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Solutions for the p-order Feigenbaum’s functional equation
h(g(x)) = gp(h(x))

by Min Zhang (Qingdao) and Jianguo Si (Jinan)

Abstract. This work deals with Feigenbaum’s functional equation{
h(g(x)) = gp(h(x)),

g(0) = 1, −1 ≤ g(x) ≤ 1, x ∈ [−1, 1],

where p ≥ 2 is an integer, gp is the p-fold iteration of g, and h is a strictly monotone odd
continuous function on [−1, 1] with h(0) = 0 and |h(x)| < |x| (x ∈ [−1, 1], x 6= 0). Using
a constructive method, we discuss the existence of continuous unimodal even solutions of
the above equation.

1. Introduction. In 1978, Feigenbaum [F1], [F2] and independently
Coullet and Tresser [CT] introduced the notion of renormalization for real
dynamical systems. In 1992, Sullivan [S] proved the uniqueness of the fixed
point for the period-doubling renormalization operator. This fixed point of
renormalization satisfies a functional equation known as the Cvitanović–
Feigenbaum equation:{

g(x) = − 1
λg(g(−λx)), 0 < λ < 1,

g(0) = 1, −1 ≤ g(x) ≤ 1, x ∈ [−1, 1].
(1.1)

This equation and its solution play an important role in the theory initiated
by Feigenbaum [F1], [F2]. However, in general, finding an exact solution
of the above equation is not an easy task. This problem can be studied
in classes of smooth functions or of continuous functions. The existence
of smooth solutions for (1.1) has been established in [EW], [E1], [E2], [S]
and references therein. As far as we know, continuous solutions of (1.1)
have been relatively little researched. In this direction, we refer to [YZ]
and [M].
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In the last years, a number of authors considered the more general equa-
tion {

g(x) = − 1
λg

p(−λx), −1 < λ < 1,

g(0) = 1, −1 ≤ g(x) ≤ 1, x ∈ [−1, 1],
(1.2)

where p ≥ 2 is an integer and gp is the p-fold iteration of g. It is easy to see
that (1.1) is a special case of (1.2). When p = 3, Chen [C] gave a method
of constructing even C1 solutions of (1.2). For p large enough, Eckmann,
Epstein and Wittwer [EEW] showed that there exists a solution of (1.2)
similar to the function f(x) = |1− 2x2|. For any p ≥ 2, Liao [L] proved that
(1.2) has single-valley continuous solutions.

In the present paper, we will consider Feigenbaum’s functional equations{
h(g(x)) = gp(h(x)),

g(0) = 1, −1 ≤ g(x) ≤ 1, x ∈ [−1, 1].
(1.3)

where h is a strictly monotone odd continuous function on [−1, 1] that sat-
isfies h(0) = 0 and |h(x)| < |x| (x ∈ [−1, 1], x 6= 0). We will deal with
solutions to (1.3) in classes of continuous unimodal endomorphisms of the
interval [−1, 1] by the constructive method.

It is worth pointing out the vast difference between the problem consid-
ered in this paper and the well-developed theory of fixed points of the same
equation in classes of smooth functions, at least C1+BV with a critical point
of polynomial type. Solutions in the smooth theory are unique for large sets
of functions, typically depending only on the degree of the critical point.
Our main result (Main Theorem 3.1) shows that solutions in the continuous
theory are far from unique. Actually, in Main Theorem 3.1 any initial map
ϕ0 can be extended to a fixed point. This implies that for continuous func-
tions the Feigenbaum functional equation (1.3) is underdetermined, while
in smooth classes for deep reasons it has unique solutions.

We replace (1.3) by the equation{
f(ϕ(x)) = ϕp(f(x)),

ϕ(0) = 1, 0 ≤ ϕ(x) ≤ 1, x ∈ [0, 1],
(1.4)

to study the existence of a single-valley continuous solution of (1.4), where
f is a strictly increasing continuous function on [0, 1] with f(0) = 0 and
f(x) < x (x ∈ (0, 1]). Obviously, if h(x) = −λx, then (1.3) becomes (1.2).

The following result states relations between equations (1.3) and (1.4);
it will be proved in Appendix A.

Theorem 1.1. For any p ≥ 2, the solutions of (1.3) and (1.4) have the
following relations:
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(i) If g is a continuous unimodal even solution of (1.3), then

(1.5) ϕ(x) = |g(x)|, x ∈ [0, 1],

is a single-valley continuous solution of (1.4), where f(x) = |h(x)|
for x ∈ [0, 1].

(ii) If ϕ is a single-valley continuous solution of (1.4), then ϕ has the
minimum 0 at a point α in (0, 1) and

(1.6) g(x) = sgn(α− |x|)ϕ(|x|), x ∈ [−1, 1],

is a continuous unimodal even solution of (1.3), where

h(x) =

{
sgn(α− ϕp−2(1))f(x), x ∈ [0, 1],

sgn(ϕp−2(1)− α)f(−x), x ∈ [−1, 0).

2. Basic definitions and lemmas. In this section, we will give some
characterizations of single-valley continuous solutions of (1.4); they will be
proved in Appendix A.

Definition 2.1. We call ϕ a single-valley-extended continuous solution
of (1.4) if (1) ϕ is a continuous solution of (1.4); (2) there exists α ∈ (f(1), 1)
such that ϕ is strictly decreasing on [f(1), α] and strictly increasing on [α, 1].

Definition 2.2. We call ϕ a single-valley continuous solution of (1.4)
if (1) ϕ is a single-valley-extended continuous solution of (1.4); (2) there
exists α ∈ (f(1), 1) such that ϕ is strictly decreasing on [0, α] and strictly
increasing on [α, 1].

Lemma 2.3. Suppose that ϕ is a single-valley continuous solution of
(1.4) and ϕ(α) = 0. Then:

(i) 0 is a recurrent but not periodic point of ϕ,
(ii) ϕ(x) has a unique fixed point β = ϕ(β) in [0, 1], and

(2.1) ϕp−1(1) = f(1) = λ < β < α.

(iii) If x ∈ [0, λ] and 0 ≤ i ≤ p − 1, then ϕi(x) = α if and only if
x = f(α) and i = p− 1.

(iv) If 1 ≤ i ≤ p − 1, then ϕi(x) > λ for all x ∈ [0, f(α)], and ϕi(x) >
f(α) for all x ∈ (f(α), λ].

(v) If 1 ≤ i ≤ p− 1, then ϕ has no periodic point of period i on [0, λ].

Lemma 2.4. Suppose that ϕ is a single-valley continuous solution of
(1.4). Let J = [0, λ], J0 = ϕ(J) and Ji = ϕi(J0). Then:

(i) ϕi : J0 → Ji is a homeomorphism for all i = 0, 1, . . . , p− 2.
(ii) J0, J1, . . . , Jp−2 ⊂ (λ, 1] are pairwise disjoint.
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Lemma 2.5. Suppose that ϕ is a single-valley continuous solution of
(1.4). Then the equation ϕp−1(x) = f(x) has only one solution x = 1 in
(ϕ(f(α)), 1].

Lemma 2.6. Let ϕ1, ϕ2 be two single-valley continuous solutions of
(1.4). If

ϕ1(x) = ϕ2(x), x ∈ [λ, 1],

then ϕ1(x) = ϕ2(x) on [0, 1].

3. Constructive method of solution. In this section, we will prove
constructively the existence of single-valley continuous solutions of (1.4).

Main Theorem 3.1. Fix a strictly increasing continuous function f on
[0, 1] with f(0) = 0 and f(x) < x (x ∈ (0, 1]). Denote f(1) = λ. Suppose that
ϕ0 is a continuous function on [λ, 1] and satisfies the following conditions:

(i) there exists an α ∈ (λ, 1) such that ϕ0(α) = 0 and ϕ0 is strictly
decreasing on [λ, α] and strictly increasing on [α, 1],

(ii) ϕp−10 (1) = f(1) = λ and ϕp0(λ) = f(ϕ0(1)),
(iii) if J0 = [ϕ0(λ), 1] and Ji = ϕi0(J0), then

(1) J0, J1, . . . , Jp−2 ⊂ (λ, 1] are pairwise disjoint,
(2) ϕi0 : J0 → Ji is a homeomorphism for all i = 0, 1, . . . , p− 2,
(3) α is in the interior of Jp−2,

(iv) the equation ϕp−10 (x) = f(x) has only one solution x = 1 in (α0, 1],

where α0 ∈ J0 with ϕp−10 (α0) = 0.

Then there exists a unique single-valley continuous function ϕ satisfying the
equation {

f(ϕ(x)) = ϕp(f(x)), x ∈ [0, 1],

ϕ(x) = ϕ0(x), x ∈ [λ, 1].
(3.1)

Conversely, if ϕ0 is the restriction to [λ, 1] of a single-valley continuous
solution to (1.4), then the above conditions (i)–(iv) must hold.

Proof. Suppose that ϕ0 satisfies (i)–(iv). Define

ψ+ = ϕp−10 |[α0,1]
, ψ− = ϕp−10 |[ϕ0(λ),α0]

.

By (iii) and (iv), ψ+ and ψ− are both homeomorphisms. Since

ψ+(α0) = ϕp−10 (α0) = 0 ≤ ψ+(1), ψ−(α0) = ϕp−10 (α0) = 0 ≤ ψ−(ϕ0(λ)),

ψ+ is strictly increasing and ψ− is strictly decreasing. It is trivial that
{fk(1)} is decreasing and limk→∞ f

k(1) = 0. Let

(3.2) ∆k = [fk+1(1), fk(1)], k = 0, 1, 2, . . . .
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Then

[0, 1] =

∞⋃
k=0

∆k.

We define ϕ on ∆k by induction as follows:

Obviously, ϕ = ϕ0 is well defined on ∆0. For x ∈ ∆1 = [f2(1), f(1)], we
set

(3.3) ϕ1(x) =

{
ψ−1+ (f(ϕ0(f

−1(x)))), x ∈ [f2(1), f(α)],

ψ−1− (f(ϕ0(f
−1(x)))), x ∈ [f(α), f(1)].

Trivially, ϕ1 is a strictly decreasing continuous function on ∆1. For x ∈ ∆0

we have

(3.4) ϕp−10 (ϕ1(f(x))) = f(ϕ0(x)).

By (ii), we get

ψ−(ϕ0(λ)) = ϕp−10 (ϕ0(λ)) = ϕp0(λ) = f(ϕ0(1)).

Letting x = f(1) in (3.3) yields

(3.5) ϕ1(f(1)) = ψ−1− (f(ϕ0(1))) = ϕ0(λ) = ϕ0(f(1)),

i.e. ϕ0 and ϕ1 have the same value at the common endpoint of ∆0 and ∆1.
Suppose that ϕ is well defined as a strictly decreasing continuous function
ϕk on ∆k for all k ≤ m, where m ≥ 1 is a certain integer. Let

(3.6) ϕm+1(x) = ψ−1+ (f(ϕm(f−1(x)))), x ∈ ∆m+1.

Then ϕ is well defined as a strictly decreasing continuous function ϕk on ∆k

for all k ≥ 1, and for x ∈ ∆k we have

(3.7) ψ+(ϕk+1(f(x))) = f(ϕk(x)).

For k = 1, . . . ,m, where m ≥ 1 is a certain integer, we suppose that

(3.8) ϕk(f
k(1)) = ϕk−1(f

k(1)).

Let x = fm+1(1) in (3.6). Then we have

ϕm+1(f
m+1(1)) = ψ−1+ (f(ϕm(fm(1)))) = ψ−1+ (f(ϕm−1(f

m(1))))(3.9)

= ϕm(fm+1(1)),

i.e. ϕk and ϕk+1 have the same value at the common endpoint of ∆k and
∆k+1 (k = 1, 2, . . .). Thus, we can let

(3.10) ϕ(x) =

{
1, x = 0,

ϕk(x), x ∈ ∆k.

Since ϕk is strictly decreasing continuous on ∆k (k ≥ 1) and (3.5), (3.8) and
(3.9) hold, we see that ϕ is a single-valley continuous function on (0, 1].
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Now, we prove that ϕ is continuous at x = 0. Trivially, {fk(α)} is strictly
decreasing and limk→∞ f

k(α) = 0. Since ϕ is strictly decreasing in (0, α],
the sequence {ϕk(fk(α))}∞k=2 is strictly increasing in [α, 1]. Let

lim
k→∞

ϕk(f
k(α)) = γ.

Then γ ∈ [α, 1]. From (3.7), we have ψ+(ϕk+1(f
k+1(α))) = f(ϕk(f

k(α))),

i.e., ϕp−10 (ϕk+1(f
k+1(α))) = f(ϕk(f

k(α))). Letting k → ∞, we get ϕp−10 (γ)
= f(γ). By condition (iv), we know γ = 1 = ϕ(0). This proves that ϕ
is continuous at x = 0. Thus, ϕ is a single-valley continuous function on
[0, 1]. We see that ϕ satisfies (3.1) by (3.4) and (3.7), and ϕ is unique by
Lemma 2.6.

Obviously, if ϕ0 is the restriction to [λ, 1] of a single-valley continuous
solution to (1.4), then conditions (i)–(iv) must hold by the lemmas in Sec-
tion 2.

Example 3.2. Let ϕ0 : [1/4, 1]→ [0, 1] be defined by

ϕ0(x) =

{
−3+

√
7

4 x+ 9+3
√
7

16 , 1/4 ≤ x ≤ 3/4,

x− 3/4, 3/4 ≤ x ≤ 1.

Obviously, ϕ0 satisfies the conditions of Main Theorem 3.1 with f(x) = x/4
and λ = f(1) = 1/4, α = 3/4. Hence it is the restriction to [1/4, 1] of
a single-valley-extended continuous solution ϕ to (1.4). Since ϕ0 has the

Fig. 1. The graph of single-valley solution
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minimum point α = 3/4 and 1/4 < ϕ0(1/4) = (3 +
√

7)/8 < 3/4, ϕ is a
single-valley continuous solution. Its graph is depicted in Figure 1.

Example 3.3. Let ϕ0 : [1/4, 1]→ [0, 1] be defined by

ϕ0(x) =

{
−6+

√
34

8 x+ 18+3
√
34

32 , 1/4 ≤ x ≤ 3/4,

x− 3/4, 3/4 ≤ x ≤ 1,

Obviously, ϕ0 satisfies the conditions of Main Theorem 3.1 with f(x) = x2/4
and λ = f(1) = 1/4, α = 3/4. Hence it is the restriction to [1/4, 1] of
a single-valley-extended continuous solution ϕ to (1.4). Since ϕ0 has the
minimum point α = 3/4 and 1/4 < ϕ0(1/4) = (6 +

√
34)/16 < 3/4, ϕ is a

single-valley continuous solution. Its graph is similar to Figure 1.

Appendix A

Proof of Theorem 1.1. (i) Obviously, ϕ is single-valley continuous. Firstly,
we will prove that

(A.1) ϕi(f(x)) = |gi(h(x))|, i = 1, . . . , p.

For i = 1, by (1.5) and since g is even, we get

ϕ(f(x)) = |g(f(x))| = |g(|h(x)|)| = |g(h(x))|,
i.e., (A.1) holds for i = 1. Suppose that it holds for i = k, where k is a
certain integer. Since (1.5) holds and g is even, we have

ϕk+1(f(x)) = ϕ(ϕk(f(x))) = ϕ(|gk(h(x))|) = |g(|gk(h(x))|)| = |gk+1(h(x))|,
i.e., (A.1) holds for i = k + 1. Thus, (A.1) is proved by induction.

By (1.5) and since f(x) = |h(x)| and h is odd, we have

f(ϕ(x)) = f(|g(x)|) = |h(|g(x)|)| = |h(g(x))|.
Since g(x) satisfies (1.3), we get

|h(g(x))| = |gp(h(x))|.
From (A.1) (i = p),

f(ϕ(x)) = ϕp(f(x)),

i.e., ϕ satisfies (1.4).
(ii) Suppose that ϕ has the minimum at a point α. By (1.4) we have

f(ϕ(α)) = ϕp(f(α)) ≥ ϕ(α).

Since f(0) = 0 and f(x) < x (x ∈ (0, 1]), we get

ϕ(α) = 0.

Trivially, g is a continuous unimodal even function. We now prove that

(A.2) gi(h(x)) = sgn(α− ϕi−1(f(|x|)))ϕi(f(|x|)), i = 1, . . . , p.
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For i = 1, in view of (1.6) and the definition of h(x), we get

g(h(x)) = sgn(α− |h(x)|)ϕ(|h(x)|)| = sgn(α− f(|x|))ϕ(f(|x|)),

i.e., (A.2) holds for i = 1. Suppose that it holds for i = k, where k is a
certain integer. From (1.6) and the definition of h(x), we have

gk+1(h(x)) = g(gk(h(x))) = g
(
sgn(α− ϕk−1(f(|x|)))ϕk(f(|x|))

)
= sgn

(
α−

∣∣sgn(α− ϕk−1(f(|x|)))ϕk(f(|x|))
∣∣)

· ϕ
(∣∣sgn(α− ϕk−1(f(|x|)))ϕk(f(|x|))

∣∣)
= sgn

(
α− ϕk(f(|x|))

)
ϕk+1(f(|x|)),

i.e., (A.2) holds for i = k + 1. Thus, (A.2) is proved by induction.

Finally, we will prove that g satisfies (1.3) by considering the following
two cases.

Case 1: α− ϕp−2(1) > 0. Then by the definition of h(x), we have

h(x) =

{
f(x), x ∈ [0, 1],

−f(−x), x ∈ [−1, 0).

By Lemma 2.4(i), ϕp−1 is strictly monotone on [0, f(1)]. From ϕp−1(0) =
ϕp−2(1) < α = ϕp−1(f(α)), it follows that ϕp−1 is strictly increasing on
[0, f(1)].

Case 1.1: |x| ≤ α. Since f is strictly increasing, we have f(|x|) ≤ f(α).
Moreover, α = ϕp−1(f(α)) ≥ ϕp−1(f(|x|)). From (A.2) (i = p), (1.4), (1.6)
and the definition of h(x), we have

gp(h(x)) = ϕp(f(|x|)) = f(ϕ(|x|)) = f(g(x)) = h(g(x)).

Case 1.2: |x| > α. Since f is strictly increasing, we have f(|x|) > f(α).
Moreover, α = ϕp−1(f(α)) < ϕp−1(f(|x|)). From (A.2) (i = p), (1.4), (1.6)
and the definition of h(x), we have

gp(h(x)) = −ϕp(f(|x|)) = −f(ϕ(|x|)) = −f(−g(x)) = h(g(x)),

i.e., g(x) satisfies (1.3).

Case 2: α− ϕp−2(1) < 0. Then by the definition of h(x),

h(x) =

{
−f(x), x ∈ [0, 1],

f(−x), x ∈ [−1, 0).

The rest of the proof is similar to that in Case 1, and we omit it.

Proof of Lemma 2.3. (i) We prove that for all n ≥ 0 and each x ∈ [0, 1],

(A.3) fn(ϕ(x)) = ϕp
n
(fn(x)).
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Obviously, (A.3) holds for n = 1 by (1.4). Suppose that it holds for n ≤ k,
where k is a certain integer. Then, by induction and (1.4), we have

ϕp
k+1

(fk+1(x)) = (ϕp
k
)
p
(fk+1(x)) = (ϕp

k
)
p−1
◦ ϕpk(fk+1(x))

= (ϕp
k
)
p−1

(fk(ϕ(f(x)))) = (ϕp
k
)
p−2
◦ ϕpk(fk(ϕ(f(x))))

= (ϕp
k
)
p−2

(fk(ϕ2(f(x)))) = · · · = (ϕp
k
)
p−i

(fk(ϕi(f(x))))

= · · · = fk(ϕp(f(x))) = fk(f(ϕ(x))) = fk+1(ϕ(x)),

i.e., (A.3) holds for n = k + 1. Thus, (A.3) is proved by induction.
Letting x = 0 in (A.3), we have

(A.4) fn(1) = fn(ϕ(0)) = ϕp
n
(fn(0)) = ϕp

n
(0).

Trivially {fn(1)} is strictly decreasing and limn→∞ f
n(1) = 0. Hence

(A.5) lim
n→∞

ϕp
n
(0) = lim

n→∞
fn(1) = 0.

i.e., 0 is a recurrent but not periodic point of ϕ.
(ii) Let x = 0 in (1.4). Then

f(1) = f(ϕ(0)) = ϕp(f(0)) = ϕp(0) = ϕp−1(1).

Let ϕp−1(1) = f(1) = λ. Firstly, we prove that β < α. Since ϕ(0) = 1,
ϕ(α) = 0 and ϕ is strictly decreasing in [0, α], it follows that ϕ has a unique
fixed point in [0, α]. Suppose that ϕ has another fixed point q; then q ∈ (α, 1].
By (A.5), we have q 6= 1. Thus, q ∈ (α, 1). Since ϕ is strictly increasing in
[α, 1], it follows that q = ϕ(q) < ϕ(1). By induction, q = ϕm(q) < ϕm(1) for
all m ≥ 0. In particular,

q = ϕp
n−1(q) < ϕp

n−1(1) = ϕp
n−1(ϕ(0)) = ϕp

n
(0).

This contradicts (A.5). Thus, we have proved that ϕ has a unique fixed point
β in [0, 1] and β < α.

Secondly, we prove that λ < β. Suppose that λ ≥ β. Since 0 ≤ f(x) ≤
f(1) = λ, there exists γ ∈ [0, 1] such that f(γ) = β, i.e., γ = f−1(β). By
(1.4), we have

β = ϕp(β) = ϕp(f(γ)) = f(ϕ(γ)) = f(ϕ(f−1(β))).

Thus, f−1(β) = ϕ(f−1(β)). And since ϕ has a unique fixed point β in [0, 1],
we have f−1(β) = β. Thus, β = f(β). As f(0) = 0 and f(x) < x (x ∈ (0, 1]),
we deduce that β = 0. This contradicts ϕ(0) = 1. Thus, we have proved that
λ < β.

(iii) Firstly, we prove the sufficiency. By (1.4), we have 0 = f(ϕ(α)) =
ϕp(f(α)). Since α is the unique minimum point of ϕ, it follows that
ϕp−1(f(α)) = α. Thus the sufficiency is proved.

To prove the necessity, suppose that ϕi(x) = α for some x ∈ [0, λ] and
0 ≤ i ≤ p− 1. Then x 6= 0 and α is not a periodic point of ϕ by (i).
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We claim that x 6= λ. Suppose that x = λ. Since

ϕp+1(α) = ϕp(ϕ(α)) = ϕp(0) = ϕp(f(0)) = f(ϕ(0)) = f(1) = λ,

we have

α = ϕi(x) = ϕi(λ) = ϕi+p+1(α).

This contradicts that α is not a periodic point. Thus x 6= λ.
We next prove that x 6∈ (f(α), λ). Suppose that x ∈ (f(α), λ). Then

ϕi+1 is not strictly monotone in (f(α), λ). This contradicts ϕp being strictly
monotone in (f(α), λ) since (1.4), and f(ϕ(x)) is strictly monotone in (α, 1).
Thus x 6∈ (f(α), λ). By a similar argument we find that x 6∈ (0, f(α)). So
x = f(α). Since α is not a periodic point, we know that ϕj(x) 6= α for all
j 6= i. Hence, x = f(α) and i = p− 1. Thus the necessity is proved.

(iv) Firstly, we claim that

(A.6) ϕi(f(α)) > λ, ∀1 ≤ i ≤ p− 1.

Suppose that there exists 1 ≤ j ≤ p− 1 such that ϕj(f(α)) = x ≤ λ. Then

ϕp−1−j(x) = ϕp−1−j(ϕj(f(α))) = ϕp−1(f(α)) = α

by (iii). This contradicts (iii). Thus (A.6) is proved.
Secondly, we prove that

(A.7) ϕi(x) > λ, ∀x ∈ [0, f(α)], 1 ≤ i ≤ p− 1.

Trivially, ϕi : [0, f(α)] → ϕi([0, f(α)]) is a homeomorphism by (iii). From
(A.6) it suffices to show that ϕi(0) > λ. Suppose that there exists 1 ≤ j ≤
p− 1 such that ϕj(0) = x ≤ λ. Then

ϕp−j(x) = ϕp−j(ϕj(0)) = ϕp(0) = ϕp(f(0)) = f(ϕ(0)) = λ.

Thus

ϕj(λ) = ϕj(ϕp−j(x)) = ϕp(x) = f(ϕ(f−1(x))) ≤ f(1) = λ.

Since ϕj is also a homeomorphism on [0, λ] by (iii), we have ϕj(f(α)) ≤ λ.
This contradicts (A.6). Thus (A.7) is proved.

Thirdly, we prove that

(A.8) ϕi(x) > f(α), ∀x ∈ (f(α), λ], 1 ≤ i ≤ p− 1.

Suppose that there exist 1 ≤ j ≤ p− 1 and x ∈ (f(α), λ] such that ϕj(x) =
y ≤ f(α). Then

ϕp−j(y) = ϕp−j(ϕj(x)) = ϕp(x) = f(ϕ((f−1(x)))) ≤ f(1) = λ.

This contradicts (A.7). Thus (A.8) is proved.
(v) Suppose that there exist 1 ≤ j ≤ p− 1 and x ∈ [0, λ] such that x is

a periodic point of ϕ with period j, i.e., ϕj(x) = x. Then x ∈ (f(α), λ] by
(A.7). Let

y = min{x, ϕ(x), . . . , ϕj−1(x)}.
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Then y ∈ (f(α), λ] by (A.8). From f−1(y) ∈ (α, 1], ϕ(α) = 0 < α and (ii), we
have ϕ(f−1(y)) < f−1(y). Thus, by (1.4) and since f is strictly increasing,
we know that

ϕp(y) = f(ϕ(f−1(y))) < f(f−1(y)) = y.

This contradicts the definition of y. Thus we have proved that ϕ has no
periodic point of period i on [0, λ].

Proof of Lemma 2.4. (i) For all i = 0, 1, . . . , p − 2, ϕi+1 : J → Ji is a
homeomorphism by Lemma 2.1(iii). Thus ϕi : J0 → Ji is also a homeomor-
phism.

(ii) Firstly, we prove that for all i = 0, 1, . . . , p − 2, we have Ji ⊂ (λ, 1],
i.e., Ji ∩ J = ∅. We claim that ϕi+1(λ) > λ. Suppose that there exists
1 ≤ j ≤ p− 1 such that ϕj(λ) ≤ λ. Then by (A.6),

ϕj(f(α)) > λ > f(α).

Thus ϕj has a fixed point in [f(α), λ]. This contradicts Lemma 2.1(v). Hence
ϕi+1(λ) > λ. Since ϕi+1 : J → Ji is a homeomorphism and (A.7) holds, we
conclude that Ji ∩ J = ∅.

Secondly, we prove that the Ji are pairwise disjoint for all 0 ≤ i ≤ p− 2.
Suppose that there exist 0 ≤ i < j ≤ p− 2 such that Ji ∩ Jj = Jij 6= ∅. Let
y ∈ Jij . Then there exist xi, xj ∈ [0, λ] such that ϕi+1(xi) = y = ϕj+1(xj).
Thus we have

ϕp−j+i(xi) = ϕp−1−j(ϕi+1(xi)) = ϕp−1−j(ϕj+1(xj))

= ϕp(xj) = f(ϕ(f−1(xj))) ≤ f(1) = λ.

This contradicts Ji ⊂ (λ, 1]. Thus we have proved that J0, J1, . . . , Jp−2 are
pairwise disjoint.

Proof of Lemma 2.5. Obviously, x = 1 is a solution of the equation
ϕp−1(x) = f(x) by (1.4). Suppose that x = x0 is an arbitrary solution
of this equation, i.e., ϕp−1(x0) = f(x0). Since (ϕ(f(α)), 1] ⊂ ϕ([0, f(α)]),
there exists y0 ∈ [0, f(α)] such that ϕ(y0) = x0. Thus, ϕp−1(ϕ(y0)) = f(x0).
By (1.4), we get f(ϕ(f−1(y0))) = ϕp−1(ϕ(y0)) = f(x0). It follows that
ϕ(f−1(y0)) = x0 since f is strictly monotone. As f−1(y0) ∈ [0, α] and ϕ is
strictly decreasing in [0, α], we have y0 = f−1(y0), i.e., f(y0) = y0. From
f(0) = 0, f(x) < x (x ∈ (0, 1]), we have y0 = 0. Consequently, x0 = ϕ(y0) =
ϕ(0) = 1.

Proof of Lemma 2.6. There exist α, β ∈ (λ, 1) such that ϕi(α) = 0 and
ϕi(β) = β (i = 1, 2) by (2.1). Denote ϕ0(x) = ϕ1(x) = ϕ2(x) (x ∈ [λ, 1]),
α1 = ϕ1(f(α)), α2 = ϕ2(f(α)).

We now prove that α1 = α2. Trivially,

α1 > ϕ1(f(1)) = ϕ0(λ) > ϕ0(β) = β > λ,



194 M. Zhang and J. G. Si

by (2.1). Similarly, α2 > ϕ0(λ) > λ. By Lemmas 2.4 and 2.3(iii), we have

ϕp−10 (α1) = ϕp−11 (α1) = ϕp1(f(α)) = 0.

Similarly, ϕp−10 (α2) = 0. Since ϕp−10 has a unique zero in [ϕ0(λ), 1], we
conclude that α1 = α2.

Let α0 = α1 = α2. Then α0 ∈ [ϕ0(λ), 1] and ϕp−10 (α0) = 0. Define

(A.9) ψ+ = ϕp−10 |[α0,1]
, ψ− = ϕp−10 |[ϕ0(λ),α0]

.

By Lemmas 2.3(iii) and 2.4, ψ+ and ψ− are both homeomorphisms. Since

ψ+(α0) = 0 ≤ ψ+(1), ψ−(α0) = 0 ≤ ψ−(ϕ0(λ)),

ψ+ is strictly increasing and ψ− is strictly decreasing. Trivially, {fk(1)} is
decreasing and limk→∞ f

k(1) = 0. Let

∆k = [fk+1(1), fk(1)], k = 0, 1, 2, . . . .

Then [0, 1] =
⋃∞
k=0∆k.

We now prove ϕ1(x) = ϕ2(x) on ∆k by induction.
Obviously, ϕ1(x) = ϕ2(x) on ∆0. Suppose that ϕ1(x) = ϕ2(x) on ∆k for

all k ≤ m, where m ≥ 0 is a certain integer. Let

ϕ(x) = ϕ1(x) = ϕ2(x), x ∈ [fm+1(1), 1].

If x ≤ f(1) = λ, then ϕi(x) ≥ ϕi(λ) = ϕ0(λ) > ϕ0(β) = β > λ. Thus by
(1.4) we have

(A.10) f(ϕ(f−1(x))) = f(ϕi(f
−1(x))) = ϕp−1i (ϕi(x)) = ϕp−10 (ϕi(x))

(i = 1, 2, x ∈ ∆m+1).

By (A.9), if ϕi(x) ∈ [α0, 1], then (A.10) is equivalent to

(A.11) ϕi(x) = ψ−1+ (f(ϕ(f−1(x)))), x ∈ ∆m+1.

And if ϕi(x) ∈ [ϕ0(λ), α0], then (A.10) is equivalent to

(A.12) ϕi(x) = ψ−1− (f(ϕ(f−1(x)))), x ∈ ∆m+1.

We claim that ϕ1(x) and ϕ2(x) either both satisfy (A.11) or both satisfy
(A.12). Suppose that there exists x0 ∈ ∆m+1 such that

ϕ1(x0) = ψ−1+ (f(ϕ(f−1(x0)))), ϕ2(x0) = ψ−1− (f(ϕ(f−1(x0)))).

Then there exist x1 > x0 and x1 ∈ ∆m+1 such that

ϕ1(x0) > ϕ1(x1) > α0 > ϕ2(x0) > ϕ2(x1).

Since ϕp−10 is strictly monotone on [ϕ0(λ), α0] and on [α0, 1], by (A.10) we
have

ϕp−10 (ϕ1(x1)) < ϕp−10 (ϕ1(x0)) = ϕp−10 (ϕ2(x0)) < ϕp−10 (ϕ2(x1)).

This contradicts (A.10) (x = x1). Thus ϕ1(x) = ϕ2(x) on ∆m+1. By induc-
tion, ϕ1(x) = ϕ2(x) on ∆k for all k ≥ 0.
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