
ANNALES
POLONICI MATHEMATICI

96.2 (2009)

Pluriharmonic extension in proper image domains

by Rafał Czyż (Kraków)

Abstract. Let Dj be a bounded hyperconvex domain in Cnj and set D = D1×· · ·×
Ds, j = 1, . . . , s, s ≥ 3. Also let Ωπ be the image of D under the proper holomorphic
map π. We characterize those continuous functions f : ∂Ωπ → R that can be extended to
a real-valued pluriharmonic function in Ωπ.

1. Introduction. For each j = 1, . . . , s, s ≥ 3, let Dj be a bounded
hyperconvex domain in Cnj , nj ≥ 1. Recall that a bounded domain Ω ⊆ Cn,
is called hyperconvex if there exists a plurisubharmonic function ϕ : Ω →
(−∞, 0) such that the closure of the set {z ∈ Ω : ϕ(z) < c} is compact in
Ω, for every c ∈ (−∞, 0). A bounded hyperconvex domain Ω in Cn, viewed
as a domain in R2n, is always regular with respect to the Dirichlet problem
for the Laplace operator (see e.g. [4]). Set

(1.1) D = D1 × · · · ×Ds, j = 1, . . . , s, s ≥ 3.

Then D ⊆ Cn, n = n1 + · · · + ns, is a hyperconvex domain (see e.g. [2,
Proposition 2.1]). Let U be an open neighborhood of D and π : U → Cn,
n = n1 + · · · + ns, be a proper holomorphic map. Set Ωπ = π(D). Then
π(∂D) = ∂Ωπ, since π is a proper map (see e.g. [6]). Furthermore, Ωπ is
hyperconvex (Proposition 2.1).

Let f : ∂Ωπ → R, s ≥ 3, be a continuous function. Our main goal in
Section 2 is to characterize those continuous functions f that can be extended
to real-valued pluriharmonic functions in Ωπ. We prove:

Theorem A. Let Dj be a bounded hyperconvex domain in Cnj , nj ≥ 1.
Set D = D1 × · · · × Ds, j = 1, . . . , s, s ≥ 3. Moreover , let U be an open
neighborhood of D, let π : U → Cn, n = n1+· · ·+ns, be a proper holomorphic
map and let Ωπ = π(D). If f : ∂D → R, n ≥ 3, is a continuous function,
then the following assertions are equivalent:
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(1) there exists a function h that is pluriharmonic on Ωπ, continuous on
Ωπ and h|∂Ωπ = f,

(2) f is pluriharmonic on ∂Ωπ in the sense of Definition 2.2,
(3) the Perron–Bremermann envelope PBf is pluriharmonic on Ωπ, i.e.,

PB−f = −PBf ,

(see Section 2 for the definition of the Perron–Bremermann enve-
lope),

(4) for every z0 ∈ ∂Ωπ and every Jensen measure µ ∈ J cz0 with barycenter
z0 we have

f(z0) =
�

∂Ωπ

f dµ.

Furthermore, if we assume that Ωπ has the approximation property , then the
above conditions are equivalent to:

(5) the function PB−f + PBf has smallest maximal plurisubharmonic
majorant identically zero,

(6) lim supΩ3z→ξ(PBf + PB−f )(z) = 0 for every ξ ∈ ∂Ωπ.
(see Section 2 for the definition of the approximation property).

An elementary example of a continuous function f : ∂Ωπ → R satisfying
the above conditions is the following: Let u be holomorphic in a neighborhood
of Ωπ and let f = Re(u) be defined on ∂Ωπ. Then h = Re(u) satisfies (1).

Let s = n1 = 1. Then property (2) in Theorem A does not make sense and
properties (1), (3)–(6) are true for every continuous function f : Ωπ → R. If
s = 2, then it is in general not true that (2) implies (1) ([2, Example 3.4]),
and if s ≥ 3 and π is the identity map or is such that Ωπ is the symmetrized
polydisc (see e.g. [5] for the definition), then Theorem A was obtained in [2].
The equivalence between (1) and (3) was proved for an arbitrary hyperconvex
domain in [1].

This article is organized as follows. The equivalence between assertions
(1)–(4) is proved in Section 3 and the final part is proved in Section 4. In
Section 5 we study plurisubharmonic boundary values in terms of analytic
discs, in the case when D = D1 × · · · ×Dn is a hyperconvex domain in Cn.

2. Definitions, basic facts and notations. Let Dj be a bounded
hyperconvex domain in Cnj , nj ≥ 1, and set

D = D1 × · · · ×Ds ⊆ Cn,

where n = n1 + · · · + ns. For an open neighborhood U of D and a proper
holomorphic map π : U → Cn we use the notation Ωπ = π(D).
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Let Ik = (j1, . . . , jk) be an increasing multi-index of length k: 1 ≤ j1 <
· · · < jk ≤ s, where 1 ≤ k ≤ s. Define

ΛIk = D1 × · · · ×
j1︷ ︸︸ ︷

∂Dj1 × · · · ×
jk︷ ︸︸ ︷

∂Djk × · · · ×Ds and ΛIkπ = π(ΛIk).

Hence,
∂D =

⋃
Ik

ΛIk and ∂Ωπ = π(∂D) =
⋃
Ik

ΛIkπ .

Finally, denote by ∂D+ the distinguished boundary of D, i.e.

∂D+ = ∂D1 × · · · × ∂Ds.

Proposition 2.1. The domain Ωπ is hyperconvex.

Proof. For every j, let ϕj be an exhaustion function for Dj . Then

u(ζ1, . . . , ζs) = max{ϕ1(ζ1), . . . , ϕs(ζs)}
is a plurisubharmonic exhaustion function for D in Cn. Now define

ϕ(w) = max{u(z) : z ∈ π−1(w)}.
From [7] it follows that ϕ is a plurisubharmonic exhaustion function for Ωπ.
Thus, Ωπ is hyperconvex.

Definition 2.2. An upper semicontinuous function u : ∂Ωπ → R ∪
{−∞} is plurisubharmonic if u is plurisubharmonic on every ΛIkπ for every
increasing multi-index Ik = (j1, . . . , jk) of length k < s, i.e., for every wj1 ∈
∂Dj1 , . . . , wjk ∈ ∂Djk , the function defined by

(2.1) uwj1 , . . . , wjk : (z1, . . . , zs−k) 7→ u ◦ π(z1, . . . , wj1 , . . . , wjk , . . . , zs−k)

is plurisubharmonic on

DIk = D1 × · · · × ∂̂Dj1 × · · · × ∂̂Djk × · · · ×Ds.

The identically −∞ function is by fiat not considered as plurisubharmonic.
In a similar manner a continuous function u : ∂Ωπ → R is pluriharmonic if
u is pluriharmonic on every ΛIkπ for every increasing multi-index Ik of length
k < s.

Remark. Note that, if we take π = idD in Definition 2.2, then an upper
semicontinuous function u is plurisubharmonic on ∂D if for every increasing
multi-index Ik the restriction of u to ΛIk is plurisubharmonic.

The following definition comes from [11].

Definition 2.3. Let Ω ⊆ Cn. We say that Ω has the approximation
property if for all upper bounded plurisubharmonic functions u in Ω there
exists a decreasing sequence uj ∈ PSH(Ω)∩C(Ω) such that uj → u∗ on Ω.
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Wikström proved that B-regular domains and polydiscs have the approx-
imation property (see [11]).

Definition 2.4. Let Ω ⊆ Cn be a bounded domain and let µ be a non-
negative, regular Borel measure on Ω. The measure µ is a Jensen measure
with barycenter at z ∈ Ω for continuous plurisubharmonic functions if

u(z) ≤
�

Ω

u dµ

for every continuous function u ∈ PSH(Ω). The set of all such measures will
be denoted by J cz .

Similarly the measure µ is a Jensen measure with barycenter at z ∈ Ω
for upper bounded plurisubharmonic functions if

u∗(z) ≤
�

Ω

u∗ dµ

for every upper bounded function u ∈ PSH(Ω). The set of all such measures
will be denoted by Jz.

It is clear that {δz} ⊂ Jz ⊂ J cz , where δz denotes the Dirac measure
at z. If Ω is a hyperconvex domain, then suppµ ⊂ ∂Ω for all z ∈ ∂Ω and
all µ ∈ J cz (see [3]). Moreover, for a bounded hyperconvex domain Ω ⊆ Cn

it was proved in [11] that Ω has the approximation property if, and only if,
J cz = Jz for all z ∈ Ω.

We say that there exists a strong plurisubharmonic barrier at z ∈ ∂Ω if
there exists u ∈ PSH(Ω) ∩ C(Ω) such that u(z) = 0 and u < 0 in Ω \ {z}.
A bounded domain Ω in Cn is called B-regular (see [9]) if for each z ∈ ∂Ω
there exists a strong plurisubharmonic barrier at z.

Proposition 2.5. Let Ω ⊂ Cn be bounded domain and let z ∈ ∂Ω be
such that there exists a strong plurisubharmonic barrier at z. Then J cz ={δz}.

Proof. Let z ∈ Ω. Assume that there exists u ∈ PSH(Ω) ∩ C(Ω) such
that u(z) = 0 and u < 0 in Ω \ {z}. Then we get

0 = u(z) ≤
�

∂Ω

u dµ ≤ 0.

Therefore suppµ ⊂ {z}, so J cz = {δz}.

Proposition 2.6. Let Dj be a bounded B-regular domain in Cnj , and
let D = D1×· · ·×Ds ⊂ Cn, where n = n1 + · · ·+ns. Fix k ∈ {1, . . . , s− 1},
1 ≤ j1 < · · · < jk ≤ s, zjl ∈ ∂Djl for l = 1, . . . , k and zm ∈ Dm for
m /∈ {j1, . . . , jk}. Let z = (z1, . . . , zj1 , . . . , zjk , . . . , zs) ∈ ∂D. If µ ∈ J cz , then

suppµ ⊂ D1 × · · · × {zj1} × · · · × {zjk} × · · · ×Ds.

If z ∈ ∂D+, then J cz = {δz}.
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Proof. Let z0 ∈ ∂D \ ∂D+, e.g. z0 = (z1, . . . , wj1 , . . . , wjk , . . . , zs). where
zj ∈ Dj , wjk ∈ ∂Djk . Let hjk be a strong plurisubharmonic barrier at wjk
for Djk . Define ujk(z) = hjk(zjk), and let µ ∈ J cz0 . Then

0 = ujk(z) ≤
�

∂D

ujk dµ,

which implies that

suppµ ⊂ D1 × · · · × {wjk} × · · · ×Ds.

Hence,

suppµ ⊂
⋂
jk

D1 × · · · × {wjk} × · · · ×Ds

= D1 × · · · × {wj1} × · · · × {wjk} × · · · ×Ds.

To prove the second part of the proposition, we will show that for each z ∈
∂D+ there exists a strong plurisubharmonic barrier at z; then Proposition 2.5
will finish the proof. Let (w1, . . . , ws) ∈ ∂D+. Then for each j there exists
ϕj ∈ PSH(Dj)∩C(Dj) such that ϕj(wj) = 0 and ϕj < 0 in Dj \{wj}. Now
define

u(z1, . . . , zs) =
s∑
j=1

ϕj(zj).

Then u ∈ PSH(D) ∩ C(D), u(w) = 0 and u < 0 in D \ {w}.

Let Ω ⊆ Cn be a bounded hyperconvex domain and let f : ∂Ω → R be
a continuous function. The Perron–Bremermann envelope is defined by

PBf (z) = sup{w(z) : w ∈ PSH(Ω), lim sup
Ω3ζ→ξ

w(ζ) ≤ f(ξ) ∀ξ ∈ ∂Ω}.

Hence PBf is always plurisubharmonic, but not necessarily continuous. In
[10] Walsh proved that if

lim inf
Ω3z→ξ

PBf (z) = lim sup
Ω3z→ξ

PBf (z) = f(ξ)

for every ξ ∈ ∂Ω, then PBf ∈ C(Ω). We will refer to this result as Walsh’s
theorem.

3. Proof of the equivalence (1)–(4) in Theorem A

Lemma 3.1. Let U be an open neighborhood of D defined in Section 2
and let π : U → Cn be a proper holomorphic map. Let Ωπ := π(D) and
let f : ∂Ωπ → R be a continuous function. If there exists u ∈ PSH(Ωπ) ∩
C(Ωπ) such that u|∂Ωπ = f , then f is plurisubharmonic in the sense of
Definition 2.2.
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Proof. Let Ik be an increasing multi-index of length k < s, and wj1 ∈
∂Dj1 , . . . , wjk ∈ ∂Djk . Let fwj1 ,...,wjk : DIk → R ∪ {−∞} be defined as
in (2.1). We need to prove that this function is plurisubharmonic under the
assumption that there exists u ∈ PSH(Ωπ) ∩ C(Ωπ) such that u|∂Ωπ = f .
Take a sequence [(wmj1 , . . . , w

m
jk

)]∞m=1 in Dj1 × · · · × Djk which converges to
(wj1 , . . . , wjk) as m→∞. Moreover, let [um] be the sequence of real-valued
functions on DIk defined by

um(z1, . . . , zs−k) = u ◦ π(z1, . . . , wmj1 , . . . , w
m
jk
, . . . , zs−k).

This construction implies that um is plurisubharmonic on DIk and continu-
ous up to the boundary. The sequence [um] converges uniformly to fwj1 ,...,wjk
on DIk as m→∞, and therefore f is plurisubharmonic in the sense of Def-
inition 2.2.

Next we prove a characterization of those continuous boundary values
which can be extended to continuous plurisubharmonic functions inside the
domain.

Proposition 3.2. Let D = D1 × · · · × Ds, where Dj is a B-regular
domain in Cnj , j = 1, . . . s, and let f : ∂D → R be a continuous function.
The following conditions are then equivalent :

(1) there exists u ∈ PSH(D) ∩ C(D) such that u|D = f ,
(2) f is plurisubharmonic in the sense of Definition 2.2 (with π = idD).
Proof. (2)⇒(1): If z ∈ ∂D+, then J cz = {δz} by Proposition 2.6. If

z ∈ ∂D \ ∂D+ then there exist k < s and 1 ≤ j1 < · · · < jk ≤ s such that
zjl ∈ ∂Djl for l = 1, . . . , k and zm ∈ Dm for m /∈ {j1, . . . , jk}. If µ ∈ J cz ,
then

suppµ ⊂ D1 × · · · × {zj1} × · · · × {zjk} × · · · ×Ds,

by Proposition 2.6. By our assumption f is plurisubharmonic on D1 × · · · ×
{zj1} × · · · × {zjk} × · · · ×Ds and then by definition of Jensen measures we
get

f(z) ≤
�

D1×···×{zj1}×···×{zjk}×···×Ds

f dµ.

Taking µ = δz we find that for all z ∈ ∂D,

f(z) = inf
{ �

∂D

f dµ : µ ∈ J cz
}
.

Then from Theorem 3.5 in [11] there exists u ∈ PSH(D) ∩ C(D) such that
u|D = f .

(1)⇒(2): Follows from Lemma 3.1.

Lemma 3.3. Let D be a bounded hyperconvex domain in Cn, and let U
be an open neighborhood of D. Let π : U → Cn be a proper holomorphic



Pluriharmonic extension 169

map and let Ωπ = π(D). If f : ∂Ωπ → R is a continuous function such that
PBf◦π ∈ PSH(D) ∩ C(D) and PBf◦π = f ◦ π on ∂D, then

PBf◦π = PBf ◦ π.

Furthermore, PBf◦π is pluriharmonic in D if , and only if , PBf is plurihar-
monic on Ωπ.

Proof. Define g = f ◦ π : ∂D → R. By our assumption, PBg is plurisub-
harmonic on D and continuous on D. Set

ϕ(w) = max{PBg(z) : z ∈ π−1(w)}.

Then ϕ ∈ PSH(Ωπ) ∩ C(Ωπ) (see [7]). We prove that ϕ|∂Ωπ = f . Let
Ωπ 3 wj → w ∈ ∂Ωπ. Then there exist finitely many z1

j , . . . , z
kj
j ∈ π−1(wj).

Take zljj such that ϕ(wj) = PBg(z
lj
j ). Since π is a proper map, we have

z
lj
j → z0 ∈ ∂D and then ϕ(wj) = PBg(z

lj
j )→ PBg(z0) = g(z0) = f(π(z0)) =

f(w0).
Hence ϕ ≤ PBf ∈ PSH(Ωπ) ∩ C(Ωπ), by Walsh’s theorem. Therefore

PBf ◦ π ∈ PSH(D) and (PBf ◦ π)|∂D = g. Thus, for z ∈ π−1(w) we get
(PBf ◦π)(z) ≤ PBg(z) and so PBf (w) ≤ ϕ(w), which implies that ϕ = PBf .
Therefore

PBf◦π = PBf ◦ π,

since both functions are maximal with the same boundary values g.
Now we prove the second part of the lemma. From the first part it is clear

that if PBf is pluriharmonic on Ωπ, then PBf◦π is pluriharmonic on D.
Now assume that PBg is pluriharmonic on D. Note that PBg = −PB−g,

since PBg pluriharmonic on D and continuous on D. Hence by the first part
of the proof,

PBf (w) = max{PBg(z) : z ∈ π−1(w)} = max{−PB−g(z) : z ∈ π−1(w)}
= −min{PB−g(z) : z ∈ π−1(w)}.

Similarly, PB−f (w) = max{PB−g(z) : z ∈ π−1(w)}. Combining these two
representations we obtain

0 ≥ PBf + PB−f = max{PB−g(z) : z ∈ π−1(w)}
−min{PB−g(z) : z ∈ π−1(w)} ≥ 0,

so PBf = −PB−f , which means that PBf is pluriharmonic.

We are now in a position to prove the first part of Theorem A.

Proof of Theorem A. (1)⇒(2): Follows immediately from Lemma 3.1.
(3)⇒(1): Obvious.
(3)⇒(4): Follows from Theorem 2.4 in [2].
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(4)⇒(2): Let Ik be an increasing multi-index 1 ≤ j1 < · · · < jk ≤ s of
length k < s, and z0 ∈ ΛIk . Take any complex line l through z0 and r > 0
such that z0+rE ⊂ l∩ΛIk , where E is in C. Since the Lebesgue measure λ on
the unit disc E is a Jensen measure at z0, the measure µπ(A) = λ(π−1(A)),
where A ⊂ z0 + rE, is a Jensen measure at π(z0). By assumption,

f(π(z0)) =
�

π(z0+rE)

f dµπ =
�

z0+rE
f ◦ π dλ,

which implies that f is harmonic on π(z0 + rE) and therefore pluriharmonic
on ∂Ωπ.

(2)⇒(3): Let g = f ◦ π : ∂D → R. Then g is pluriharmonic on ∂D
and therefore Theorem 3.3 in [2] implies that PBg is pluriharmonic on D,
continuous on D and PBg = g on ∂D. Therefore Lemma 3.3 finishes the
proof.

4. The final part of Theorem A. We prove the following theorem.

Theorem 4.1. Assume that Ω ⊆ Cn is a bounded hyperconvex domain
having the approximation property and that f : ∂Ω → R is a continuous
function. The following assertions are then equivalent :

(1) for every ξ ∈ ∂Ω,

(4.1) lim sup
Ω3z→ξ

(PBf + PB−f )(z) = 0,

(2) for every z0 ∈ ∂Ω and every µ ∈ Jz0 ,

f(z0) =
�

∂Ω

f dµ,

(3) PBf ,PB−f ∈ C(Ω) ∩ PSH(Ω), PBf = f and PB−f = −f on ∂Ω.

Proof. (3)⇒(1): Obvious.
(2)⇒(3): Lemma 3.3 in [11] implies that there exist u, v ∈ PSH(Ω) ∩

C(Ω) such that

lim
Ω3z→ζ

u(z) = f(ζ) and lim
Ω3z→ξ

v(z) = −f(ξ)

for all ζ, ξ ∈ ∂Ω, hence

lim
Ω3z→ζ

PBf (z) = f(ζ) and lim
Ω3z→ξ

PB−f (z) = −f(ξ),

and by [10] we get PBf ,PB−f ∈ C(Ω) ∩ PSH(Ω).
(1)⇒(2): First we will prove that assumption (4.1) implies that

lim sup
Ω3z→ζ

PBf (z) = f(ζ) and lim sup
Ω3z→ξ

PB−f (z) = −f(ξ)
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for all ζ, ξ ∈ ∂Ω. Assume that this is not the case, for example there exists
a ξ ∈ ∂Ω such that lim supz→ξ PBf (z) < f(ξ). Then

0 = lim sup
Ω3z→ξ

(PBf + PB−f )(z) ≤ lim sup
Ω3z→ξ

PBf (z) + lim sup
Ω3z→ξ

PB−f (z)

< f(ξ)− f(ξ) = 0,

a contradiction, hence lim supPBf = f and lim supPB−f = −f on ∂Ω.
Fix z0 ∈ ∂Ω and take µ ∈ Jz0 = J cz0 . Then suppµ ⊂ ∂Ω and

f(z0) = PB∗f (z0) ≤
�

Ω

PB∗f dµ =
�

∂Ω

PB∗f dµ =
�

∂Ω

f dµ.

Thus
f(z0) ≤ inf

{ �

∂Ω

f dµ : µ ∈ Jz0
}
.

If µ = δz0 , then we obtain

f(z0) = inf
{ �

∂Ω

f dµ : µ ∈ Jz0
}
.

A similar formula can be obtained for −f and therefore

inf
{ �

∂Ω

−f dµ : µ ∈ Jz0
}

= −f(z0) = − inf
{ �

∂Ω

f dµ : µ ∈ Jz0
}

= sup
{ �

∂Ω

−f dµ : µ ∈ Jz0
}
.

Thus, for every z0 ∈ ∂Ω and every µ ∈ Jz0 ,

f(z0) =
�

∂Ω

f dµ,

and the proof is complete.

Proof of the final part of Theorem A. (5)⇒(6): If a bounded plurisubhar-
monic function u on a bounded hyperconvex domain Ω has smallest maximal
plurisubharmonic majorant identically zero, then lim supz→ξ∈∂Ω u(z) = 0.

(3)⇒(5): Obvious.
(6)⇒(4): Follows from Theorem 4.1.

5. Plurisubharmonicity in terms of analytic discs. Let E be the
open unit disc in C. Let U be an open neighborhood of the closure of a
bounded hyperconvex domain D = D1×· · ·×Dn in Cn, and let π : U → Cn

be a proper holomorphic map. Set Ωπ := π(D). Note that since each Dj is
a one-dimensional hyperconvex domain, it is also B-regular.

Proposition 5.1. Let U be an open neighborhood of the closure of a
bounded hyperconvex domain D = D1 × · · · ×Dn in Cn, n ≥ 2, and let π :
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U → Cn be a proper holomorphic map. Let Ωπ := π(D) and let f : ∂Ωπ → R
be a continuous function. The following conditions are then equivalent :

(1) there exists u ∈ PSH(Ωπ) ∩ C(Ωπ) such that u|∂Ωπ = f ,
(2) f is plurisubharmonic in the sense of Definition 2.2,
(3) f is subharmonic on every analytic disc d embedded in ∂Ωπ, i.e.,

f ◦ d is subharmonic on E for every injective, holomorphic function
d : E→ Ωπ with d(E) ⊆ ∂Ωπ.

Proof. Since each Dj is B-regular, the equivalence (1)⇔(2) was proved
in Lemma 3.3.

(3)⇒(2): Let Ik be an increasing multi-index of length k < n, wj1 ∈
∂Dj1 , . . . , wjk ∈ ∂Djk . Let fwj1 ,...,wjk : DIk → R ∪ {−∞} be defined as
in (2.1). To prove that this function is plurisubharmonic, take z0 ∈ DIk .
Let z̃0 = (z1, . . . , wj1 , . . . , wjk , . . . , zn) ∈ ΛIk , choose X ∈ Cn−k and let
X̃ = (X1, . . . , Xjl , . . . , Xn), where Xjl = 0 for l = 1, . . . , k. Choose r > 0
such that {z̃0 + ζrX̃ : ζ ∈ E} ⊆ ΛIk . Let d : E → ΛIk be an analytic disc
embedded in ΛIk defined by d(ζ) = z̃0 + ζrX̃. Then π ◦ d is an analytic disc
imbedded in ΛIkπ . Thus f ◦ π ◦ d is subharmonic on E by assumption, hence
fwj1 ,...,wjk is plurisubharmonic on ΛIk .

(2)⇒(3): Let d : E → ∂Ωπ. It is enough to show that there exists an
increasing multi-index Ik of length k < n such that d(E) ⊂ ΛIkπ . It is clear
that d(E) 6⊂ π((∂E)n). So there exist z ∈ d(E) and an increasing multi-index
Ik of length k < n such that z ∈ ΛIkπ .

We prove that d(E) ⊂ ΛIkπ . Assume that it is not true. Then, since both
sets are connected, there exist λ1, λ2 ∈ E such that d(λ1) ∈ ΛIkπ and d(λ1) ∈
∂ΛIkπ (we can treat ΛIkπ like a domain in Cn−k). Therefore we can assume
that there exists an analytic disc d̃ : E→ ΛIkπ such that d(λ1), d(λ2) ∈ d̃(E).
Let

ψ(z1, . . . , ẑj1 , . . . , ẑjk , . . . , zn)

= max(φ1(z1), . . . , φ̂j1(zj1), . . . , ̂φjk(zjk), . . . , φn(zn))

be an exhaustion function for ΛIk treated like a subset of Cn−k, where φj is
an exhaustion function for Dj . We can consider the restriction π : Cn−k ⊃
ΛIk → ΛIkπ ⊂ Cn−k. Define

v(w) = max{ψ(z) : z ∈ π−1(w)}.

Then v is an exhaustion function for ΛIkπ . Define h(λ) = v ◦ d̃(λ). Then h
is a negative subharmonic function on E. But on the other hand, h(λ1) < 0
and h(λ2) = 0, which is impossible.

Remark. Let D = D1 × · · · × Ds, where each Dj is a hyperconvex
domain in Cnj with C1-boundary, 1 ≤ j ≤ s, s ≥ 2, and let U be an open
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neighborhood of D. Let π : U → Cn be a proper holomorphic map, where
n = n1 + · · ·+ ns, and let Ωπ := π(D). Following the idea from [2] one can
show that the conclusion of Proposition 5.1 is also true for the Ωπ described
above.

Theorem 5.2. Let f ∈ C(∂E×∂E), and let dσ be the normalized Lebesgue
measure on ∂E. Then the Poisson integral of f defined by

P [f ](z1, z2) =
�

∂E×∂E

(1− |z1|2)(1− |z2|2)
|w1 − z1|2|w2 − z2|2

f(w1, w2) dσ(w1) dσ(w2)

is 2-harmonic (i.e. harmonic in each variable separately) on E2 and contin-
uous on E2. Furthermore, P [f ] is pluriharmonic in E2 if , and only if ,�

∂E×∂E
wk11 w

k2
2 f(w1, w2) dσ(w1) dσ(w2) = 0

for all k1, k2 ∈ N. Moreover , if u is a 2-harmonic function on E2, continuous
on E2, then u = P [u].

Proof. See [8].

Using Rudin’s result we obtain a similar result for ∂Ωπ.

Proposition 5.3. Let U be an open neighborhood of the closure of E2

in C2, and let π : U → C2 be a proper holomorphic map. Let Ωπ := π(E2),
and let f : ∂Ωπ → R be a continuous function. The following are then
equivalent :

(1) there exists a function u which is pluriharmonic on Ωπ, continuous
on Ωπ and u|∂Ωπ = f ,

(2) f is harmonic in the sense of Definition 2.2 and

(5.1)
�

∂E×∂E
wk11 w

k2
2 f(π(w1, w2)) dσ(w1) dσ(w2) = 0

for all k1, k2 ∈ N.

Proof. (1)⇒(2): Similarly to the proof of Lemma 3.1 one can show that
f is harmonic in the sense of Definition 2.2. By assumption it also follows
that PBf is pluriharmonic on Ωπ. Therefore by Lemma 3.3, PBf◦π = PBf ◦π
and PBf ◦ π is pluriharmonic on E2, continuous on E2, and PBf ◦ π = f ◦ π
on ∂E2. Then PBf◦π = P [f ◦π] is the Poisson integral of f ◦π, so (5.1) holds
by Theorem 5.2.

(2)⇒(1): From (2) it follows that (5.1) holds for all k1, k2 ∈ N. By The-
orem 5.2, P [f ◦ π] is pluriharmonic on E2. Since f is harmonic in the sense
of Definition 2.2, the function P [f ◦ π] = PBf◦π is pluriharmonic on E2,
continuous on ∂E2, and PBf◦π = f ◦ π on ∂E2. Therefore by Lemma 3.3,
PBf is pluriharmonic on Ωπ, and the proof is complete.
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