
ANNALES
POLONICI MATHEMATICI

100.1 (2011)

Entropy of distal groups, pseudogroups, foliations and
laminations

by Andrzej Biś and Paweł Walczak (Łódź)

Abstract. A distality property for pseudogroups and foliations is defined. Distal foli-
ated bundles satisfying some growth conditions are shown to have zero geometric entropy
in the sense of É. Ghys, R. Langevin and P. Walczak [Acta Math. 160 (1988)].

Introduction. In [Pa], Parry proved directly that distal homeomor-
phisms of compact metric spaces have zero topological entropy. In the in-
troduction there, the author says that this result can be obtained via the
Furstenberg [Fu] structure theorem for distal flows. Later on, Ghys, Langevin
and the second author [GLW] introduced a notion of entropy for foliations
of Riemannian manifolds and finitely generated pseudogroups (in particu-
lar, groups) of local (in particular, global) homeomorphisms. In [CC], it was
observed that this notion applies also to laminations (or foliated spaces as
the authors call laminations there). The value of entropy itself depends on
either the Riemannian structure or the finite generating set under consid-
eration; however if this value is equal to zero for one such structure, then
it vanishes for any other. Therefore, one can speak about zero or non-zero
entropy foliations (groups, pseudogroups, laminations).

Our goal here is to provide a class of distal foliations (pseudogroups,
groups, laminations) which have zero entropy in the sense of [GLW]. Even
if distal groups of homeomorphisms of compact spaces admit invariant mea-
sures ([Fu, Thm. 12.3]), the lack of good variational principle for our systems
(groups, foliations, etc.) forces us to use the structure theorem for distal
groups. The key tool is the result (analogous to that of Bowen, [Bo, Thm.
17]) relating entropies of a given group acting on the total space, base and
between the fibres.
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1. Distality. Recall that a group G of homeomorphisms of a metric
space (X, d) is said to be distal if for any distinct points x and y of X, the
distances d(g(x), g(y)), g ∈ G, are bounded away from zero. For compact X,
this property is purely topological, i.e. independent of the distance function d.
Naively, distality of a pseudogroup of local homeomorphisms of X could be
defined in the same way assuming only that g ranges over all the elements
of the pseudogroup which are defined at x and y. However, this approach
fails immediately: even pseudogroups of local isometries are not distal in this
sense.

Example 1. If α and β are real numbers with α/β /∈ Q and our pseu-
dogroup on the circle S1 is generated by the rotations Rα and Rβ by the
angles α and β, respectively, and p0 and p1 are distinct points of S1 splitting
it into two (open) arcs I1 and I2, then the map h : I ′1 ∪ I ′2 → S1 defined
for some arcs I ′1 ⊂ I1 and I ′2 ⊂ I2 with the common end point, say p0, by
f |I1 = Rα and f |I2 = Rβ belongs to our pseudogroup because pseudogroups
are assumed to be closed under the operation of taking unions of their ele-
ments. One can find points x ∈ I1 and y ∈ I2 and a sequence nk → ∞ of
natural numbers such that d(fnkx, fnky)→ 0 as k →∞.

Therefore, a pseudogroup Γ of local homeomorphisms of X will here be
called distal whenever there exists a symmetric set S generating Γ , closed
under composition and such that

(1.1) inf{d(g(x), g(y)); g ∈ S, x, y ∈ Dg} > 0

for all x, y ∈ X, x 6= y. (Hereafter, Dg denotes the domain of g.)
This definition is analogous to that in [AC], where such a pseudogroup

is called strongly equicontinuous whenever (up to some simplification) there
exists such a generating set S with the following property: for any ε > 0 one
can find δ > 0 such that the implication

(1.2) d(x, y) < δ ⇒ d(g(x), g(y)) < ε

holds for all g ∈ S, x and y ∈ Dg. Certainly, all strongly equicontinuous
pseudogroups are distal.

One can also think about a pseudogroup Γ of local diffeomorphisms of a
Riemannian manifold X to be infinitesimally distal whenever

inf{‖dh(v)‖;h ∈ Γ, x ∈ Dh} > 0

for all nonzero vectors v ∈ TxX, x ∈ X. Here, the problem caused by ad-
mitting in pseudogroups arbitrary unions of elements as in Example 1 does
not appear but the notions of “standard” and infinitesimal distality are inde-
pendent as has been shown for groups (or even, single transformations) by
examples in [Re] (see also [MN]): (1) a diffeomorphism of S1 with irrational
rotation number which is not C1-conjugate to a rotation is distal but not
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infinitesimally distal and (2) the classical horocycle flow is infinitesimally
distal but not distal (even after arbitrary reparametrization).

Let G and H be pseudogroups acting on topological spaces X and Y ,
respectively. Following Haefliger ([Hae]) we say that an étale morphism Φ :
G→ H is a maximal collection Φ of homeomorphisms of open subsets of X
onto open subsets of Y such that:

1. if φ ∈ Φ, g ∈ G and h ∈ H, then h ◦ φ ◦ g ∈ Φ,
2. the domains Dφ of the elements of Φ form a covering of X,
3. if φ, ψ ∈ Φ, then φ ◦ ψ−1 ∈ H.

An étale morphism is called an equivalence if the collection Φ−1 = {φ−1 :
φ ∈ Φ} is also an étale morphism ofH into G. We say that an étale morphism
Φ : G→ H is generated by a subset Φ0 ⊂ Φ if

Φ = {h ◦ φ ◦ g : g ∈ G, h ∈ H, φ ∈ Φ0}.

Finally, the pseudogroups G and H are said to be equivalent if there exists
an equivalence Φ : G→ H; moreover, G and H are finitely equivalent if the
equivalence Φ : G→ H is generated by a finite collection Φ0.

Following the lines of the proof of Lemma 8.8 in [AC] one can establish
the following.

Proposition 1. If two pseudogroups Γ1 and Γ2 are finitely equivalent
and one of them is distal, then so is the other.

Proof. Denote by S a symmetric set of generators of Γ1 that is closed
under compositions and satisfies the conditions of our definition of distal-
ity. We may also assume (Definition 8.4(ii) in [AC]) that S is closed under
restrictions to open sets, thus each g ∈ Γ1 is a combination of maps in S.
Assume that Γ1 is a distal pseudogroup and choose a finite set Φ0 generating
an equivalence Φ of Γ1 and Γ2.

Using the same arguments as in the proof of Lemma 8.8 in [AC] we
deduce that the set

S′ := {φ ◦ g ◦ ψ−1 : g ∈ S, φ, ψ ∈ Φ0}

is symmetric, generates Γ2 and is closed under compositions. Take arbitrary
distinct points x1, y1 ∈ X. The distality of Γ1 yields

(1.3) inf{d(g(x1), g(y1)) : g ∈ S, x1, y1 ∈ Dg} > 0.

Fix ψ in Φ0, put xψ := ψ(x1) and yψ := ψ(y1). Notice that Φ0 is a finite
family of local homeomorphisms, thus

(1.4) inf{d(φ ◦ g ◦ ψ−1(xψ), φ ◦ g ◦ ψ−1(yψ)) :
g ∈ S, φ ∈ Φ0, xψ, yψ ∈ Dφ◦g◦ψ−1} > 0
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and therefore we conclude that for any pair of distinct points x2, y2 ∈ Y ,

inf{d(φ ◦ g ◦ψ−1(x2), φ ◦ g ◦ψ−1(y2)) : g∈S, φ, ψ∈Φ0, x2, y2∈Dφ◦g◦ψ−1}>0,

which completes the proof.

Since holonomy pseudogroups (acting on different transversals) of a given
foliation (or lamination) F are equivalent (and finitely equivalent when the
foliated space under consideration is compact), one may call a foliation (lam-
ination) of a compact manifold (space) distal whenever its holonomy pseu-
dogroup is distal. For example, Riemannian foliations and foliated bundles
obtained from suspensions of discrete distal groups are distal. (Several ex-
amples of distal groups and a classification of all such groups are provided
in [Fu].)

2. Entropy. Let G be a compactly generated pseudogroup on a compact
metric space (X, d) generated by a finite symmetric set G1. Following [GLW]
we shall say that two points x and y of X are (n, ε)-separated whenever
there exists a product g ∈ G of k ≤ n generators such that x and y lie in
the domain of g and d(g(x), g(y)) ≥ ε. Let s(n, ε,G1) denote the maximal
number of (n, ε)-separated points of X. Let

s(ε,G1) = lim sup
n→∞

1
n

log s(n, ε,G1)

and

(2.1) h(G,G1) = lim
ε→0

s(ε,G1).

Obviously, the limit (either finite or infinite) in (2.1) exists.
The quantity h(G,G1) is called the (topological) entropy of G with respect

to G1. It can be defined not only in terms of (n, ε)-separated sets but also
in terms of (n, ε)-spanning sets. Namely, one can just rewrite the formulae
defining the entropy replacing the numbers s(n, ε) by r(n, ε), where r(n, ε)
is the minimal cardinality of an (n, ε)-spanning subset of X; a subset A of
X is said to be (n, ε)-spanning whenever for any x ∈ X there exists y ∈ A
such that d(g(x), g(y)) < ε for all products g of k ≤ n generators for which
x and y lie in the domain of g.

If G is a finitely generated group of homeomorphisms of X, then the
entropy of G with respect to a finite generating set G1 is defined as the
entropy of the pseudogroup G = G(G1) generated by G1 (with respect to the
same G1, of course). Therefore, we may write

h(G,G1) = h(G(G1), G1).

Clearly, the entropy of G depends strongly on the choice of G1. In fact, if
G′1 is another generating set, then there exists m ∈ N such that
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s(n, ε,G1) ≤ s(mn, ε,G′1) and s(n, ε,G′1) ≤ s(mn, ε,G1)

for all n and ε. Consequently,

1
m
h(G,G1) ≤ h(G,G′1) ≤ mh(G,G1).

However, if h(G,G1) = 0 for one generating set G1, then h(G,G′1) = 0 for any
other generating set G′1. Therefore, we can distinguish between pseudogroups
(and groups) with vanishing entropy and those with nonvanishing entropy.

Given a compact subsetK ofX, the restricted entropy h(G,G1,K) can be
defined by replacing the numbers s(n, ε) (resp., r(n, ε)) above by s(n, ε,K)
(resp., r(n, ε,K)), the maximal cardinalities of (n, ε)-separated (resp., the
minimal cardinality of (n, ε)-spanning) subsets ofK. Certainly, h(G,G1,K) ≤
h(G,G1) for all K contained in X.

It is easy to see that the entropy of the group generated by a single
transformation f of X equals twice the topological entropy of f . For more
about entropy of groups and pseudogroups we refer to [GLW], [CC, Chapter
13] and [Wa].

Now, if F is a foliation (or lamination) of a compact manifold (or space)
M and g is a leafwise Riemannian structure onM , then the geometric entropy
h(F , g) of F with respect to g can be defined by

(2.2) h(F , g) = sup
U

1
∆(U)

h(HU , (HU )1)

where U ranges over all good coverings ofM by foliated charts,∆(U) denotes
the lower upper bound for the diameters (in the metric induced by g) of
plaques of charts in U , HU is the holonomy pseudogroup determined by U
on the space of plaques and HU1 is the set of elementary holonomy maps
corresponding to all pairs of overlapping charts of U .

The original definition in [GLW] was different but it has been shown
([GLW, Thm. 3.4], see also [CC] and [Wa]) that the two approaches provide
the same number. The geometric entropy of a foliation (lamination) depends
on the choice of the leafwise Riemannian structure but again, as in the case
of the entropy for pseudogroups, its vanishing or non-vanishing does not:
h(F , g) = 0 for some g if and only if h(F , g′) = 0 for any other Riemannian
structure g′. As before, we refer to [GLW], [CC] and [Wa] for more about
the entropy of foliations (laminations). Here, we will just remark that the
geometric entropy of a suspension vanishes if and only if the topological
entropy of the suspended group does.

3. Quotients. Let X and Y be compact metric spaces and π : X → Y
a continuous surjection. Let G be a finitely generated group acting simulta-
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neously on X and Y in such a way that

π(g(x)) = g(π(x))

for all x ∈ X and g ∈ G. Let G1 be a finite symmetric set generating G.
Recall that the growth of G is linear (polynomial, exponential etc.) when-

ever there exists a function f : N→ N which is linear (polynomial, exponen-
tial etc.) such that the cardinalities g(n) of the sets Gn := {gi1 ◦ · · · ◦ gin :
gij ∈ G1} (n ∈ N) satisfy

af(bn) ≤ g(n) ≤ Af(Bn)

for all n ∈ N and some positive numbers a, b, A and B. Certainly this def-
inition is correct: the growth type of G is independent of the choice of the
generating set G1. Already in [GLW], it was observed that the entropy of a
group depends a priori on two factors: the topological entropies of generators
and the growth of the group. For example,

(1) any homeomorphism of a circle has topological entropy zero but the
free group generated by two such homeomorphisms h1 and h2 which have
sinks x1 and x2 and sources y1 and y2 such that {x1, y1} ∩ {x2, y2} = ∅ has
exponential growth and positive entropy, while

(2) any homeomorphism of positive topological entropy generates a group
of linear growth and positive entropy.

The main result of this section reads as follows.

Theorem 1. If G has linear growth, then

(3.1) h(G,G1, X) ≤ h(G,G1, Y ) + C · sup{h(G,G1, π
−1(y)) : y ∈ Y }.

for some constant C ≥ 1.

Proof. Most of the arguments follow those of Theorem 17 in [Bo], a
modification is needed just in final steps.

So, denote by A the second term in (3.1), assume that A is finite (oth-
erwise there is nothing to prove), and fix ε, η > 0. For any y ∈ Y choose
N(y) ∈ N in such a way that

log r(N(y), ε, π−1(y)) ≤ N(y)(A+ η)

Choose (N(y), ε)-spanning subsets Ey of the fibres π−1(y), y ∈ Y , of minimal
cardinality and set

Uy =
⋃
z∈Ey

⋂
g∈GN(y)

g−1(B(g(z), 2ε)).

Certainly, Uy’s are open neighbourhoods of the fibres π−1(y), therefore for
any y ∈ Y there exists θ(y) > 0 for which π−1(B(y, θ(y))) ⊂ Uy. Choose a
finite cover of Y consisting of sets B(yi, θ(yi)), i = 1, . . . , p, and let δ > 0 be
a Lebesgue number of this cover.
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Let now En be an (n, δ)-spanning subset of Y of minimal cardinality.
For any z ∈ En and g ∈ Gn choose an index ι(z, g) ∈ {1, . . . , p} for which
the closure of B(g(z), δ/2) is contained in B(yι(z,g), θ(yι(z,g))). Choose also
minimal subsets An(z) of Gn for which the balls of centres g ∈ An(z) and
radii N(yι(z,g)) cover Gn in the Cayley graph of G. Define

V (z, (ξg, g ∈ An(z)))
= {x ∈ X : d(h(g(x)), h(ξg)) < 2ε, g ∈ An(z), h ∈ GN(yι(g,z))}

for all z ∈ En and ξg ∈ Eyι(z,g) . Notice that

V (z, (ξg, g ∈ An(z))) =
⋂

g∈An(z)

g−1
( ⋂
h∈GN(yι(z,g))

h−1B(h(ξg), 2ε)
)

Take an arbitrary point x0 ∈ X and let x′0 = π(x0). For x′0 ∈ Y there exists
z ∈ En such that d(g(x′0), g(z)) < δ, for any g ∈ Gn.

Since the ball B(g(z), δ/2) is contained in B(yι(z,g), θ(yι(z,g))) and

π−1(B(yι(z,g), θ(yι(z,g)))) ⊂
⋃

ξ∈Ey0

⋂
h∈GN(y0)

h−1(B(h(ξ), 2ε)),

where y0 = yι(z,g), we conclude that for any g ∈ An(z) there exists ξ′g ∈ Ey0
such that

g(x′0) ∈
⋂

h∈GN(yι(z,g))

h−1B(h(ξ′g), 2ε).

The points g(x′0) and g(x0) are in the same fibre Ey0 , so there exists ξg ∈ Ey0
such that

g(x0) ∈
⋂

h∈GN(yι(z,g))

h−1B(h(ξg), 2ε)

and
x0 ∈

⋂
g∈An(z)

g−1
( ⋂
h∈GN(yι(z,g))

h−1B(h(ξg), 2ε)
)
.

Thus all such sets V (z, (ξg)) cover X while any (n, 4ε)-separated subset of
X may have at most one point in common with each of them. Indeed, as-
sume that, on the contrary, two distinct points x1 and x2 which are (n, 4ε)-
separated in X, belong to the same set⋂

g∈An(z)

g−1
( ⋂
h∈GN(yι(z,g))

h−1B(h(ξg), 2ε)
)
.

Then for any g ∈ An(z) and h ∈ GN(yι(z,g)) we have hg(x1), hg(x2) ∈
B(h(ξg), 2ε). Thus, d(hg(x1), hg(x2)) < 4ε while hg ∈ Gn, which contra-
dicts that the points x1, x2, are (n, 4ε)-separated.
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For any z ∈ En, the number ν(z) of such sets V (z, (ξg, g ∈ An(z))) is
bounded from above by∏

g∈An(z)

r(N(yι(z,g)), ε, π
−1(yι(z,g))).

So,

log ν(z) ≤
∑

g∈An(z)

log r(N(yι(z,g)), ε, π
−1(yι(z,g)))

≤ #An(z) max{N(y1), . . . , N(yp)} · (A+ η).

Therefore, taking into account that the sequence An(z) ⊂ Gn, n ∈ N, has
linear growth

log ν(z) ≤ Cn(A+ η)

for some constant C depending on the growth of G. Consequently,

s(n, 4ε,X) ≤ r(n, δ, Y ) exp(Cn(A+ η))

and
1
n

log s(n, 4ε,X) ≤ 1
n

log r(n, δ, Y ) + C(A+ η).

Passing to the limits yields (3.1).

4. Entropy and distality for groups and foliated bundles. Recall
after [Fu] that any minimal distal action of a group G on a compact metric
space X can be expressed as (Xη, G), where η is an ordinal, (X0, G) is a
trivial action on a singleton, (Xξ+1, G) (ξ < η) is an isometric extension
of (Xξ, G), and (Xξ, G) is the limit of the family (Xζ , G), ζ < ξ, when
ξ is a limit ordinal ≤ η. Recall also that an action (Y,G) is an isometric
extension of an action (Z,G) if there exists a mapping π from Y onto Z
which commutes with the corresponding actions of the group G (that is,
π(g(y)) = g(π(y)) for all y ∈ Y ) and such that all the elements of G act
isometrically on the fibres of π (that is, d(g(y1), g(y2)) = d(y1, y2) whenever
π(y1) = π(y2), d being the distance function on Y ). Finally, recall that
(Y,G) is the limit of a family (Zα, G), α ∈ A, whenever there exist surjective
mappings πα : Y → Zα commuting with the corresponding actions of the
group G and such that for any distinct points y1 and y2 of Y there exists
α ∈ A for which πα(y1) 6= πα(y2).

Lemma 1. If G has linear growth, (Y,G) is an isometric extension of
(Z,G) and the entropy of G on Z is equal to zero, then the entropy of G on
Y is zero as well.

Proof. Follows directly from Theorem 1.
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Lemma 2. If (Y,G) is a limit of the family (Zα, G), α ∈ A, and G has
zero entropy on Zα for all α, then G has zero entropy on Y .

Proof. Denote by dα a metric on Zα and put

d(y1, y2) = sup
α
dα(πα(y1), πα(y2))

for y1, y2 ∈ Y . Certainly, d is a pseudometric on Y . If d(y1, y2) = 0, then
dα(πα(y1), πα(y2)) = 0 and πα(y1) = πα(y2) for all α ∈ A, consequently,
y1 = y2 and d occurs to be a metric.

Now, if points y1, . . . , yN are (n, ε)-spanning on (Y,G), then there exists
α ∈ A for which πα(y1), . . . , πα(yN ) are all distinct. Choose a point zα ∈ Zα.
Then zα = πα(y) and d(g(y), g(yi)) ≤ ε for some y ∈ Y , i ∈ {1, . . . , N} and
all products g of k ≤ n generators of G. Inequalities dα(g(zα), g(πα(yi)) ≤
d(g(y), g(yi)) < ε show that the set {πα(y1), . . . , πα(yN )} is (n, ε)-spanning
on Zα. Therefore, the entropy of G on Y does not exceed that on Zα, which
is equal to zero.

Theorem 2. Any finitely generated, linear growth, minimal and distal
group G of homeomorphisms of a compact metric space X has zero entropy.

Proof. Let (X,G) = (Xη, G) as above. Denote by Σ the set of ordinals
ξ≤η for which the entropy of G onXξ is zero. Obviously, 0∈Σ. By Lemma 1,
if ξ∈Σ, then ξ+1∈Σ. By Lemma 2, ξ∈Σ if ξ is a limit ordinal for which
all the ordinals ζ <ξ belong to Σ. By transfinite induction, η∈Σ.

Directly from the definitions and the above theorem we obtain

Corollary 1. The geometric entropy of a compact minimal distal foli-
ated bundle vanishes whenever its holonomy group has linear growth.

Remark. It would be interesting to either prove the theorems of this pa-
perwithout assuming linear growth or provide examples of distal groups (pseu-
dogroups, foliations) of positive entropy. Such examples, if any, would show
better the (already mentioned) influence of growth of groups/pseudogroups/
foliations on the value of entropy of such systems as well as the significance of
the difference between distality and equicontinuity: certainly, equicontinuous
systems have zero entropy. Unfortunately, at the moment, the authors are
not able to provide such proofs or examples.
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