(
(HK)

�

S

φq ◦ f
)

= (HK)
�

S

(gpq ◦ φq) ◦ f

= (HK)
�

S

(g̃pq ◦ φq) ◦ f = (HK)
�

S

φp ◦ f

or gpq(Iq) = Ip. Consequently, we obtain

(Ip) ∈ lim←−((V p
, p), gpq),

and by [9, Theorem II.5.4], there exists If ∈ V such that φp(If ) = Ip for
each p ∈ P . Hence, by Theorem 1.2, the function f is HK-integrable in V
and the proof is finished.

Now, we are ready to present the second convergence theorem.

Theorem 2.5. Let V be a complete locally convex space. If a sequence
(fn), where fn :S → V , is HK-equiintegrable in V and converges to f :S → V
in the weak topology σ(V, V ′), then f is HK-integrable in V and

lim
n→∞

(HK)
�

S

fn = (HK)
�

S

f

in the weak topology σ(V, V ′).
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Proof. According to Definition 1.3, the sequence (φp ◦ fn) is HK-equi-
integrable in the Banach component (V p

, p) for each p ∈ P .
By (1.1), for every p ∈ P the sequence (φp ◦fn) converges to φp ◦f in the

normed component (Ṽ p, p̃) in the weak topology. Therefore, for every p ∈ P
this sequence also converges to φp ◦ f in the Banach component (V p

, p) in
the weak topology.

Thus, for every p ∈ P the conditions of Lemma 2.3 are satisfied. Hence
for every p ∈ P the function φp ◦ f is HK-integrable in (V p

, p) and

(2.5) lim
n→∞

v′p

(
(HK)

�

S

φp ◦ fn
)

= v′p

(
(HK)

�

S

φp ◦ f
)

for every v′p ∈ V
′
p.

We know that for every p ∈ P the function φp ◦ f is HK-integrable in
the Banach component (V p

, p). Then, by Lemma 2.4, f is HK-integrable in
V and

(2.6) (HK)
�

S

φp ◦ f = φp

(
(HK)

�

S

f
)
∈ Ṽ p

for every p ∈ P . Again by applying Lemma 2.4 for every fn, we also obtain

(2.7) (HK)
�

S

φp ◦ fn = φp

(
(HK)

�

S

fn

)
∈ Ṽ p

for every p ∈ P .
Since every v′p ∈ V

′
p is the continuous extension of an element ṽ′p ∈ Ṽ ′p ,

by (2.7), (2.6) and (2.5) it follows that for every p ∈ P , the equality

(2.8) lim
n→∞

(ṽ′p ◦ φp)
(

(HK)
�

S

fn

)
= (ṽ′p ◦ φp)

(
(HK)

�

S

f
)

holds for every ṽ′p ∈ Ṽ ′p .
Now, let v′ be an arbitrary element of V ′. According to (1.1), there exist

p ∈ P and ṽ′p ∈ Ṽ ′p such that v′ = ṽ′p ◦ φp. The last equality together with
(2.8) implies

lim
n→∞

v′
(

(HK)
�

S

fn

)
= v′

(
(HK)

�

S

f
)

for every v′ ∈ V ′ and the proof is finished.

Finally, we present the third convergence theorem.

Theorem 2.6. Let V be a locally convex space which is sequentially
complete with respect to the weak topology σ(V, V ′). If a sequence (fn), where
fn : S → V , is HK-equiintegrable in V and converges pointwise to the
function f : S → V in the weak topology, then f is HK-integrable in V and

lim
n→∞

(HK)
�

S

fn = (HK)
�

S

f

in the weak topology.
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Proof. The locally convex space (V, σ(V, V ′)) is Hausdorff (see [11, Cor.
IV.6.1, p. 107]). Denote by P ′ the family of all continuous seminorms in
(V, σ(V, V ′)). Since P ′ ⊂ P , the sequence (fn) is HK-equiintegrable in
(V, σ(V, V ′)) and converges to f in this space. Thus, the conditions of The-
orem 2.1 are satisfied. Hence there exists If ∈ V such that

lim
n→∞

p′
(

(HK)
�

S

fn − If
)

= 0

for every p′ ∈ P ′, and consequently

(2.9) lim
n→∞

v′
(

(HK)
�

S

fn

)
= v′(If )

for every v′ ∈ V ′, because |v′(·)| ∈ P ′.
Let p be any continuous seminorm in V . According to (1.1), the sequence

(φp ◦ fn) converges to φp ◦ f in the normed component (Ṽ p, p̃) with respect
to the weak topology. Consequently, (φp ◦ fn) also converges to φp ◦ f in
the Banach component (V p

, p) with respect to the weak topology. Thus,
(φp ◦ fn) is HK-equiintegrable in (Ṽ p, p̃) and converges to φp ◦ f in (V p

, p)
with respect to the weak topology. Then, by Lemma 2.3, the function φp ◦ f
is HK-integrable in (V p

, p) and

lim
n→∞

v′p

(
(HK)

�

S

φp ◦ fn
)

= v′p

(
(HK)

�

S

φp ◦ f
)

for every v′p ∈ V
′
p; since every v′p ∈ V

′
p is the continuous extension of an

element ṽ′p ∈ Ṽ ′p , it follows that

(2.10) lim
n→∞

ṽ′p

(
(HK)

�

S

φp ◦ fn
)

= v′p

(
(HK)

�

S

φp ◦ f
)

for every ṽ′p ∈ Ṽ ′p , where v′p is the continuous extension of ṽ′p.
By applying Lemma 2.2, for every φp ◦ fn we obtain

ṽ′p

(
(HK)

�

S

φp ◦ fn
)

=(HK)
�

S

ṽ′p ◦ (φp ◦ fn) = (HK)
�

S

v′p ◦ fn,

where v′p = ṽ′p ◦ φp, and again by applying Lemma 2.2, for every n,

(HK)
�

S

v′p ◦ fn = v′p

(
(HK)

�

S

fn

)
,

and consequently

(2.11) ṽ′p

(
(HK)

�

S

φp ◦ fn
)

= v′p

(
(HK)

�

S

fn

)
.
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Hence, by (2.10) and (2.11), we get

(2.12) lim
n→∞

v′p

(
(HK)

�

S

fn

)
= v′p

(
(HK)

�

S

φp ◦ f
)
.

Also, according to (2.9), we have

(2.13) lim
n→∞

v′p

(
(HK)

�

S

fn

)
= v′p(If ) = ṽ′p(φp(If ))

for every v′p ∈ V ′p . Hence, by (2.12) and (2.13), we obtain

ṽ′p(φp(If )) = v′p

(
(HK)

�

S

φp ◦ f
)

for every ṽ′p ∈ Ṽ ′p , where v′p is the continuous extension of ṽ′p. Consequently,

v′p(φp(If )) = v′p

(
(HK)

�

S

φp ◦ f
)

for every v′p ∈ V
′
p and according to [11, Corollary IV.6.2], this means that

(HK)
�

S

φp ◦ f = φp(If ) ∈ Ṽ p.

Therefore, by Theorem 1.2, the function f is HK-integrable and

(HK)
�

S

f = If .
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