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On iteration of higher order jets and
prolongation of connections

by Miroslav Doupovec (Brno) and
Włodzimierz M. Mikulski (Kraków)

Abstract. We introduce exchange natural equivalences of iterated nonholonomic,
holonomic and semiholonomic jet functors, depending on a classical linear connection
on the base manifold. We also classify some natural transformations of this type. As an
application we introduce prolongation of higher order connections to jet bundles.

In general, the idea of iteration plays an important role in the theory
of jets. For example, the rth nonholonomic prolongation J̃rY of a fibered
manifold Y →M is defined by iteration,

J̃rY = J1(J̃r−1Y →M),

which yields the natural identification J̃r(J̃sY ) = J̃r+sY . Denoting by JrY
the classical rth holonomic prolongation of Y → M , we have the canonical
inclusion JrY ⊂ J̃rY given by jrxs 7→ j1x(u 7→ jr−1

u s) for every local section
s of Y . One can also recursively define the semiholonomic prolongation J rY
(see e.g. [8] and [19]). Then for r > 1 we have

JrY ⊂ J rY ⊂ J̃rY,
while for r = 1 all such spaces coincide. For the theory of jets we refer to
[14], [13], [17], [19], [26].

Taking into account applications of jet theory in higher order mechan-
ics and mathematical physics, it is also useful to study iteration of higher
order jets. This leads to the problem of exchange natural transformations
of iterated jet functors, which has direct applications in the prolongation of
higher order connections. But in [7] we have proved that for r 6= s there is
no natural transformation JrJs → JsJr and by [3] the only natural trans-
formation JrJs → JrJs is the identity. On the other hand, M. Modugno [24]
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has defined an exchange isomorphism exΛ : J1J1Y → J1J1Y depending on
a linear connection Λ on M . In this paper we solve the general problem:

Problem 1. Introduce exchange natural equivalences BF,G
Λ : FG→ GF

for any couple F,G of higher order holonomic, semiholonomic or nonholo-
nomic jet functors, depending on some linear connection Λ on the base man-
ifold.

First, in Section 2 we recall the exchange isomorphism JrJsY → JsJrY
from [6]. In Section 3 we introduce a natural equivalence B̃r,s

Λ : J̃rJ̃s →
J̃sJ̃r, which has a simple coordinate description. Section 4 is devoted to the
solution of Problem 1. Unfortunately, the complete description of all natural
transformations JrJs → JsJr depending on Λ is a difficult problem, which
has been solved only for r = s = 1, [15]. In Section 5 we classify all natural
transformations J2J1 → J2J1 and J2J1 → J1J2 depending on a torsion
free connection Λ on the base manifold.

In Section 7 we apply natural equivalences BF,G
Λ to prolongation of higher

order connections. We recall that an rth order nonholonomic connection in
the sense of C. Ehresmann [10] is a smooth section

Γ : Y → J̃rY.

Such a connection is called holonomic or semiholonomic if it has values
in JrY or in J rY , respectively. Clearly, first order connections Y → J1Y
can also be interpreted as lifting maps Y ×M TM → TY . Furthermore, a
linear smooth section TM → JrTM is called a linear rth order connec-
tion on M . For r = 1 we obtain the concept of classical linear connec-
tion on M , which can be equivalently interpreted as the covariant derivative
χ(M)×χ(M)→ χ(M). In general, higher order connections have many ap-
plications in differential geometry and in the geometric approach to math-
ematical physics (see e.g. [1], [2], [8], [9], [12], [18], [27], [28]). For example,
in [8] we have shown that rth order connections can be used to obtain a
geometric description of higher order geometric object fields.

Roughly speaking, by prolongation of connections we understand geomet-
ric constructions transforming a connection on Y →M into a connection on
FY → M or on FY → Y , where F is some bundle functor. We recall that
prolongation of first order connections was studied e.g. in [4], [14], [20], [24].
However, prolongation of higher order connections has not been studied sys-
tematically up till now. The second author [23] has recently defined prolonga-
tion of rth order holonomic connections from Y →M to FY →M by means
of some classical linear connection on M . In Section 7 we introduce another
prolongation of rth order holonomic, semiholonomic and nonholonomic con-
nections to any sth order (holonomic, semiholonomic or nonholonomic) jet
bundle by means of some classical linear connection on M .
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1. Preliminaries. In what follows we denote byMfm the category of
m-dimensional manifolds and their local diffeomorphisms, by FM the cate-
gory of fibered manifolds and fiber respecting mappings, by FMm the sub-
category of fibered manifolds with m-dimensional bases with fibered maps
over local diffeomorphisms, and by FMm,n ⊂ FMm the subcategory with
n-dimensional fibers and local fibered diffeomorphisms. All manifolds and
maps are assumed to be infinitely differentiable.

Obviously, Jr : FMm → FMm ⊂ FM is a bundle functor transforming
a fibered manifold Y → M into its r-jet prolongation JrY →M , and any
FMm-morphism ϕ : Y1→ Y2 covering ϕ : M1→M2 into Jrϕ : JrY1→ JrY2,
Jrϕ(jrxσ) = jrϕ(x)(ϕ ◦ σ ◦ϕ

−1). Similarly, J r and J̃r are also bundle functors
on FMm.

Denoting by (xi, yp) the canonical coordinates on Y , the induced coordi-
nates on J1Y are ypi = ∂yp/∂xi. The canonical coordinates on J̃rY can be
introduced by the following induction. First, assume we have the coordinates
(xi, ypi1...ir−1

) on J̃r−1Y , where i1, . . . , ir−1 ∈ {0, 1, . . . ,m}. Then the induced
coordinates on J̃rY are

xi, ypi1...ir−10 = ypi1...ir−1
, ypi1...ir−1i

=
∂

∂xi
ypi1...ir−1

.

Next, the semiholonomic prolongation J rY can be characterized by the
following condition: ypi1...ir = ypj1...jr provided the sequences obtained from
(i1 . . . ir) and (j1 . . . jr) by deleting all zeros and preserving the order of
nonzero indices coincide. So the local coordinates on J rY are (xi, ypi1...is),
s = 0, . . . , r. Finally, the holonomic prolongation JrY is characterized by
full symmetry in all subscripts.

Let G1, G2 : FMm → FM be bundle functors and Con be the bundle
of classical linear connections on the base manifold. By FMm-natural trans-
formations AΛ : G1 → G2 depending on Λ we understand FMm-natural
operators A : Con  (G1, G2) in the sense of [14] transforming classi-
cal linear connections Λ ∈ Con(M) into the space C∞M (G1Y,G2Y ) of all
FM-morphisms G1Y → G2Y covering the identity of M . According to [14],
such an operator A is a family of invariant regular operators (functions)
AY : Con(M)→ C∞M (G1Y,G2Y ) for any FMm-object Y →M . The invari-
ance of A means that if Λ1 ∈ Con(M1) and Λ2 ∈ Con(M2) are related by
a local diffeomorphism ϕ : M1 → M2 and Φ : Y1 → Y2 is an FMm-map
covering ϕ, then G2Φ◦AY1(Λ1) = AY2(Λ2)◦G1Φ. The regularity means that
A transforms smoothly parametrized families of classical linear connections
into smoothly parametrized families. Quite analogously one can also define
FMm,n-natural transformations. If we want to stress the fibered manifold,
we write (AΛ)Y instead of AΛ.
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2. Exchange natural equivalence of iterated holonomic jets.
Write Rm,n for the product fibered manifold Rm×Rn → Rm. In what follows
we identify sections of Rm,n with maps Rm → Rn and we use the notation

(1) jr0j
s(f(x, x)) = jr0(x→ jsx(x→ f(x, x))) ∈ Jr0Js(Rm,n).

Lemma 1. For any FMm-map Φ : Rm,n → Rm,k with Φ(x, y) =
(ϕ1(x), ϕ2(x, y)) and ϕ1(0) = 0 we have

(2) JrJsΦ(jr0j
sf(x, x)) = jr0j

s(ϕ2(ϕ−1
1 (x), f(ϕ−1

1 (x), ϕ−1
1 (x)))).

Proof. Indeed,

JrJsΦ(jr0j
sf(x, x)) = JrJsΦ(jr0(x→ jsx(x→ f(x, x))))

= jr0(x→ JsΦ(js
ϕ−1

1 (x)
(x→ f(ϕ−1

1 (x), x))))

= jr0(x→ jsx(x→ ϕ2(ϕ−1
1 (x), f(ϕ−1

1 (x), ϕ−1
1 (x)))))

= jr0j
s(ϕ2(ϕ−1

1 (x), f(ϕ−1
1 (x), ϕ−1

1 (x)))).

In [6] we correctly defined a linear isomorphism

(3)
Ar,sm,n : Jr0J

s(Rm,n)→ Js0J
r(Rm,n),

Ar,sm,n(j
r
0j
s(f(x, x))) = js0j

r(f(x− x, x)),
and we proved the following invariance condition:

Lemma 2. Let Φ : Rm,n → Rm,k be an FMm-map of the form Φ(x, y) =
(ϕ1(x), ϕ2(x, y)), where ϕ1 : Rm → Rm is a linear isomorphism and ϕ2 :
Rm,n → Rk. Then for any v ∈ Jr0Js(Rm,n) we have

(4) Ar,sm,k(J
rJsΦ(v)) = JsJrΦ(Ar,sm,n(v)).

Now let Y →M be an FMm,n-object, Λ be a classical linear connection
on the base manifold M and v ∈ JrzJsY , z ∈ M . Choose any fibered coor-
dinate system Ψ = (ψ,ψ) : Y → Rm,n such that ψ : M → Rm is a normal
coordinate system of Λ with center z, ψ(z) = 0. In [6] we have defined an
FMm-natural equivalence depending on Λ,

(5) (Ar,sΛ )Y : JrJsY → JsJrY, (Ar,sΛ )Y (v) := JsJrΨ−1(Ar,sm,n(J
rJsΨ(v))).

Using Lemma 2 we show easily that the definition of Ar,sΛ does not depend
on the choice of Ψ with the above property. So Ar,sΛ is defined correctly and
globally.

Denote by (xi, yp = yp00, y
p
i = ypi0, Y

p
i = yp0i, y

p
ij = ∂ypi /∂x

j) the canoni-
cal coordinates on J1J1Y and let Λkij be the coordinates of Λ. By [6], the
coordinate expression of A1,1

Λ is

(6) ypi = Y p
i , Y p

i = ypi , ypij = ypji+(ypk−Y
p
k )Λkji+

1
2
(ypk−Y

p
k )(Λkij−Λkji).
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3. Exchange natural equivalences of iterated nonholonomic jets.
Starting from A1,1

Λ , we can introduce an FMm-natural equivalence depend-
ing on Λ,

(7) Ãr,sΛ : J̃rJ̃s → J̃sJ̃r,

as follows. First, we have (Ã1,1
Λ )Y := (A1,1

Λ )Y : J̃1J̃1Y → J̃1J̃1Y. Then we
can define (Ãr,1Λ )Y : J̃rJ̃1Y → J̃1J̃rY by

(Ãr,1Λ )Y := (Ã1,1
Λ ) eJr−1Y

◦ J1(Ãr−1,1
Λ )Y ,

where (Ãr−1,1
Λ )Y : J̃r−1J̃1Y → J̃1J̃r−1Y . Finally, we define the map (7) by

(Ãr,sΛ )Y := J1(Ãr,s−1
Λ )Y ◦ (Ãr,1Λ ) eJs−1Y

.

Roughly speaking, Ãr,sΛ is defined by recursion fromA1,1
Λ . Then the coordinate

form of Ãr,sΛ for any r, s can be computed directly from (6) by differentiation.
In general, (Ar,sΛ )Y is not the restriction of (Ãr,sΛ )Y to JrJsY . Indeed, we

have

Lemma 3. For some Λ ∈ Con(M) and some FMm-object Y →M , the
isomorphism (Ã2,1

Λ )Y : J̃2J̃1Y → J̃1J̃2Y does not send J2J1Y into J1J2Y .

Proof. For the sake of simplicity we use the following notation of standard
coordinates. First, on J̃1Rm,n = Rm,n1 we have the coordinates (xi, yp =
yp0 , y

p
i = ∂yp/∂xi) and on J̃1J̃1Rm,n = Rm,n2 we have the induced coordi-

nates (xi, yp = yp00, y
p
i = ypi0, Y

p
j = yp0j , y

p
ij). Then the local coordinates on

J̃1(J̃1J̃1)Rm,n = (J̃1J̃1)J̃1Rm,n = J̃3Rm,n = Rm,n3 are

(xi, yp = yp000, y
p
i = ypi00, Y

p
j = yp0j0, y

p
ij = ypij0, y

p
00k, y

p
i0k, y

p
0jk, y

p
ijk).

Obviously,

(8) ypijk(σ) = ypjik(σ) for σ ∈ J1J2Rm,n.

Now let tΛ, t ∈ R, be a family of connections on Rm such that
tΛ1

12 = tΛ1
21 = tx3 and other tΛprs are zero.

Then tΛ is torsion free, so that (6) yields the following coordinate form
of Ã1,1

tΛ :

(9) ypi = Y p
i , Y p

i = ypi , ypij = ypji + (ypk − Y
p
k )tΛkji.

Choose a section η : Rm → J̃1J̃1Rm,1 such that

(10) y1
1(η(0))− Y 1

1 (η(0)) 6= 0 and j10η ∈ J2J1Rm,1.

By (9), we have

(11) y1
ij(Ã

1,1
tΛ (η(x))) = y1

ji(η(x)) + (y1
1(η(x))− Y 1

1 (η(x)))tΛ1
ji(x),
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which yields (because tΛ1
ji(0) = 0)

y1
ijk((J

1Ã1,1
tΛ )(j10η)) = y1

ijk(j
1
0(Ã1,1

Λ ◦ η)) =
∂

∂xk 0
(y1
ij(Ã

1,1
tΛ (η(x))))

=
∂

∂xk 0
(y1
ji(η(x))) +

∂

∂xk 0
(. . .)tΛ1

ji(0) + (y1
1(η(0))− Y 1

1 (η(0)))tΛ1
ji;k(0)

= y1
jik(j

1
0η) + (y1

1(η(0))− Y 1
1 (η(0)))tΛ1

ji;k(0).

From tΛprs(0) = 0 and (9) it follows that

y1
ijk(Ã

1,1
tΛ (σ)) = (y1

i )jk(Ã
1,1
tΛ (σ)) = (y1

i )kj(σ) = y1
ikj(σ)

for any σ ∈ ((J̃1J̃1)J̃1Rm,1)0 = (J̃3Rm,1)0. This implies

y1
ijk(Ã

2,1
tΛ (j10η)) = y1

ijk(Ã
1,1
tΛ ((J1Ã1,1

tΛ )(j10η))) = y1
ikj((J

1Ã1,1
tΛ )(j10η))

= y1
kij(j

1
0η) + (y1

1(η(0))− Y 1
1 (η(0)))tΛ1

ki;j(0).

From tΛ1
12;3(0)= t and the first condition of (10) it follows that y1

231(Ã
2,1
tΛ (j10η))

depends on t in an essential way. On the other hand, y1
321(Ã

2,1
tΛ (j10η)) does not

depend on t (as tΛ1
13;2(0) = 0). By (8), Ã2,1

tΛ (j10η) 6∈ (J1J2Rm,1)0 for some t.

Now we define another FMm-natural equivalence B̃
r,s
Λ : J̃rJ̃s → J̃sJ̃r

depending on Λ, which is an extension of Ar,sΛ . Let Λ0 be the canonical flat
connection on Rm and consider natural equivalences (5) and (7) depending
on Λ0. We first prove

Lemma 4. The natural isomorphism (Ãr,s
Λ0)Rm,n : J̃rJ̃sRm,n→ J̃sJ̃rRm,n

sends (JrJsRm,n)0 into (JsJrRm,n)0. Moreover, the restriction of Ãr,s
Λ0 to

(JrJsRm,n)0 coincides with the restriction of Ar,s
Λ0 to (JrJsRm,n)0.

Proof. We proceed by induction with respect to (r, s). By the defini-
tion of Ãr,sΛ , the assertion is true for (r, s) = (1, 1). We first compute
(Ar,s

Λ0)Rm,n(jrx0
jsf(x, x)), x0 ∈ Rm. Clearly, the translation τ−x0 : Rm → Rm

by −x0 is a normal coordinate system of Λ0 with center x0. By (5) we have

(12) Ar,s
Λ0(jrx0

jsf(x, x))

= JsJr(τx0 × idRn)(Ar,sm,n(J
rJs(τ−x0 × idRn)(jrx0

jsf(x, x))))

= JsJr(τx0 × idRn)(Ar,sm,n(j
r
0j
s(f(x+ x0, x+ x0)))))

= JsJr(τx0 × idRn)(js0j
rf(x− x+ x0, x+ x0))

= jsx0
jrf((x− x0)− (x− x0) + x0, (x− x0) + x0) = jsx0

jrf(x− x+ x0, x).

Now we prove the assertion for (r, 1) from (r− 1, 1). Using (12) for (r− 1, 1)
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and the inductive assumption we obtain

Ãr,1
Λ0(jr0j

1f(x, x)) = Ã1,1
Λ0 (J1(Ãr−1,1

Λ0 )(j10(x0 → jr−1
x0

(x→ j1x(x→ f(x, x))))))

= A1,1
Λ0 (J1(Ar−1,1

Λ0 )(j10(x0 → jr−1
x0

(x→ j1x(x→ f(x, x))))))

= A1,1
Λ0 (j10(x0 → Ar−1,1

Λ0 (jr−1
x0

(x→ j1x(x→ f(x, x))))))

= A1,1
Λ0 (j10(x0 → j1x0

(x→ jr−1
x (x→ f(x− x+ x0, x)))))

= j10(x0 → j1x0
(x→ jr−1

x (x→ f(x− x+ (x− x0), x))))

= j10(x0 → j1x0
(x→ jr−1

x (x→ f(x− x0, x))))

= j10(x0 → jrx0
(x→ f(x− x0, x))) = j10(x→ jrx(x→ f(x− x, x)))

= j10j
rf(x− x, x) = Ar,1

Λ0(jr0j
1f(x, x)).

Finally we prove the assertion for (r, s) from (r, s − 1). Applying (12),
the above equality and the inductive assumption we obtain

Ãr,s
Λ0(jr0j

sf(x, x)) = J1(Ãr,s−1
Λ0 )(Ãr,1

Λ0(jr0(x→ j1x(x0 → js−1
x0

(x→ f(x, x))))))

= J1(Ar,s−1
Λ0 )(Ar,1

Λ0(jr0(x→ j1x(x0 → js−1
x0

(x→ f(x, x))))))

= J1(Ar,s−1
Λ0 )(j10(x→ jrx(x0 → js−1

x0
(x→ f(x0 − x, x)))))

= j10(x→ Ar,s−1
Λ0 (jrx(x0 → js−1

x0
(x→ f(x0 − x, x)))))

= j10(x→ js−1
x (x0 → jrx0

(x→ f(x− x0 − x+ x, x))))
= js0(x→ jrx(x→ f(x− x, x))) = js0j

rf(x− x, x) = Ar,s
Λ0(jr0j

sf(x, x)).

Lemma 5. Let (xi, yp) be the usual fibered coordinate system on Rm,n

and Λ0 be the canonical flat linear connection on Rm. Then (Ãr,sΛ0
)Rm,n :

J̃rJ̃sRm,n → J̃sJ̃rRm,n treated as (Ãr,sΛ0
)Rm,n : J̃r+sRm,n → J̃r+sRm,n has

the coordinate form

(13) xi ◦ (Ãr,sΛ0
)Rm,n = xi, ypj1,...,jr,i1,...,is ◦ (Ãr,sΛ0

)Rm,n = ypi1,...,is,j1,...,jr

for all i = 1, . . . ,m, p = 1, . . . , n and i1, . . . , is, j1, . . . , jr = 0, 1, . . . ,m.

Proof. We proceed by induction with respect to (r, s). The case (r, s) =
(1, 1) follows from (6) and from the fact (Λ0)kij = 0. Assume that (13) is true
for (r−1, 1) and we prove it for (r, 1). Using the relevant definitions and the
inductive assumption we have

ypj1,...,jr,i1 ◦ (Ãr,1Λ0
)Rm,n = ypj1,...,jr,i1 ◦ (Ã1,1

Λ0
) eJr−1Rm,n ◦ J

1(Ãr−1,1
Λ0

)Rm,n

= ypj1,...,jr−1,i1,jr
◦ (J1Ãr−1,1

Λ0
)Rm,n = ypi1,j1,...,jr .

Assume now that (13) is true for (r, s− 1) and we prove it for (r, s). We can
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write

ypj1,...,jr,i1,...,is ◦ (Ãr,sΛ0
)Rm,n = ypj1,...,jr,i1,...,is ◦ J

1(Ãr,s−1
Λ0

)Rm,n ◦ (Ãr,1Λ0
) eJs−1Rm,n

= ypi1,...,is−1,j1,...,jr,is
◦ (Ãr,1Λ0

) eJs−1Rm,n = ypi1,...,is,j1,...,jr .

Write
B̃r,s
m,n : (J̃rJ̃sRm,n)0 → (J̃sJ̃rRm,n)0

for the restriction of (Ãr,s
Λ0)Rm,n to the fiber over 0 ∈ Rm. Quite analogously to

the linear isomorphism (3), the map B̃r,s
m,n satisfies the invariance condition:

Lemma 6. Let Φ : Rm,n → Rm,k be as in Lemma 2. Then for any v ∈
(J̃rJ̃sRm,n)0 we have

(14) B̃r,s
m,k(J̃

rJ̃sΦ(v)) = J̃sJ̃rΦ(B̃r,s
m,n(v)).

Proof. Clearly, ϕ1 preserves Λ0. Then our assertion follows immediately
from the invariance of Ãr,s

Λ0 with respect to Φ.

Let Ψ = (ψ,ψ) : Y → Rm,n be any fibered coordinate system such that
ψ : M → Rm is a normal coordinate system of Λ with center z, ψ(z) = 0.

Definition 1. Let Y →M be an FMm,n-object and let Λ be a classical
linear connection on M . We define an FMm-natural equivalence depending
on Λ,

(15) (B̃r,s
Λ )Y : J̃rJ̃sY → J̃sJ̃rY, (B̃r,s

Λ )Y (v) := J̃sJ̃rΨ−1(B̃r,s
m,n(J̃

rJ̃sΨ(v))),

v ∈ J̃rz J̃sY , z ∈M .

From Lemma 6 it follows that this definition does not depend on the
choice of a fibered coordinate system Ψ with the above property. Using
Lemma 4 we obtain directly

Proposition 1. B̃r,s
Λ : J̃rJ̃s → J̃sJ̃r sends JrJsY into JsJrY and the

restriction of B̃r,s
Λ to JrJsY is equal to Ar,sΛ .

Moreover, we have the following coordinate description of B̃r,s
Λ :

Proposition 2. Let (xi, yp) be the usual fibered coordinate system on
Rm,n and let Λ be a linear connection on Rm such that (xi) is a normal
coordinate system of Λ with center 0. Then for all v ∈ (J̃r+sRm,n)0 we have

ypj1,...,jr,i1,...,is ◦ (B̃r,s
Λ )Rm,n(v) = ypi1,...,is,j1,...,jr(v).

Proof. This follows from Lemma 5 and from the definition of B̃r,s
Λ .
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4. Solution of Problem 1

Proposition 3. Let F be either Jr or J r or J̃r, and G be either Js or
J s or J̃s. Then B̃r,s

Λ : J̃rJ̃s → J̃sJ̃r sends FGY into GFY .

Proof. Because of the invariance of B̃r,s
Λ it suffices to show that (B̃r,s

Λ )Rm,n
sends (FGRm,n)0 into (GFRm,n)0 for any linear connection Λ on Rm such
that the usual coordinate system on Rm is a normal one for Λ with center
0 ∈ Rm. This follows immediately from Proposition 2 and from the coordi-
nate characterization of holonomic and semiholonomic prolongation.

Definition 2. Let F be either Jr or J r or J̃r, and G be either Js or J s
or J̃s. The restriction from Proposition 3 defines FMm-natural equivalences
depending on Λ,

(16) BF,G
Λ : FG→ GF.

In particular, BJr,Js

Λ = Ar,sΛ and B
eJr, eJs
Λ = B̃r,s

Λ .

Proposition 4. We have B̃s,r
Λ ◦ B̃

r,s
Λ = id. In particular, BG,F

Λ ◦ BF,G
Λ

= id.

Proof. This is an immediate consequence of Proposition 2 and the defi-
nition of B̃r,s

Λ .

An important feature of the canonical involution TTN → TTN of the
iterated tangent bundle is that this map interchanges the two projections of
TTN into TN . This concept can be generalized as follows.

Definition 3. Let F andG be two bundle functors on FMm and denote
by pFY : FY → Y , pGY : GY → Y the bundle projections. An FMm-natural
equivalence AΛ : FG→ GF depending on Λ is called an involution if

(17) pGFY ◦ (AΛ)Y = F (pGY ).

This means that (AΛ)Y interchanges the projections F (pGY ) : FGY
→ FY and pGFY : GFY → FY . One verifies easily

Proposition 5. BF,G
Λ : FG→ GF is an involution. In particular, Ar,sΛ :

JrJs → JsJr and B̃r,s
Λ : J̃rJ̃s → J̃sJ̃r are involutions.

Remark 1. It is well known that for every pair F,G of product pre-
serving functors on the category Mf there is an exchange natural equiva-
lence FG → GF , [14]. In particular, denoting by T rmN = Jr0 (Rm, N) the
bundle of m-dimensional velocities of order r, we have a natural equivalence
κ : T rmT

s
m → T smT

r
m, which generalizes the classical involution of iterated

tangent bundle. In [6] we have shown that the isomorphism (3) corresponds
to the canonical isomorphism κ. This means that our natural equivalences
BF,G
Λ from Problem 1 generalize the exchange map of iterated velocities func-

tors to the case of fibered manifolds. However, to define exchange natural
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equivalences of iterated jet functors, the use of some auxiliary connection Λ
is unavoidable. We also point out that there is an open problem to define
an exchange natural equivalence FG→ GF depending on Λ, for any couple
F,G of fiber product preserving functors on FMm. So our natural equiva-
lences BF,G

Λ are particular solutions of this general problem for any couple
of higher order jet functors.

5. Classification of some natural transformations of iterated jets.
Write J0Y := Y and denote by πrs : JrY → JsY the jet projection. It is well
known that πrr−1 : JrY → Jr−1Y is an affine bundle, the associated vector
bundle of which is the pullback of SrT ∗M⊗V Y over Jr−1Y . If v ∈ (J2J1Y )y,
y ∈ Yx, x ∈ M , then we have two elements v′ = π2

0(v) ∈ (J1Y )y and
v′′ = J1π1

0 ◦ π2
1(v) ∈ (J1Y )y. So we can define a fibered map covering the

identity of Y ,

(18) σ : J2J1Y → T ∗M ⊗ V Y, σ(v) := v′′ − v′ ∈ T ∗xM ⊗ VyY.

Suppose we have an Mfm-natural operator C : Conτ  T ⊗ S2T ∗ ⊗ T ∗
transforming torsion free classical linear connections Λ on M into tensor
fields C(Λ) of type T ⊗S2T ∗⊗T ∗ on M . Given a torsion free classical linear
connection Λ on M , we have the contraction

〈C(Λ), σ〉 : J2J1Y → S2T ∗M ⊗ T ∗M ⊗ V Y

covering the identity of Y (we contract T from C with T ∗ from σ). This can
obviously be treated as the fibered map

〈C(Λ), σ〉 : J2J1Y → (π1
0 ◦ π1

0)
∗(S2T ∗M ⊗ T ∗M ⊗ V Y )

covering the identity of J1J1Y , where ( )∗ denotes pullback.
Obviously, π2

1 : J2J1Y → J1J1Y is an affine bundle with the associ-
ated vector bundle (π1

0)
∗(S2T ∗M ⊗ V J1Y ), where π1

0 : J1J1Y → J1Y and
V J1Y → J1Y is the vertical bundle of J1Y → M . But π1

0 : J1Y → Y is
an affine bundle with the associated vector bundle T ∗M ⊗ V Y . Then the
vertical bundle V Y J1Y of π1

0 : J1Y → Y is (π1
0)
∗(T ∗M ⊗ V Y ). The obvi-

ous inclusion V Y J1Y ⊂ V J1Y yields the induced inclusion (vector bundle
monomorphism)

(π1
0 ◦ π1

0)
∗(S2T ∗M ⊗ T ∗M ⊗ V Y ) ⊂ (π1

0)
∗(S2T ∗M ⊗ V J1Y )

over the identity of J1J1Y . So we have an FMm-natural transformation
depending on Λ

(ACΛ)Y := idJ2J1Y +〈C(Λ), σ〉 : J2J1Y → J2J1Y

covering the identity of M (even the identity of J1J1Y ). In the next section
we prove
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Theorem 1. Let n ≥ 2. All FMm,n-natural transformations AΛ : J2J1

→ J2J1 depending on a torsion free classical linear connection Λ on the base
manifold are of the form

AΛ := ACΛ = idJ2J1 +〈C(Λ), σ〉
for anMfm-natural operator C : Conτ  T⊗S2T ∗⊗T ∗. Given an FMm,n-
natural transformation AΛ as above, the corresponding operator C is deter-
mined uniquely.

Remark 2. An example of such anMfm-natural operator C : Conτ  
T ⊗ S2T ∗ ⊗ T ∗ is
C(Λ)(ω, u, w, v) = (sym(RicΛ))(u,w)〈ω, v〉, u, v, w ∈ TxM,ω ∈ T ∗xM,

where RicΛ is the Ricci tensor field of Λ and sym denotes symmetrization.
By Theorem 33.16 from [14], given a linear connection Λ on M , all C(Λ)
can be obtained from the curvature tensor field RΛ of Λ by the following
procedure: (1) we tensor RΛ several times with the identity tensor field
on M ; (2) we apply permutations of arguments of such tensor fields; (3) we
apply appropriate contractions of such tensor fields to obtain tensor fields of
type (1, 3); (4) we take appropriate symmetrizations of such tensor fields to
obtain tensor fields of type T ⊗ S2T ∗ ⊗ T ∗; (5) we take linear combinations
of such tensor fields.

Remark 3. Using Ar,sΛ : JrJs → JsJr defined by (5), Theorem 1 also
gives the classification of all FMm,n-natural transformations BΛ : J2J1

→ J1J2, DΛ : J1J2 → J2J1 and EΛ : J1J2 → J1J2 depending on a torsion
free connection Λ. For example, all such BΛ are of the form

(19) BΛ := A2,1
Λ ◦A

C
Λ = A2,1

Λ ◦ (idJ2J1 +〈C(Λ), σ〉) : J2J1 → J1J2

for anyMfm-natural operator C : Conτ  T ⊗ S2T ∗ ⊗ T ∗.

6. Proof of Theorem 1. We denote the usual coordinates on Rm,n by
x1, . . . , xm, y1, . . . , yn. Taking into account the notation (1), the coordinates
on Rm × Rm will be denoted by x1, . . . , xm, x1, . . . , xm. In this section we
will use the methods from [14] and [16].

Lemma 7. Let r = 1, 2, . . . and s = 0, 1, 2, . . . . Let K ⊂ Jr0J
sRm,n be a

vector subspace such that

(20) jr0j
s(xi, 0, . . . , 0) ∈ K for i = 1, . . . ,m,

(21) Jr0J
sϕ(K) ⊂ K

for any FMm,n-map ϕ : Rm,n → Rm,n covering idRm . If n ≥ 2, then K =
Jr0J

sRm,n.

Proof. In the proof we use several times the formula (2) for special FMm-
maps Φ. First, using the invariance (21) of K with respect to the FMm,n-map
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(x1, . . . , xm, y1, y2 + xα, . . . , yn), from jr0j
s(0, . . . , 0) ∈ K we obtain

(22) jr0j
s(0, xα, 0, ,0) ∈ K

for any m-tuple α. Applying (21) for the map (x1, . . . , xm, y1 + (y1)k,
y2, . . . , yn), from (20) we get

(23) jr0j
s((xi)k, 0, . . . , 0) ∈ K

for any k = 0, 1, 2, . . . and i = 1, . . . ,m. By induction on s ≤ m we prove

(24) jr0j
s((x1)k1 . . . (xs)ks , 0, . . . , 0) ∈ K.

For s = 1 we apply (23). Suppose that (24) is true for s < m. To prove it
for s + 1, applying (21) for permutations of fibered coordinates, from (23)
we get

(25) jr0j
s(0, (xs+1)ks+1 , 0, . . . , 0) ∈ K.

Taking the sum of (24) and (25) and considering the induction assumption
we deduce

(26) jr0j
s((x1)k1 . . . (xs)ks , (xs+1)ks+1 , 0, . . . , 0) ∈ K.

Applying (21) for the FMm,n-map (x1, . . . , xm, y1+y1y2, y2, . . . , yn), from (26)
we deduce (24) for s+ 1 in place of s, so that the proof of (24) is complete.
For s = m we have

(27) jr0j
s(xα, 0, . . . , 0) ∈ K

for any m-tuple α. From (22) and (27) it follows that

jr0j
s(xα, xβ, 0, . . . , 0) ∈ K.

Then (21) for the map (x1, . . . , xm, y1 + y1y2, y2, . . . , yn) yields

jr0j
s(xαxβ, 0, . . . , 0) ∈ K

for any m-tuples α and β. Finally, applying (21) for permutations of fibered
coordinates we obtain

(28) jr0j
s(0, . . . , xαxβ, . . . , 0) ∈ K

for any m-tuples α and β with xαxβ in position s = 1, . . . , n. Since all
elements (28) generate the vector space Jr0JsRm,n, we have proved K =
Jr0J

sRm,n.

Lemma 8. If n ≥ 2, then (AΛ)Y : J2J1Y → J2J1Y covers the identity of
J1J1Y for any FMm,n-object Y → M and any torsion free classical linear
connection Λ on M . More precisely, π2

1 ◦AΛ = π2
1.

Proof. By the existence of normal coordinates it suffices to show that

π2
1 ◦AΛ(v) = π2

1(v)

for any v ∈ J2
0J

1Rm,n and any torsion free classical linear connection Λ on
Rm with vanishing Christoffel symbols at 0 ∈ Rm. (We may assume that the
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Christoffel symbols of Λ vanish at 0 ∈ Rm because the Christoffel symbols of
torsion free classical linear connections at the center of normal coordinates
vanish.) We fix such a Λ and denote

K := {v ∈ J2
0J

1Rm,n | π2
1 ◦AΛ(v) = π2

1(v)}.
It suffices to show K = J2

0J
1Rm,n. Now we use several times the formula (2)

for special FMm-maps Φ. Because of Lemma 7 we have to verify that K
is a vector subspace and that the conditions (20) and (21) of Lemma 7 for
r = 2 and s = 1 are satisfied. Applying the invariance of π2

1 ◦ AΛ and π2
1

with respect to fiber homotheties we deduce

π2
1 ◦AΛ(tv) = tπ2

1 ◦AΛ(v) and π2
1(tv) = tπ2

1(v) for t 6= 0.

By the homogeneous function theorem [14, Th. 24.1], π2
1◦AΛ(v) and π2

1(v) are
linear in v. Hence K is a vector subspace in J2

0J
1Rm,n. Next, the invariance

of A yields

π2
1 ◦AΛ ◦ J2J1ϕ = J1J1ϕ ◦ π2

1 ◦AΛ, π2
1 ◦ J2J1ϕ = J1J1ϕ ◦ π2

1

for FMm,n-maps ϕ : Rm,n → Rm,n covering idRm . Therefore K satisfies (21).
So it remains to verify (20). Write

π2
1 ◦AΛ(j20j

1(xi, 0, . . . , 0))

= j10j
1
((
ak(Λ) +

m∑
j=1

bkj (Λ)xj +
m∑
j=1

ckj (Λ)xj +
m∑

a,b=1

n∑
k=1

dkab(Λ)xaxb
))

for unique real numbers ak(Λ), bkj (Λ), ckj (Λ) and dkab(Λ) depending on the
system (Λpq,r;α(0)) of all derivatives Λpq,r:α(0) at 0 of the Christoffel symbols
Λpq,r of Λ. Below, for the sake of simplicity we usually omit the brackets and
write Λpq,r;α(0) instead of (Λpq,r;α(0)). By the nonlinear Peetre theorem [14,
Th. 19.7] we can assume Λpq,r:α(0) = 0 for |α| ≥ K for some finite K. Using
the invariance of A with respect to the base homotheties t idRm × idRn we
obtain

ak(t|α|+1Λpq,r:α(0)) =
1
t
ak(Λpq,r:α(0)), bkj (t

|α|+1Λpq,r;α(0)) = bkj (Λ
p
q,r;α(0)),

ckj (t
|α|+1Λpq,r;α(0)) = ckj (Λ

p
q,r:α(0)), dkab(t

|α|+1Λpq,r;α(0)) = tdkab(Λ
p
q,r;α(0))

for t 6= 0. As Λpq,r(0) = 0, by the homogeneous function theorem we deduce

ak(Λ) = 0, bkj (Λ) = bkj (Λ0), ckj (Λ) = ckj (Λ0), dkab(Λ) = 0,

where Λ0 is the connection on Rm with vanishing Christoffel symbols. Thus

π2
1 ◦AΛ(j20j

1(xi, 0, . . . , 0)) = π2
1 ◦AΛ0(j

2
0j

1(xi, 0, . . . , 0)).

So we can assume Λ = Λ0. Applying the invariance of AΛ0 with respect
to fiber homotheties we show that (AΛ0)0 : J2

0J
1Rm,n → J2

0J
1Rm,n is
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linear. Next, using the invariance of AΛ0 with respect to (t1x1, . . . , tmxm,
y1, τy2, . . . , τyn) for t1, . . . , tm, τ 6= 0 we prove easily

(29) AΛ0(j
2
0j

1(xi, 0, . . . , 0)) = j20j
1(axi + bxi, 0, . . . , 0)

for some a, b ∈ R. By the invariance of AΛ0 with respect to the FMm,n-map
(x1, . . . , xm, y1 − xi, y2, . . . , yn) we deduce from (29) that

(30) AΛ0(j
2
0j

1(xi − xi, 0, . . . , 0)) = j20j
1(axi + bxi − xi, 0, . . . , 0).

By the invariance of AΛ0 with respect to the FMm,n-map (x1, . . . , xm,
y1 + (y1)2, y2, . . . , yn) we get from (30)

AΛ0(j
2
0j

1((xi − xi)2, 0, . . . , 0)) = j20j
1((axi + bxi − xi)2, 0, . . . , 0).

Since j20j1(xi − xi)2 = 0 (as j1x(xi − xi)2 = 0), we have

0 = j20j
1((a+ b− 1)xi + (b− 1)(xi − xi))2

= j20j
1((a+ b− 1)2(xi)2 + 2(a+ b− 1)(b− 1)xi(xi − xi)).

Then (a+ b− 1)2 = 0 and 2(a+ b− 1)(b− 1) = 0, so that a+ b = 1. Simi-
larly, applying the invariance of AΛ0 with respect to the FMm,n-morphism
(x1, . . . , xm, y1 + (y1)3, y2, . . . , yn), we get from (29)

AΛ0(j
2
0j

1((xi)3, 0, . . . , 0)) = j20j
1((axi + bxi)3, 0, . . . , 0).

Since j20j1(xi)3 = 0 (as j20(xi)3(. . .) = 0), we have

0 = j20j
1(axi + bxi)3 = j20j

1((a+ b)xi + b(xi − xi))3 = j20j
1((a+ b)3(xi)3

+ 3(a+ b)2(xi)2b(xi − xi) + 3(a+ b)xib2(xi − xi)2 + b3(xi − xi)3)
= 3(a+ b)2bj20j

1((xi)2(xi − xi)).
Hence 3(a+ b)2b = 0. But a+ b = 1, so that b = 0. Then

A(Λ0)(j20j
1(xi, 0, . . . , 0)) = j20j

1(xi, 0, . . . , 0),

which yields

π2
1 ◦AΛ0(j

2
0j

1(xi, 0, . . . , 0)) = π2
1(j

2
0j

1(xi, 0, . . . , 0)).

So we have obtained the condition (20) of Lemma 7, which completes the
proof.

Let AΛ be the natural transformation from Theorem 1. Using Lemma 8
and the affine bundle structure, for any torsion free classical linear connection
Λ on M and any FMm,n-object Y → M we have the unique fibered map
B(Λ) : J2J1Y → (π1

0)
∗(S2T ∗M ⊗ V J1Y ) covering the identity of J1J1Y

such that (AΛ)Y = idJ2J1Y +B(Λ). Obviously, B(Λ) can be treated as the
fibered map

B(Λ) : J2J1Y → S2T ∗M ⊗ V J1Y

covering the identity of J1Y , where V J1Y → J1Y is the vertical bundle of
J1Y →M .
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Lemma 9. We have

B(Λ) : J2J1Y → S2T ∗M ⊗ V Y J1Y ⊂ S2T ∗M ⊗ V J1Y,

where V Y J1Y is the vertical bundle of π1
0 : J1Y → Y .

Proof. Composing B(Λ) with the differential of π1
0 : J1Y → Y we obtain

the fibered map
B̃(Λ) : J2J1Y → S2T ∗M ⊗ V Y

covering the identity of Y . Because of the FMm,n-invariance of B(Λ), the
existence of normal coordinates of Λ and the fact that Λ is torsion free, under
standard identifications it suffices to show

B̃(Λ)(v) = 0 ∈ S2Rm∗ ⊗ Rn = S2T ∗0 Rm ⊗ TyRn

for any v ∈ (J2
0J

1Rm,n)y, y ∈ (Rm,n)0 = Rn and for a torsion free classical
linear connection Λ with vanishing Christoffel symbols at 0 ∈ Rm. We will
use similar methods to the proof of Lemma 8. Fix a Λ on Rm with the above
mentioned properties and write

K = {v ∈ J2
0J

1Rm,n | B̃(Λ)(v) = 0}.
It remains to show K = J2

0J
1Rm,n. For this, we prove the assumptions of

Lemma 7. By the invariance of B̃(Λ) with respect to fiber homotheties we
deduce that B̃(Λ)(v) is linear in v. Hence K is a vector subspace. Applying
the invariance of B̃(Λ) with respect to FMm,n-maps covering the identity
of Rm we deduce the condition (21) of Lemma 7. It remains to show

(31) B̃(Λ)(j20j
1(xi, 0, . . . , 0)) = 0 ∈ S2T ∗0 Rm ⊗ T0Rn.

For this we use the invariance of B̃ with respect to t−1 idRm × idRn to obtain
the homogeneity condition

tB̃(Λpq,r;α(0))(j20j
1(xi, 0, . . . , 0)) = B̃(t|α|+1Λpq,r;α(0))(j20j

1(xi, 0, . . . , 0)).

Taking into account Λpq,r(0) = 0 and using the same arguments as in the
proof of Lemma 8 (i.e. the nonlinear Peetre theorem and the homogeneous
function theorem) we obtain (31).

But we remarked above that V Y J1Y = (π1
0)
∗(T ∗M ⊗ V Y ). Hence by

Lemma 9 we can treat B(Λ) as the fibered map

B(Λ) : J2J1Y → S2T ∗M ⊗ T ∗M ⊗ V Y
covering the identity of Y . Thus we have proved

Proposition 6. If n ≥ 2, then AΛ can be decomposed in the form

(32) (AΛ)Y = idJ2J1Y +B(Λ)

for some fibered map B(Λ) : J2J1Y → S2T ∗M ⊗ T ∗M ⊗ V Y covering the
identity of Y .
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Proposition 7. Let n ≥ 2 and consider B(Λ) from Proposition 6. There
is a uniqueMfm-natural operator C : Qτ  T ⊗ S2T ∗ ⊗ T ∗ such that

(33) B(Λ) = 〈C(Λ), σ〉 : J2J1Y → S2T ∗M ⊗ T ∗M ⊗ V Y
for any torsion free classical linear connection Λ on M and any FMm,n-
object Y →M , where σ : J2J1Y → T ∗M ⊗ V Y is the fibered map (18).

Proof. Let Λ be a torsion free classical linear connection on an m-dimen-
sional manifold M . We have the fibered map

B(Λ) : J2J1(M × Rn)→ S2T ∗M ⊗ T ∗M ⊗ V (M × Rn)

covering the identity of M ×Rn, where M ×Rn is the trivial bundle over M
with fiber Rn. Thus, for x0 ∈M we have

B(Λ)(x0,0) : (J2J1(M × Rn))(x0,0) → S2T ∗x0
M ⊗ T ∗x0

M ⊗ T0Rn.

We define a tensor field C(Λ) of type T ⊗ S2T ∗ ⊗ T ∗ on M by

(34) 〈C(Λ)x0 , ω ⊗ (u� v)⊗ w〉
= dy1(〈B(Λ)(x0,0)(j

2
x0
j1(f(x), 0, . . . , 0)), (u� v)⊗ w〉) ∈ R

for any x0 ∈M , any ω ∈ T ∗x0
M and any u, v, w ∈ Tx0M , where y1 : Rn → R

is the first coordinate and f : M → R is such that f(x0) = 0 and dx0f = ω.
By Lemma 10 below, the definition of C(Λ) is correct and (33) follows from
Lemma 11. It remains to prove the uniqueness. If C ′ : Qτ  T ⊗ S2T ∗ ⊗ T ∗
is anotherMfm-natural operator such that B = 〈C ′, σ〉, then we obtain (38)
with C ′ instead of C, so that by (39) we get (34) with C ′ instead of C over
0 ∈ Rm. ByMfm-invariance we have C = C ′, which completes the proof.

Lemma 10. The element C(Λ)x0 is well-defined and belongs to Tx0M ⊗
S2T ∗x0

M ⊗ T ∗x0
M .

Proof. It suffices to prove that B(Λ)(x0,0) is linear and

(35) B(Λ)(x0,0)(j
2
x0
j1(f1(x)f2(x), 0, . . . , 0)) = 0

for any f1, f2 : M → R with f1(x0) = f2(x0) = 0. Then the defini-
tion (34) is independent of the choice of f and C(Λ)x0 ∈ Tx0M ⊗ S2T ∗x0

M
⊗ T ∗x0

M . The linearity is a simple consequence of the invariance of B(Λ)
with respect to the fiber homotheties idM ×t idRn and the homogeneous
function theorem. Applying the FMm,n-map idM ×(y1 + y1y2, y2, . . . , yn)
to B(Λ)(x0,0)(j2x0

j1(f1(x), f2(x), 0, . . . , 0)), we obtain (35). More precisely,

B(Λ)(x0,0)(j
2
x0
j1(f1(x) + f1(x)f2(x), f2(x), 0, . . . , 0))

= B(Λ)(x0,0)(j
2
x0
j1(f1(x), f2(x), 0, . . . , 0)),

which implies (because of linearity) the equality (35).

Lemma 11. We have B(Λ) = 〈C(Λ), σ〉.
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Proof. Because of the FMm,n-invariance of B and C it suffices to show

B(Λ)(v) = 〈C(Λ)0, σ(v)〉 ∈ S2Rm∗ ⊗ Rm∗ ⊗ Rn(36)

= S2T ∗0 Rm ⊗ T ∗0 Rm ⊗ TyRn

for any torsion free classical linear connection Λ on Rm with vanishing
Christoffel symbols at 0 ∈ Rm and any v ∈ (J2

0J
1Rm,n)y, y ∈ (Rm,n)0 = Rn.

Define
K = {v ∈ J2

0J
1Rm,n | B(Λ)(v) = 〈C(Λ)0, σ(v)〉}.

We have to verify the assumptions of Lemma 7. Because of the invariance of
B(Λ) and 〈C(Λ), σ〉 with respect to fiber homotheties and the homogeneous
function theorem, both sides of (36) are linear in v. So K is a vector space.
The invariance of B(Λ) and 〈C(Λ), σ〉 with respect to FMm,n-maps covering
the identity implies (21). It remains to prove (20), i.e.

(37) B(Λ)(j20j
1(xi, 0, . . . , 0)) = 〈C(Λ)0, σ(j20j

1(xi, 0, . . . , 0))〉
for i = 1, . . . ,m. Using the invariance of both sides of (37) (separately) with
respect to (x1, . . . , xm, y1, ty2, . . . , tyn) we deduce that the dyj coordinates
of both sides of (37) are zero for j = 2, . . . , n. Thus it remains to verify

(38) dy1(〈B(Λ)(j20j
1(xi, 0, . . . , 0)), (u� v)⊗ w〉)
= dy1(〈〈C(Λ)0, (u� v)⊗ w〉, σ(j20j

1(xi, 0, . . . , 0))〉)
for any u, v, w ∈ T0Rm. By the definition of σ it is easy to see that

(39) σ(j20j
1(xi, 0, . . . , 0)) = d0x

i ⊗ ∂

∂y1
|(0,0)

.

So the right hand side of (38) is equal to 〈C(Λ)0, d0x
i ⊗ (u � v) ⊗ w〉 and

(38) follows from the definition (34).

7. Prolongation of higher order connections

A. Prolongation of connections into connections on FY → M .
Let F be any of the functors Jr, J r, J̃r. In [4] (for r = 1) and in [5] (for
all r) we have proved that there is no FMm,n-natural operator transform-
ing rth order holonomic connections on Y → M into sth order holonomic
connections on FY → M . So the use of a classical linear connection Λ in
the following geometric constructions is unavoidable.

Definition 4. Let G be either J̃r or J r or Jr. A G-connection on a
fibered manifold Y →M is a section Γ : Y → GY .

In particular, for G = Jr we obtain the concept of an rth order holonomic
connection.

Proposition 8. Let F be either Jr or J r or J̃r, let G be either Js or
J s or J̃s, and let Γ : Y → GY be a G-connection on Y → M . If BF,G

Λ :
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FG→ GF is an FMm-natural equivalence (16) depending on Λ, then

F(Γ,Λ) := (BF,G
Λ )Y ◦ FΓ : FY → GFY

is a G-connection on FY →M .

Proof. By Proposition 5, BF,G
Λ is an involution. So pGFY ◦(B

F,G
Λ )Y ◦FΓ =

F (pGY ) ◦ FΓ = F (pGY ◦ Γ ) = idFY .

Moreover, formula (19) describes the classification of all FMm,n-natural
transformations BΛ : J2J1 → J1J2 depending on a torsion free connec-
tion Λ.

Corollary 1. Let Γ : Y → J1Y be a connection on Y → M and let
BΛ : J2J1 → J1J2 be any FMm,n natural transformation depending on a
torsion free connection Λ. Then

J 2(Γ,Λ) := (BΛ)Y ◦ J2Γ : J2Y → J1J2Y

is a connection on J2Y →M .

Proof. We know that all (ACΛ)Y from Theorem 1 cover the identity of
J1J1Y . Then the composition BΛ := A2,1

Λ ◦ACΛ is an involution.

Corollary 2. Let Γ : Y → J2Y be a second order holonomic connec-
tion on Y → M and let DΛ := ACΛ ◦ A

1,2
Λ be any FMm,n-natural transfor-

mation J1J2 → J2J1 depending on a torsion free connection Λ. Then

J 1(Γ,Λ) := (DΛ)Y ◦ J1Γ : J1Y → J2J1Y

is a second order holonomic connection on J1Y →M .

Remark 4. In [14] all natural operators transforming a connection Γ
on Y → M and a classical linear connection Λ on M into a connection on
J1Y → M are classified. However, for r > 1 there is an open problem of
classifying all natural operators transforming couples (Γ,Λ) into connections
on JrY →M .

B. Prolongation of connections into connections on FY → Y .
By item A above, prolongation of higher order connections from Y →M to
FY →M can be defined by means of an auxiliary classical linear connection
Λ on M . However, prolongation of connections from Y → M to FY → Y
has a quite different character.

Proposition 9 ([20]). There is no FMm,n-natural operator C trans-
forming connections Γ : Y → J1Y and classical linear connections ∇ on M
into connections C(Γ,∇) on JrY → Y .

Now we show that to construct a connection on JrY → Y from a con-
nection on Y →M , it suffices to use some classical linear connection on Y .
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Example 1. Let∇ be a classical linear connection on Y . Then we have a
general connection D(∇) on JrY → Y defined as follows. By Section 12.16
of [14], JrY → Y is an open subbundle in the bundle Kr

mY of rth order
contact elements on Y of dimension m. More precisely, JrY is the (open)
subset in Kr

mY of all contact elements in Kr
mY transversal to the fibers of

Y → M . But Kr
m :Mfm+n = FMm+n,0 → FM is a bundle functor. Thus

by Section 45.4 of [14], our ∇ on Y together with the trivial general con-
nection Γ Y on the trivial bundle idY : Y → Y induces a general connection
Krm(Γ Y ,∇exp,r) on Kr

mY → Y , where ∇exp,r is the rth order linear con-
nection on Y (the exponential lift of ∇, [22]), and then by restriction to the
open subbundle JrY → Y we have a general connection D(∇) on JrY → Y .
We remark that this geometric construction is due to I. Kolář.

Remark 5. Using local coordinates, J. Janyška and M. Modugno have
also constructed a general connection on J1Y → Y from a classical linear
connection on Y , [11]. Then the second author extended this construction
to JrY → Y for all r (unpublished).

Applying Proposition 9 and Example 1 we recover the following result
from [21]:

Proposition 10. There is no FMm,n-natural operator A transforming
connections Γ : Y → J1Y and classical linear connections Λ on M into
classical linear connections A(Γ,Λ) on Y .

Proof. If such an A exists, then given Γ and Λ as above we have a classical
linear connection A(Γ,Λ) on Y . Then according to Example 1 we have a
general connection C(Γ,Λ) := D(A(Γ,Λ)) on JrY → Y . This contradicts
Proposition 9.

Using different methods than those from [21], we present another proof
of Proposition 10. We will use the following well-known facts saying that any
affine transformation of a connected manifold is determined by its first jet
at a point.

Lemma 12 (see Proposition 2.116 in [25]). Let ∇ be a classical linear
connection on a connected manifold N . Let f, g : N → N be ∇-affine maps.
If j1xf = j1xg at some point x ∈ N , then f = g.

Second proof of Proposition 10. Suppose that such an A exists. Let Γ 0

be the trivial general connection on Rm,n and Λ0 be the usual classical
linear flat connection on Rm. Then we have a classical linear connection
∇ := A(Γ 0, Λ0) on Rm × Rn . Consider diffeomorphisms ϕ1, ϕ2 : Rn → Rn

such that j10ϕ1 = j10ϕ2 and ϕ1 6= ϕ2. The FMm,n-maps Φa = idRm ×ϕa
for a = 1, 2 preserve Λ0 and Γ 0. By the invariance of A, they also pre-
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serve ∇ = A(Γ 0, Λ0). Then Φ1 and Φ2 are two different ∇-affine maps with
j1(0,0)Φ1 = j1(0,0)Φ2, contrary to Lemma 12.

Remark 6. Let Y = P →M be a principal bundle. Section 54.7 of [14]
yields a construction of a classical linear connection NP (Γ,Λ) on P from a
principal connection Γ on P →M and a classical linear connection Λ onM .
So Proposition 10 says that the assumption Y = P → M is a principal
bundle in the construction of NP (Γ,Λ) is unavoidable.

Replacing Γ 0 in the second proof of Proposition 10 by the trivial sth order
connection on Rm,n we obtain the following generalization of Proposition 10.

Proposition 11. There is no FMm,n-natural operator A transforming
sth order connections Γ : Y → JsY and classical linear connections Λ on
M into classical linear connections A(Γ,Λ) on Y .

Remark 7. The second author recently classified all bundle functors
F : FMm,n → FM which admit prolongation of rth order connections Γ
on Y → M into qth order connections A(Γ,Λ) on FY → Y by means of
torsion free classical linear connections Λ on M , [23].
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