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Koebe’s general uniformisation theorem for
planar Riemann surfaces

by Gollakota V. V. Hemasundar (Mumbai)

Abstract. We give a complete and transparent proof of Koebe’s General Uniformi-
sation Theorem that every planar Riemann surface is biholomorphic to a domain in the
Riemann sphere Ĉ, by showing that a domain with analytic boundary and at least two
boundary components on a planar Riemann surface is biholomorphic to a circular-slit
annulus in C.

1. Introduction. A Riemann surface X is planar or schlichtartig if
every smooth closed 1-form with compact support on X is exact. There is
an equivalent topological condition that X \ γ be disconnected for every
smooth Jordan curve γ in X. In fact one can see that if γ is any Jordan
curve on a Riemann surface X, then X \γ is either one region or the disjoint
union of two regions. The General Uniformisation Theorem [GUT] of Koebe
is the following:

Theorem 1.1 (Koebe 1909). Every planar Riemann surface is biholo-
morphic to a domain in the Riemann sphere Ĉ.

The Riemann mapping theorem for Riemann surfaces which classifies
all the simply connected Riemann surfaces follows easily from Theorem 1.1
and the classical Riemann mapping theorem which classifies all the simply
connected domains in Ĉ. Since an open subset of a planar Riemann surface
is planar the converse of Theorem 1.1 follows trivially.

In this note we give a complete proof of Theorem 1.1 by showing that
the method of proof used in Ahlfors [1] to prove that plane domains of
finite connectivity with analytic boundary are biholomorphic to circular-slit
annuli can be carried over to domains with analytic boundary on planar
Riemann surfaces. However, our proof for the injectivity of the constructed
mapping function seems to be new, and we feel it is more satisfactory than
the one given in Ahlfors [1].
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One of the crucial results in the proof is the fact that for a relatively
compact domain with good boundary, the planarity condition just means
that the boundary curves generate the homology of the domain. In what
follows, we use this result along with the beautiful construction of Weyl [5]
to prove that the boundary curves form an integral basis for the homology
of the domain.

2. Preliminaries. The main analytic tool in the proof is Perron’s theo-
rem guaranteeing the solvability of the Dirichlet problem for a domain with
good boundary in a Riemann surface.

Theorem 2.1. For each compact subset of K of a Riemann surface X,
and each open set U containing K, there exists an open set Ω in X with
K ⊂ Ω ⊂ U such that

(i) Ω̄ is compact,
(ii) Ω has real analytic boundary.

Proof. By using Sard’s theorem we can find an open set V such that
K ⊂ V , V̄ is compact, V̄ ⊂ U and V has C∞ boundary.

Let ∂V =
⋃n
i=1Ci be the decomposition of ∂V into connected compo-

nents (we may assume n ≥ 2 !). Then by solving the Dirichlet problem for V ,
we can find a function h which is continuous on V̄ with the properties:

• h is harmonic in V ,
• h|Cn = 1 and h|Cj = 0 for 1 ≤ j ≤ n− 1.

Since h is non-constant, choose a non-critical value α of h such that
α > max{h(x) : x ∈ K}, and a non-critical value β < min{h(x) : x ∈ K}.
We need not use Sard’s theorem in this case since the critical points of a
harmonic function are isolated. Then Ω = {x : β < h(x) < α} has real
analytical boundary, Ω ⊃ K, and Ω̄ is compact.

Corollary 2.2. Let X be a non-compact Riemann surface. Then X =⋃
Wn for some sequence (Wn) of open sets in X with compact closure and

real analytic boundary, and W̄n ⊂Wn+1 for every n.

Theorem 2.3. If the Riemann surface X is an increasing union of do-
mains Ωn biholomorphic to open sets in Ĉ, then X itself is biholomorphic
to a domain in Ĉ.

Proof. This is an easy consequence of Koebe’s theorem on the compact-
ness of the family of normalised schlicht functions in the unit disc. For a
proof refer to [4].

Theorem 2.4. Let X be a planar Riemann surface and Ω ⊂ X be an
open set in X with compact closure and C∞ boundary. Then a closed C∞
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one-form ω on Ω is exact if �

Ci

ω = 0

for each boundary curve Ci.

Remark 2.5. Since the Ci are not paths in Ω the integrals occurring in
the theorem do not a priori make sense. But the Ci can be pushed into Ω
slightly in a sense which the proof below makes clear. In what follows, we
shall also treat the Ci as paths in Ω according to this convention.

Proof. First we observe that each boundary component Ci is a compact
connected smooth submanifold of dimension one. Hence, by a standard result
([3]) there is a diffeomorphism ϕi : Ci → S1. We may extend it to a C∞ map
ϕ′i : Vi → S1 where Vi is a neighbourhood of Ci.

There exists a C∞ function fi : Wi → R, where Wi is a neighbourhood
of Ci in X, such that

(i) Ci = {p ∈Wi : fi(p) = 0},
(ii) Wi ∩Ω = {p ∈Wi : fi(p) < 0},

(iii) dfi never vanishes.

This can be proved in general, but is true in our case by construction (by
Theorem 2.1). Now consider

gi = (ϕ′i, fi) : Vi ∩Wi → S1 × R.
It is easy to see that this map has non-singular Jacobian at all points of Ci,
and is one-one on the compact set Ci. Hence, by the Inverse Function The-
orem, there exists a neighbourhood V ′i ⊂ Vi ∩Wi and an ε > 0 such that

gi : V ′i → S1 × (−ε, ε)
is a diffeomorphism, mapping V ′i ∩Ω onto S1 × (−ε, 0). Indeed this follows
from Lemma 2.7 below. Clearly, all the g−1

i (S1 × {t}), t ∈ (−ε, 0), are
homologous curves in Ω, and we will consider any one of them as Ci pushed
into Ω (cf. 2.5). Now, V ′i ∩Ω is diffeomorphic to S1× (−ε, 0), and

	
Ci
ω = 0

by assumption. By the definition we have just given for
	
Ci
ω = 0, this means

that,
	
Ci,t

ω = 0, for each t ∈ (−ε, 0), where Ci,t = g−1
i (S1 × {t}). It follows

that
	
γ ω = 0, for each cycle γ in V ′i ∩Ω. Hence ω|V ′i ∩Ω is exact for all i.

Therefore
ω = dfi in Ω ∩ V ′i

for some fi ∈ C∞(Ω ∩V ′i ). For each i, we can find a cut-off function Xi such
that its support lies in V ′i and Xi ≡ 1 in a neighbourhood of Ci. Therefore
Xifi is a C∞ function defined on Ω.

Now consider the one-form ω1 = ω −
∑

i d(Xifi) whose value is equal to
zero near the boundary ∂Ω, hence ω1 has compact support. By the planarity
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condition there exists g1 ∈ C∞(Ω) such that ω −
∑

i d(Xifi) = dg1. This
implies ω = d(g1 +

∑
iXifi) and by writing g = g1 +

∑
iXifi we see that ω

is exact.

Remark 2.6. The referee has observed that we are essentially proving
the collar theorem. In fact the argument used above is a special case of
the argument (unpublished so far) due to R. R. Simha for proving the prod-
uct neighbourhood theorem for a compact differentiable manifold embedded
with trivial normal bundle in another differentiable manifold (Ehresmann
Fibration Theorem).

Lemma 2.7. Let X be a locally compact metric space and f : X → Y a
continuous map (Y is another metric space). Let K ⊂ X be a compact set
such that

(i) f |K is one-one,
(ii) each p ∈ K has a neighborhood Vp such that f |Vp is one-one.

Then there exists an open set V ⊃ K such that f |V is one-one.

Proof. If there is no such V then for each εn > 0, we can find xn, yn
such that xn 6= yn, and d(xn,K), d(yn,K) < εn, f(xn) = f(yn). Since X is
locally compact and K is compact there exists δ > 0 such that L = {x ∈ X :
d(x,K) ≤ δ} is compact. Thus for εn ≤ δ, we have xn, yn ∈ L. By passing
to subsequences, we may assume xn → x and yn → y. Then x, y ∈ K and
clearly f(x) = f(y). This contradicts (ii) for x = y = p.

Lemma 2.8 (Weyl). For every path γ0 : [a, b] → X in a Riemann sur-
face X, and every open set U of X containing γ0, there exists a closed one-
form ωγ0 in X \ {γ0(a), γ0(b)} with support in U \ {γ0(a), γ0(b)} such that

(i)
	
γ ωγ0 ∈ Z for every closed path γ in X \ {γ0(a), γ0(b)},

(ii) if γ as in (i) meets γ0 in only one point where γ and γ0 ‘cross’ each
other, then �

γ

ωγ0 = ±1,

(iii) if γ as in (i) does not meet γ0, then
�

γ

ωγ0 = 0.

Proof. If γ0 ([a, b]) is contained in a coordinate disc (DR, z), where DR

is a disc of radius R, and if p = γ(a) and q = γ(b) lie in Dr, r ∈ (0, R),
we note that ϕ(z) = 1

2π{arg(z − zq)− arg(z − zp)} is a well-defined smooth
function on the annulus r < |z| < R. Choose X ∈ D(DR) with X ≡ 1 on
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D(R+r)/2 and set

ωγ0 =
{
dϕ for z ∈ D(R+r)/2 \ {p, q},
d(Xϕ) for |z| > r.

This ωγ0 can be seen to have the desired properties (cf. [5]).
In the general case, we subdivide [a, b] into subintervals [ti, ti+1] each of

which is mapped by γ0 into a coordinate disc, contained in U , and take ωγ0
to be the sum of the ωi obtained as in the case above for γ|[ti, , ti+1]. We
observe that the singularities at the common end points of two successive
subpaths cancel out because we are on a Riemann surface (rather than
a general differentiable surface); as is easy to see, if z and w are two local
parameters at a point p on a Riemann surface, then dz

z −
dw
w has a removable

singularity at p. Note that w = a1z + a2z
2 + · · · , a1 6= 0. Refer to p. 82,

Footnote 24 of [5].

Theorem 2.9. Let X be a Riemann surface and Ω ⊂ X be a domain in
X with compact closure and analytic boundary curves C0, C1, . . . , Cn (n ≥ 1).
Then for p1, . . . , pn ∈ R there is a unique choice of r1, . . . , rn and a unique
harmonic function u with �

Cj

∗du = pj

and u ≡ ri on each Cj , j = 1, . . . , n, and u ≡ 0 on C0.

Proof. Since ∂Ω consists of analytic curves C0, C1, . . . , Cn, a barrier at
each point on Ci exists and the Dirichlet problem can be solved with the
given arbitrary boundary values. The proof follows now by using the Schwarz
Reflection Principle and some point set topology! Also refer to [1].

The following lemma plays an important role in our proof to show that
the constructed holomorphic map from a domain with analytic boundary on
a planar Riemann surface onto a circular-slit domain in C is indeed injective.

Lemma 2.10. Let X be a Riemann surface, and f : X → C a non-
constant holomorphic map. Then

i

2

�

X

df ∧ df̄ ≥ Area f(Ω)

with equality if and only if f is one-one.

3. Proof of Koebe’s GUT. Suppose X is compact. Then for any
p ∈ X, X∗ = X \ p is non-compact and planar. If we have found a one-one
holomorphic function f∗ on X∗, then p cannot be an essential singularity
for f by Weierstrass’ theorem, and it is clear that the extended holomorphic
map f : X → Ĉ is one-one.
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Given Theorem 2.3, and Corollary 2.2, it is clear that, in order to prove
the General Uniformisation Theorem for non-compact Riemann surfaces, it
is sufficient to prove the following theorem.

Theorem 3.1. Let X be a non-compact planar Riemann surface, and
Ω ⊂ X a domain with compact closure and analytic boundary. Then Ω is
biholomorphic to a domain in C.

Proof. We construct a biholomorphic map from Ω onto a circular-slit
domain in C (i.e. an open annulus {AR : 1 < |z| < R} \

⋃
γj where γj are

disjoint circular arcs lying on circles {z : |z| = Rj}, 1 < Rj < R; the Rj
need not be distinct). See Figure 1.

Fig. 1. Circular-slit domain of connectivity 5

We may assume that Ω has at least two boundary components. Other-
wise, we replace Ω by Ω \ D̄ε = Ωε where Dε is a small disc around a fixed
point p ∈ Ω. If Ωε is biholomorphic to a domain in C, by Theorem 2.2 so is
Ω \ p, hence so is Ω.

Suppose Ω is mapped by F biholomorphically onto a circular-slit domain
in C then log |F | is a harmonic function in the domain with constant values
on the boundary of Ω. Therefore the idea is to look for a harmonic function
in the domain Ω with suitable constant values on the boundary and try
to make it the logarithm of the absolute value of a one-one holomorphic
function F .

Step 1. Let Cj , 0 ≤ j ≤ n, be the boundary components of Ω. The
harmonic function h is determined by the Rj , which in turn are determined
by the integrals of ∗dh along the Cj , 0 ≤ j ≤ n. By construction, F will be
of the form

F (q) = exp
{( q�

p

(dh+ i∗dh)
)

+ h(p)
}
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so that dh + i∗dh = dF
F . If we assume that F maps C0 onto the unit circle

and Cn onto |z| = Rn, we see that
�

Cj

∗dh = 2π
1

2πi

�

Cj

(dh+ i∗dh) = 2π
1

2πi

�

Cj

dF

F
= 2π

1
2πi

�

F (Cj)

dz

z
.

Hence, if the Cj are oriented properly we must have

�

Cj

∗dh =


2π if j = n,
−2π if j = 0,
0 otherwise.

So we make this choice for the periods of ∗dh, and obtain a harmonic function
h on Ω with uniquely determined constant boundary values λj on Cj , 1 ≤
j ≤ n say, where λ0 = 0 by convention.

Step 2. We show that

(3.1)
1

2π

�

γ

∗dh ∈ Z

for all closed paths γ in Ω. We apply Lemma 2.8 to our situation; we fix
a point pj inside each Cj and define γj to be a path from p0 to pj , for
1 ≤ j ≤ n. We can choose the γj so that γj does not meet Ck if k 6= j, and
γj meets Cj exactly once, where it crosses Cj . All this can be carried out
rigorously if we recall that the Cj , 0 ≤ j ≤ n, have disjoint neighbourhoods
Vj such that each Vj ∩ Ω̄ is diffeomorphic to a product S1 × (−ε, 0].

Now consider

ω = ∗dh−
n∑
j=1

πj ωγj ,

where πj =
	
Cj
∗dh. Then

	
Cj
ω = 0 for 0 ≤ j ≤ n by construction, hence

ω is exact by Theorem 2.4. Hence
	
γ ω = 0 for all closed paths in Ω, which

shows that �

γ

∗dh =
∑

πj
�

γ

ωγj

is an integral multiple of 2π for all γ, as asserted.
Then

F (q) = exp
{( q�

p

(dh+ i∗dh)
)

+ h(p)
}

is a well-defined holomorphic function in Ω with |F | = eh. The Schwarz
Reflection Principle shows that h (hence F) extends harmonically (resp.
holomorphically) to a neighbourhood of Ω̄.
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Step 3. We compute
	
Ω dF ∧ dF̄ :

�

Ω

dF ∧ dF̄ =
�

Ω

d(F ∧ dF̄ ) =
�

∂Ω

F dF̄

=
�

∂Ω

F F̄ (dh− i∗dh) =
∑

(eλi)2
�

∂Ω

(dh− i∗dh)

= −2πi{(eλn)2 − 1} by (3.1).

Since dF ∧ dF̄ = −2i|F ′(z)|2dxdy locally, we see that
i

2

�

Ω

dF ∧ dF̄ =
�

Ω

|F ′(z)|2 dx dy = π{(eλn)2 − 1} > 0.

This shows that Ri = eλn > 1, as expected. We set generally

Rj = eλj , 1 ≤ j ≤ n.
Step 4. We examine the image domain F (Ω). By the Open Mapping

Theorem, ∂F (Ω) ⊂ F (∂Ω) ⊂
⋃n
j=0{|z| = Rj}. Clearly, F (Ω) meets each

circle {|z| = R} with R ∈ (1, Rn) (|F | is continuous!). Also, if {|z| = R} is
not entirely contained in F (Ω), we must have {|z| = R} ∩ ∂F (Ω) 6= ∅, so
that R must be one of the Rj . It follows that F (Ω) contains the annulus
{1 < |z| < Rn} except for a subset of

⋃
j{|z| = Rj}. In particular we get

AreaF (Ω) ≥ π(R2
n − 1) =

�

Ω

|F ′(z)|2 dx dy (by Step 3).

But it is obvious from the change of variable formula for double integrals
that

(3.2)
�

Ω

|F ′(z)|2 dx dy ≥ AreaF (Ω)

with equality only if F is one-one (refer to Lemma 2.10). Thus we have
proved that F is one-one. This completes the proof.
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