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Strongly starlike and spirallike functions

by Adam Lecko (Rzeszów)

Abstract. The aim of this paper is to present a new method of proof of an analytic
characterization of strongly starlike functions of order (α, β). The relation between strong
starlikeness and spirallikeness of the same order is discussed in detail. Some well known
results are reproved.

0. Introduction

0.1. In this paper we study the concepts of strong starlikeness and spi-
rallikeness with respect to a finite point as well as with respect to infinity. We
examine the classes S∗(α, β; ξ) and Sa(α, β; ξ), where α, β ∈ [0, 1], ξ ∈ D, of
strongly starlike and spirallike functions of order (α, β), respectively. More-
over we study the classes Σ∗(α, β) and Σa(α, β), where α, β ∈ [0, 1], of
meromorphic strongly starlike and meromorphic spirallike functions of or-
der (α, β), respectively.

The class S∗(α, β; ξ) was studied in [L], [LL] and [LS]; here we present
new methods of proofs and new results. Some well known results are reproved
in a new elementary way. We discuss the relation between strong starlikeness
and spiralikeness of the same order in detail.

Let us emphasize that we are interested in turning geometrical ideas
into analytical formulas. We define strong starlikeness and spirallikeness as
geometrical properties of plane domains. Next we find analytic formulas
for the corresponding classes of univalent functions. As we remark below,
strong starlikeness was usually defined by various authors as a property of
analytic functions given by analytic formulas like (0.1) or (0.2) below. Next
the authors searched for geometrical characterizations of the functions thus
defined.

0.2. Our starting point is the notion of strong starlikeness of order α.
The class S∗(α; 0), α ∈ (0, 1], of analytic functions f with f(0) = 0 and
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f ′(0) 6= 0 satisfying the condition

(0.1)
∣∣∣∣ arg

{
zf ′(z)
f(z)

}∣∣∣∣ < α
π

2
, z ∈ D,

and usually called strongly starlike of order α, was introduced independently
by Brannan and Kirwan [BK] and Stankiewicz [S1-2] (see also [G, Vol. I,
pp. 138–139]). Brannan and Kirwan found a geometric condition called δ-
visibility which is sufficient for a function to be in S∗(α; 0). Stankiewicz [S2]
obtained an external geometric characterization of strongly starlike func-
tions. Ma and Minda [MM] presented an internal geometric characterization
of functions in S∗(α; 0) using the concept of k-starlike domains.

The second source of our interest is a generalization of strong starlikeness
given by Bucka and Ciozda [BC] (see also [G, Vol. I, p. 141]). They defined,
for α, β ∈ (0, 2], the class of analytic functions f with f(0) = 0 and f ′(0) 6= 0
by the condition

(0.2) −β π
2
< arg

{
zf ′(z)
f(z)

}
< α

π

2
, z ∈ D.

This class coincides with S∗(α, β; 0) (defined in 3.1) when α and β are
restricted to the interval (0, 1].

0.3. Some results presented here were published in [L], [LL] and [LS] but
the proofs given here are new. Theorem 3.2 was published in [LL] but now
we reprove it afresh. The case β = α, i.e. the class S∗(α, α; ξ) was studied
in [L]. Other results presented here have not been published before.

1. Preliminaries

1.1. For z0 ∈ C and r > 0 let D(z0, r) = {z ∈ C : |z − z0| < r}. For
r > 0 let Dr = D(0, r) and D∗r = {z ∈ C : |z| > r} ∪ {∞}. Let D = D1,
D∗ = D∗1 and T = ∂D.

1.2. Define

}(z) =





1/z, z ∈ C \ {0,∞},
0, z =∞,
∞, z = 0.

1.3. For A,B ⊂ C and w ∈ C we define

AB = {uv ∈ C : u ∈ A ∧ v ∈ B}, wA = {w}A.
For A ⊂ C, let

A−1 = {}(u) : u ∈ A}.
Let A, IntA and ExtA denote the closure, interior and exterior of the set
A ⊂ C, respectively.
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1.4. For any ξ ∈ D define the Möbius transformation

ϕξ(z) =
z − ξ
1− ξz

, z ∈ C \ {1/ξ}.

For every ξ ∈ D, ϕξ is an analytic automorphism of D.

1.5. Let B(ξ, ρ), ξ ∈ D, ρ > 0, denote the hyperbolic open disk with
hyperbolic center at ξ and hyperbolic radius ρ. We recall that

B(ξ, ρ) = {z ∈ D : |ϕξ(z)| < tanh ρ}.
For fixed ξ ∈ D let Cρ = ∂B(ξ, ρ). We will use the following parametrization
of Cρ:

(1.1) Cρ : z = cρ(θ) =
Reiθ + ξ

1 + ξReiθ
, θ ∈ [0, 2π),

where R = tanh ρ ∈ (0, 1). Clearly, Cρ is positively oriented.

1.6. The set of all analytic functions in D is denoted by A. Its subset
of univalent functions in D is denoted by S. For fixed ξ ∈ D the set of all
functions f ∈ A such that f(ξ) = 0 will be denoted by A(ξ). Set S(ξ) =
A(ξ) ∩ S.

1.7. Let Σ consist of all functions g of the form

g(ζ) = bζ +
∞∑

n=0

bn
ζn
, ζ ∈ D∗, b ∈ C \ {0},

univalent in D∗. Let Σ′ be the class of g ∈ Σ such that g(ζ) 6= 0 for ζ ∈ D∗.
Recall that there exists a one-to-one correspondence between S(0) and Σ ′.
If f ∈ S(0), then g(ζ) = } ◦ f ◦ }(ζ), ζ ∈ D∗, belongs to Σ′. Conversely, if
g ∈ Σ′, then f(z) = } ◦ g ◦ }(z), z ∈ D, belongs to S(0) (see e.g. [P2, p. 8]).

2. Strongly starlike domains of order (α, β)

2.1. For k, l ∈ (0, 2] let K1(k) and K2(l) be the closed disks of radius 1/k
and 1/l centered at 1/2−i

√
1/k2 − 1/4 and 1/2+i

√
1/l2 − 1/4, respectively.

Moreover let, K1(0) = {v ∈C : Re v < 0}∪[0, 1], K2(0) = {v ∈ C : Re v > 0}
∪ [0, 1]. For k, l ∈ [0, 2] let Ek,l = K1(k) ∩K2(l). For k, l ∈ [0, 2] define

Γ+
k = ∂Ek,l ∩ ∂K1(k), Γ−l = ∂Ek,l ∩ ∂K2(l).

Thus Γ+
k for k ∈ (0, 2] and Γ−l for l ∈ (0, 2] are closed circular arcs with end

points 0 and 1 lying in the closed upper and lower half-plane, respectively.
Moreover, Γ+

0 = Γ−0 = [0, 1]. An easy calculation shows that Γ+
k and Γ−l

for k, l ∈ [0, 2] make angles of π/2 − arccos(k/2) and π/2 − arccos(l/2) to
the real axis at 1 and 0, respectively. Thus Ek,l is a set bounded by Γ+

k and
Γ−l which make an angle of π − (arccos(k/2) + arccos(l/2)) to each other.
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Clearly, E0,0 = [0, 1], E2,2 = D(1/2, 1/2), E0,2 and E2,0 are half-disks. For
k ∈ (0, 2) or l ∈ (0, 2), Ek,l is a lens-shape set.

2.2. It is convenient to parametrize Γ+
k \ {0}, k ∈ (0, 2], and Γ−l \ {0},

l ∈ (0, 2], in polar coordinates:

Γ+
k \ {0} : z = %+

k (θ)eiθ, θ ∈ [0, π/2− arccos(k/2)),(2.1)

Γ−l \ {0} : z = %−l (θ)eiθ, θ ∈ (−π/2 + arccos(l/2), 0],(2.2)

where

%+
k (θ) = cos θ −

(√
4
k2 − 1

)
sin θ, %−l (θ) = cos θ +

(√
4
l2
− 1
)

sin θ.

Thus Γ+
k and Γ−l are oriented from 1 to 0 and from 0 to 1, respectively. This

means that the boundary of Ek,l, for k ∈ (0, 2] or l ∈ (0, 2], is positively
oriented. The line segment Γ+

0 = [0, 1] will be oriented from 1 to 0, and
Γ−0 = [0, 1] from 0 to 1.

For w ∈ C\{0}, wΓ+
k is oriented from w to 0, and wΓ−l from 0 to w. This

means that the boundary of wEk,l for k ∈ (0, 2] or l ∈ (0, 2] is positively
oriented.

For every z ∈ Γ+
k \ {0, 1}, k ∈ [0, 2], we denote by κ(z) ∈ [0, π/2] the

directed angle from iz to the tangent vector to Γ+
k at z. We also set κ(1) =

limΓ+
k 3z→1 κ(z) and κ(0) = limΓ+

k 3z→0 κ(z). For k ∈ (0, 2] from (2.1) we
have

κ(z) = κ(%+
k (θ)eiθ) = arg

d

dθ
(%+
k (θ)eiθ)

i%+
k (θ)eiθ

= arg




−i

k

2
sin θ +

√
1− k2

4
cos θ

−k
2

cos θ +

√
1− k2

4
sin θ

+ 1





= arg{i tan(arccos(k/2) + θ) + 1} = arccos(k/2) + θ

for θ ∈ (0, π/2−arccos(k/2)). Moreover, κ(1) = arccos(k/2) and κ(0) = π/2.
Similarly, for every z ∈ Γ−l \ {0, 1}, l ∈ [0, 2], we denote by ϑ(z) ∈

[−π/2, 0] the directed angle from iz to the tangent vector to Γ−l at z and
we set ϑ(1) = limΓ−l 3z→1 ϑ(z). We also set ϑ(0) = limΓ−l 3z→0 ϑ(z). For
l ∈ (0, 2] from (2.2) we have

ϑ(z) = ϑ(%−l (θ)eiθ) = θ − arccos(l/2)

for θ ∈ (−π/2 + arccos(l/2), 0). Moreover ϑ(1) = − arccos(l/2) and
ϑ(0) = −π/2.

Therefore we have
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Observation 2.1. (1) If z moves along Γ+
k , k ∈ (0, 2], from 1 to 0,

then κ(z) strictly increases from κ(1) = arccos(k/2) to κ(0) = π/2.
For all z ∈ Γ+

0 , κ(z) = π/2.
(2) If z moves along Γ−l , l ∈ (0, 2], from 0 to 1, then ϑ(z) strictly

increases from ϑ(0) = −π/2 to ϑ(1) = − arccos(l/2). For all z ∈ Γ−0 ,
ϑ(z) = −π/2.

2.3. For x ∈ [0, 1] let k(x) = 2 cos(xπ/2). Let now α, β ∈ [0, 1]. Then
Ek(α),k(β) is the closed set bounded by two arcs Γ+

k(α) and Γ−k(β) which make
an angle of π(1−(α+β)/2) at their points of intersection, i.e. at 0 and 1. Note
that Ek(α),k(α), α ∈ (0, 1), is a lens-shape set bounded by two symmetrical
circular arcs Γ+

k(α) and Γ−k(α) which intersect at an angle of π(1−α). Clearly,

Ek(1),k(1) = [0, 1] and Ek(0),k(0) = D(1/2, 1/2).
Let α, β ∈ [0, 1). By (2.1) and (2.2) with k = k(α) = 2 cos(απ/2) ∈ (0, 2]

and l = k(β) = 2 cos(βπ/2) ∈ (0, 2], Γ+
k(α) \ {0} and Γ−k(β) \ {0} have the

following polar equations:

(2.3) Γ+
k(α) \ {0} : z = %+

k(α)(θ)e
iθ =

cos(θ + απ/2)
cos(απ/2)

eiθ,

θ ∈ [0, (1− α)π/2),

and

(2.4) Γ−k(β) \ {0} : z = %−k(β)(θ)e
iθ =

cos(θ − βπ/2)
cos(βπ/2)

eiθ,

θ ∈ (−(1− β)π/2, 0].

Clearly,

%+
k(α)((1− α)π/2)) = lim

θ→[(1−α)π/2]−
%+
k(α)(θ) = 0,

%−k(β)(−(1− β)π/2)) = lim
θ→[−(1−β)π/2]+

%−k(β)(θ) = 0.

Now we define the class Z∗(α, β) of strongly starlike domains of order
(α, β).

Definition 2.1. A domain Ω ⊂ C, Ω 6= C, belongs to Z∗(α, β), α, β ∈
[0, 1], and is called strongly starlike of order (α, β) if wEk(α),k(β) ⊂ Ω for
every w ∈ Ω.

Strongly starlike domains of order (α, α) will be called strongly starlike
of order α and the set Z∗(α, α) will be denoted by Z∗(α).

Let, for short, Z∗ = Z∗(1) denote the class of starlike domains.

Remark 2.1. Since Z∗(α, β) ⊂ Z∗ for all α, β ∈ [0, 1], every domain in
Z∗(α, β) is simply connected.

The following lemma is obvious.
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Lemma 2.1. Z∗(α1, β1) ⊂ Z∗(α2, β2) for any 0 ≤ α1 ≤ α2 ≤ 1 and
0 ≤ β1 ≤ β2 ≤ 1.

Now we prove that the classes Z∗(α, 0) and Z∗(0, β) contain only disks
centered at the origin.

Lemma 2.2. For every α, β ∈ [0, 1],

Z∗(α, 0) = Z∗(0, β) = {Dr : r > 0}.
Proof. Since, by Lemma 2.1, Z∗(α, 0) ⊂ Z∗(1, 0) for α ∈ [0, 1], it is

enough to prove that Z∗(1, 0) consists of disks centered at the origin.
Let Ω ∈ Z∗(1, 0). Then wEk(1),k(0) = wE0,2 ⊂ Ω for every w ∈ Ω.

Clearly, wE0,2 is a half-disk with the boundary

∂(wE0,2) = [0, w] ∪ wΓ−2 .
Now fix w ∈ Ω. Without loss of generality we can assume that w = r ∈ R+.
For n ∈ N let δn = 2π/n. Fix n ≥ 5. Since rE0,2 ⊂ Ω, we see that w1 =
e−iδnr cos δn ∈ rΓ−2 , i.e. w1 ∈ Ω. Thus w1E0,2 ⊂ Ω. Hence

w2 = e−2iδn |w1| cos δn = e−2iδnr cos2 δn ∈ w1Γ
−
2 ,

i.e. w2 ∈ Ω. In this way we can find n + 1 points w0, w1, w2, . . . , wn of Ω
such that w0 = r and

wk = e−ikδn |wk−1| cos δn = e−ikδnr cosk δn ∈ wk−1Γ
−
2 , k = 1, . . . , n.

Since, in particular,

wn = e−inδnr cosn δn = r cosn
(

2π
n

)
,

we have

lim
n→∞

wn = r lim
n→∞

cosn
(

2π
n

)
= r.

Hence we deduce that Dr ⊂ Ω. Thus we proved that D|w| ⊂ Ω for every
w ∈ Ω, which means that Ω is a disk centered at the origin.

The proof for the class Z∗(0, β), β ∈ [0, 1], is identical.

3. An analytic characterization of strongly starlike functions of
order (α, β)

3.1. Let S∗(α, β) ⊂ S, α, β ∈ [0, 1], denote the class of functions f ∈ S
such that f(D) ∈ Z∗(α, β), called strongly starlike of order (α, β). For ξ ∈ D
let S∗(α, β; ξ) = S∗(α, β) ∩ S(ξ). For α ∈ [0, 1], let S∗(α) denote the class
S∗(α, α) of functions called strongly starlike of order α and let S∗(α; ξ) =
S∗(α, α; ξ) for ξ ∈ D.

Observe first that by Lemma 2.2 we have
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Corollary 3.1. For any α, β ∈ [0, 1] and every ξ ∈ D,

S∗(0, β; ξ) = S∗(α, 0; ξ) = {aϕξ : a ∈ C \ {0}}.
For this reason in the following considerations we assume that α, β ∈

(0, 1].

3.2. In the proof of Theorem 3.2 we make essential use of the fact that
every f ∈ S∗(α, β; ξ) preserves strong starlikeness of order (α, β) on each
hyperbolic disk centered at ξ, i.e. we use the following theorem proved in
[L] for α = β ∈ [0, 1] and in [LL] for α, β ∈ [0, 1].

Theorem 3.1 ([LL]). Let α, β ∈ (0, 1], ξ ∈ D and f ∈ S(ξ). Then
f ∈ S∗(α, β; ξ) if and only if f(B(ξ, ρ)) ∈ Z∗(α, β) for every ρ > 0.

Now we reprove the analytic characterization of functions in S∗(α, β; ξ)
first given in [LL]. The case α = β was shown in [L]. One of the goals of this
paper is to present a new analytical proof of the theorem below.

Theorem 3.2. Let α, β ∈ (0, 1] and ξ ∈ D. If f ∈ S∗(α, β; ξ), then

(3.1) −β π
2
< arg

{
(1− ξz)(z − ξ)f ′(z)

f(z)

}
< α

π

2
, z ∈ D.

Conversely , if f ∈ A with f ′(ξ) 6= 0 satisfies (3.1), then f ∈ S∗(α, β; ξ).

Proof. Necessity. Let f ∈ S∗(α, β; ξ). Thus f ∈ S(ξ) and Ω = f(D) ∈
Z∗(α, β).

1. As f(ξ) = 0 and f ′(ξ) 6= 0, the function

(3.2) S(z; ξ) =
(1− ξz)(z − ξ)f ′(z)

f(z)
, z ∈ D \ {ξ},

has a removable singularity at z = ξ with

S(ξ; ξ) = lim
z→ξ

(1− ξz)(z − ξ)f ′(z)
f(z)

= 1− |ξ|2.

Hence (3.1) holds for z = ξ.

2. Fix z ∈ D, z 6= ξ. Then z ∈ Cρ for some ρ > 0. By Theorem 3.1,
f(B(ξ, ρ)) ∈ Z∗(α, β). Hence

(3.3) f(z)Ek(α),k(β) ⊂ f(B(ξ, ρ)).

Indeed, let w0 ∈ f(z)Ek(α),k(β), i.e.w0 = f(z)u0 for some u0 ∈ Ek(α),k(β).
Since f(z) ∈ ∂f(B(ξ, ρ)) = f(Cρ), there exists a sequence (wn) in f(B(ξ, ρ))
convergent to f(z). The inclusion wnEk(α),k(β) ⊂ f(B(ξ, ρ)) shows that
wnu0 ∈ f(B(ξ, ρ)) for every n ∈ N. Since limn→∞(wnu0) = f(z)u0 = w0,
our claim is proved.
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(a) Fix δ ∈ [α, 1). We see from (3.3) that f(z)%+
k(δ)(θ)e

iθ ∈ f(B(ξ, ρ)) for
θ ∈ [0, (1− δ)π/2). Hence

ω+
θ (δ; z) = f−1(f(z)%+

k(δ)(θ)e
iθ) ∈ B(ξ, ρ),

and, consequently,

ϕξ ◦ ω+
θ (δ; z) ∈ ϕξ(B(ξ, ρ)) = Dr

for r = tanh ρ and θ ∈ [0, (1− δ)π/2). Thus

(3.4) |ϕξ ◦ ω+
θ (δ; z)| ≤ |ϕξ ◦ ω+

0 (δ; z)| = |ϕξ(z)|, θ ∈ [0, (1− δ)π/2).

For θ ∈ [0, (1− δ)π/2) let

ψ+
z (δ; θ) = ϕξ ◦ ω+

θ (δ; z).

Since |ψ+
z (δ; 0)| = |ϕξ(z)| and ψ+

z (δ; θ) 6= 0 for θ ∈ [0, (1−δ)π/2), from (3.4)
we have

0 ≥ lim
θ→0+

|ψ+
z (δ; θ)| − |ψ+

z (δ; 0)|
θ

=
∂

∂θ
|ψ+
z (δ; θ)||θ=0

=
∂

∂θ
|ϕξ ◦ ω+

θ (δ; z)||θ=0 = |ϕξ ◦ ω+
θ (δ; z)||θ=0 Re

{ ∂

∂θ
ϕξ ◦ ω+

θ (δ; z)

ϕξ ◦ ω+
θ (δ; z)

}

|θ=0

= |ϕξ(z)|Re

{
ϕ′ξ(ω

+
θ (δ; z))

∂

∂θ
ω+
θ (δ; z)

ϕξ(z)

}

|θ=0

= |ϕξ(z)|Re
{

1− |ξ|2
(1− ξω+

θ (δ; z))2ϕξ(z)

∂

∂θ
f−1(f(z)%+

k(δ)(θ)e
iθ)
}

|θ=0

= |ϕξ(z)|Re
{

1− |ξ|2
(1− ξz)(z − ξ)

f(z)((%+
k(δ))

′(θ)eiθ + i%+
k(δ)(θ)e

iθ)

f ′(f−1(f(z)%+
k(δ)(θ)e

iθ))

}

|θ=0

= (1− |ξ|2)|ϕξ(z)|Re
{

(− tan(δπ/2) + i)
f(z)

(1− ξz)(z − ξ)f ′(z)

}

=
(1− |ξ|2)|ϕξ(z)|

cos(δπ/2)
Re
{
ieiδπ/2

f(z)

(1− ξz)(z − ξ)f ′(z)

}
, z ∈ D \ {ξ}.

Thus

0 ≤ arg
{
eiδπ/2

f(z)

(1− ξz)(z − ξ)f ′(z)

}
≤ π, z ∈ D \ {ξ}.

Hence

−π + δ
π

2
≤ arg

{
(1− ξz)(z − ξ)f ′(z)

f(z)

}
≤ δ π

2
, z ∈ D \ {ξ}.
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Since the last inequalities are true for every δ ∈ [α, 1), we see that

(3.5) −π
2
≤ arg

{
(1− ξz)(z − ξ)f ′(z)

f(z)

}
≤ α π

2
, z ∈ D \ {ξ}.

(b) Fix δ ∈ [β, 1). We see from (3.3) that f(z)%−k(δ)(θ)e
iθ ∈ f(B(ξ, ρ)) for

θ ∈ (−(1− δ)π/2, 0]. Hence

ω−θ (δ; z) = f−1(f(z)%−k(δ)(θ)e
iθ) ∈ B(ξ, ρ),

and, consequently,

ϕξ ◦ ω−θ (δ; z) ∈ ϕξ(B(ξ, ρ)) = Dr
for r = tanh ρ and θ ∈ (−(1− δ)π/2, 0]. Thus

(3.6) |ϕξ ◦ ω−θ (δ; z)| ≤ |ϕξ ◦ ω−0 (δ; z)| = |ϕξ(z)|, θ ∈ (−(1− δ)π/2, 0].

For θ ∈ (−(1− δ)π/2, 0] let

ψ−z (δ; θ) = ϕξ ◦ ω−θ (δ; z).

Since |ψ−z (δ; 0)| = |ϕξ(z)| and ψ−z (δ; θ) 6= 0 for θ ∈ (−(1 − δ)π/2, 0], calcu-
lating as in part 2(a) of this proof, from (3.6) we have

0 ≤ lim
θ→0−

|ψ−z (δ; θ)| − |ψ−z (δ; 0)|
θ

=
∂

∂θ
|ψ−z (δ; θ)||θ=0

=
(1− |ξ|2)|ϕξ(z)|

cos(δπ/2)
Re
{
ie−iδπ/2

f(z)

(1− ξz)(z − ξ)f ′(z)

}
, z ∈ D \ {ξ}.

Thus

−π ≤ arg
{
e−iδπ/2

f(z)

(1− ξz)(z − ξ)f ′(z)

}
≤ 0, z ∈ D \ {ξ}.

Hence

−δ π
2
≤ arg

{
(1− ξz)(z − ξ)f ′(z)

f(z)

}
≤ π − δ π

2
, z ∈ D \ {ξ}.

Since the last inequalities are true for every δ ∈ [β, 1), we see that

(3.7) −β π
2
≤ arg

{
(1− ξz)(z − ξ)f ′(z)

f(z)

}
≤ π

2
, z ∈ D \ {ξ}.

(c) From (3.3) we see that tf(z) ∈ f(B(ξ, ρ)) for every t ∈ [0, 1]. Hence

ωt(z) = f−1(tf(z)) ∈ B(ξ, ρ),

and, consequently,
ϕξ ◦ ωt(z) ∈ ϕξ(B(ξ, ρ)) = Dr

for r = tanh ρ and t ∈ [0, 1]. Thus

(3.8) |ϕξ ◦ ωt(z)| ≤ |ϕξ ◦ ω1(z)| = |ϕξ(z)|, t ∈ [0, 1].
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For t ∈ [0, 1] let
ψz(t) = ϕξ ◦ ωt(z).

Since |ψz(1)| = |ϕξ(z)| and ψz(t) 6= 0 for t ∈ (0, 1], calculating as in
parts 2(a)–2(b) of this proof, from (3.8) we have

0 ≤ lim
t→1−

|ψz(t)| − |ψz(1)|
t− 1

=
∂

∂t
|ψz(t)||t=1

= (1− |ξ|2)|ϕξ(z)|Re
{

f(z)

(1− ξz)(z − ξ)f ′(z)

}
, z ∈ D \ {ξ}.

Thus we proved that

(3.9) Re
{

(1− ξz)(z − ξ)f ′(z)
f(z)

}
≥ 0, z ∈ D \ {ξ}.

3. Finally, from part 1 of this proof, (3.5), (3.7) and (3.9) it follows that
every f ∈ S∗(α, β; ξ) satisfies the condition

(3.10) −β π
2
≤ arg

{
(1− ξz)(z − ξ)f ′(z)

f(z)

}
≤ α π

2
, z ∈ D.

Observe that (3.10) follows from parts 2(a) and 2(b). Part 2(c) shows that
(3.10) remains valid in the case δ = 1.

4. Suppose that the right inequality in (3.10) is equality for some point
of D. Then by the maximum principle for harmonic functions it holds for ev-
ery point in D. But this is impossible since S(ξ; ξ) is a real number. Therefore
the right inequality of (3.10) is strict, and similarly for the left inequality.

Sufficiency. Assume that f ∈ A with f ′(ξ) 6= 0 satisfies (3.1). We will
prove that f ∈ S∗(α, β; ξ).

A. We first prove that f is univalent in D.

1. Since f satisfies (3.1) and f ′(ξ) 6= 0, we see that S as a function of
z has no pole and no zero in D, which yields f(ξ) = 0. In consequence,
f ∈ A(ξ).

By assumption we have f ′(ξ) 6= 0. Suppose now that f ′(z0) = 0 for some
z0 ∈ D \ {ξ}. In view of (3.1) we must have f(z0) = 0. Then

f(z) = (z − z0)mg(z), z ∈ D,
where g ∈ A with g(z0) 6= 0 and m ≥ 2. Hence

f ′(z)
f(z)

=
m

z − z0
+
g′(z)
g(z)

, z ∈ D.

Thus S has a simple pole at z0, which is impossible since S is analytic in
D as a function of z. Consequently, f ′ is nonvanishing in D. This together
with (3.1) implies at once that f is nonvanishing in D\{ξ}. Since f ′(ξ) 6= 0,
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this shows that ξ is a unique single zero of f in D. Fix ρ > 0. Using the
principle of the argument we conclude that

∆Cρarg f(z) = 2πn(0, Γρ) = 2π,

where n(0, Γρ) denotes the index (winding number) of Γρ with respect to
the origin. This means that Γρ surrounds the origin exactly once.

2. Using the parametrization (1.1) of Cρ, ρ > 0, we get

(3.11) c′ρ(θ) =
i(1− |ξ|2)Reiθ

(1 + ξReiθ)2
= i

1− |ξ|2
1 + ξReiθ

· Reiθ

1 + ξReiθ

=
i

1− |ξ|2
(

1− ξ Reiθ + ξ

1 + ξReiθ

)
Reiθ − |ξ|2Reiθ

1 + ξReiθ
=
i(1− ξz)(z − ξ)

1− |ξ|2 .

Since f is locally univalent in D and nonvanishing in D \ {ξ}, we see that
arg f(z) is well defined locally on each circle Cρ, ρ > 0. Moreover, from
(3.11) and (3.1) for every ρ > 0 we have

d

dθ
arg f(cρ(θ)) =

d

dθ
Re log f(cρ(θ)) = Re

{
c′ρ(θ)f

′(cρ(θ))

f(cρ(θ))

}

= Re
{

(1− ξz)(z − ξ)f ′(z)
f(z)

}
> 0, z ∈ D \ {ξ},

where z = cρ(θ), θ ∈ [0, 2π). Thus for every ρ > 0 the function

(3.12) [0, 2π) 3 θ 7→ arg f(cρ(θ))

is increasing. Therefore Γρ has no multiple points. This and part 1 of this
proof show that f is injective on Cρ. From [P1, Corollary 9.5] it follows that
f is univalent in B(ξ, ρ). Since ρ > 0 was arbitrary, this yields the univalence
of f in D.

B. Now we prove that f(D) ∈ Z∗(α, β).

1. It was observed in part A1 of this proof that f(ξ) = 0, so 0 ∈ f(D).

2. Fix z ∈ D, z 6= ξ. Then z ∈ Cρ for some ρ > 0.

(a) Fix δ ∈ [α, 1). Set

θ+
z (δ) = sup{θ ∈ [0, (1− δ)π/2) : {f(z)%+

k(δ)(t)e
it : t ∈ [0, θ)} ⊂ f(D)}.

Since f is an open mapping, θ+
z (δ) > 0. For θ ∈ [0, θ+

z (δ)) define

ω+
θ (δ; z) = f−1(f(z)%+

k(δ)(θ)e
iθ), ψ+

z (δ; θ) = ϕξ ◦ ω+
θ (δ; z).
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For θ ∈ [0, θ+
z (δ)) we have

(3.13)
∂

∂θ
|ψ+
z (δ; θ)| = ∂

∂θ
|ϕξ ◦ ω+

θ (δ; z)|

= |ϕξ(ω+
θ (δ; z))|Re

{ ∂

∂θ
ϕξ ◦ ω+

θ (δ; z)

ϕξ(ω+
θ (δ; z))

}

= |ϕξ(ω+
θ (δ; z))|Re

{
ϕ′ξ(ω

+
θ (δ; z))

∂

∂θ
ω+
θ (δ; z)

ϕξ(ω+
θ (δ; z))

}

= |ϕξ(ω+
θ (δ; z))|

× Re
{

1− |ξ|2
(1− ξω+

θ (δ; z))2ϕξ(ω+
θ (δ; z))

∂

∂θ
f−1(f(z)%+

k(δ)(θ)e
iθ)
}

= |ϕξ(ω+
θ (δ; z))|Re

{ (1− |ξ|2)f(z)((%+
k(δ))

′(θ)eiθ + i%+
k(δ)(θ)e

iθ)

(1− ξω+
θ (δ; z))(ω+

θ (δ; z)− ξ)f ′(ω+
θ (δ; z))

}

=
(1−|ξ|2)|ϕξ(ω+

θ (δ; z))|
cos(δπ/2)

Re
{

iei(θ+δπ/2)eiθf(z)

(1−ξω+
θ (δ; z))(ω+

θ (δ; z)−ξ)f ′(ω+
θ (δ; z))

}

=
(1−|ξ|2)|ϕξ(ω+

θ (δ; z))|
%+
k(δ)(θ) cos(δπ/2)

Re
{

iei(θ+δπ/2)f(ω+
θ (δ; z))

(1−ξω+
θ (δ; z))(ω+

θ (δ; z)−ξ)f ′(ω+
θ (δ; z))

}

=
(1− |ξ|2)|ϕξ(u)|
%+
k(δ)(θ) cos(δπ/2)

Re
{

iei(θ+δπ/2)f(u)

(1− ξu)(u− ξ)f ′(u)

}
,

where u = ω+
θ (δ; z). Observe that

(3.14)
π

2
< arg

{
iei(θ+δπ/2)f(u)

(1− ξu)(u− ξ)f ′(u)

}
<

3
2
π

if and only if

−π + θ + δ
π

2
< arg

{
(1− ξu)(u− ξ)f ′(u)

f(u)

}
< θ + δ

π

2
.

Since for α ≤ δ < 1 and 0 ≤ θ < θ+
z (δ) ≤ (1− δ)π/2 we have

−π + θ + δ
π

2
≤ −π

2
, θ + δ

π

2
≥ α π

2
,

(3.14) follows from (3.1). This implies that the function

[0, θ+
z (δ)) 3 θ 7→ |ψ+

z (δ; θ)|
is strictly decreasing for every δ ∈ [α, 1), so |ψ+

z (δ; θ)| < |ψ+
z (δ; 0)| = |ϕξ(z)|
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and, consequently,

ϕ−ξ(ψ+
z (δ; θ)) = f−1(f(z)%+

k(δ)(θ)e
iθ) ∈ B(ξ, ρ)

for θ ∈ (0, θ+
z (δ)). Thus

f(ϕ−ξ(ψ+
z (δ; θ))) = f(z)%+

k(δ)(θ)e
iθ ∈ f(B(ξ, ρ)), θ ∈ (0, θ+

z (δ)),

i.e., for every z ∈ Cρ,
(3.15) {f(z)%+

k(δ)(θ)e
iθ : θ ∈ (0, θ+

z (δ))} ⊂ f(B(ξ, ρ)).

Let

w+
z (δ) =

{
f(z)%+

k(δ)(θ
+
z (δ))eiθ

+
z (δ), θ+

z (δ) 6= (1− δ)π/2,
0, θ+

z (δ) = (1− δ)π/2.

Suppose that w+
z (δ) 6= 0, i.e. θ+

z (δ) 6= (1 − δ)π/2. By (3.15), we have
w+
z (δ) ∈ ∂f(B(ξ, ρ)) = f(Cρ). Consequently, there exists z+(δ) ∈ Cρ such

that w+
z (δ) = f(z+(δ)). Hence D(w+

z (δ), ε) ⊂ f(D) for some ε > 0. Thus we
conclude that

{f(z)%+
k(δ)(θ)e

iθ : θ ∈ [θ+
z (δ), θ+(ε))} ⊂ f(D)

for some θ+(ε) > θ+
z (δ), so

{f(z)%+
k(δ)(θ)e

iθ : θ ∈ [0, θ+(ε))} ⊂ f(D).

This contradicts the definition of θ+
z (δ) and shows that θ+

z (δ) = (1− δ)π/2
and w+

z (δ) = 0. In this way we proved that

(3.16) {f(z)%+
k(δ)(θ)e

iθ : θ ∈ [0, (1− δ)π/2)} ⊂ f(D)

for every δ ∈ [α, 1).

(b) Fix δ ∈ [β, 1). Set

θ−z (δ) = inf{θ ∈ (−(1− δ)π/2, 0] : {f(z)%−k(δ)(t)e
it : t ∈ (θ, 0]} ⊂ f(D)}.

Since f is an open mapping, θ−z (δ) < 0. For θ ∈ (θ−z (δ), 0] define

ω−θ (δ; z) = f−1(f(z)%−k(δ)(θ)e
iθ), ψ−z (δ; θ) = ϕξ ◦ ω−θ (δ; z).

As in (3.13), for θ ∈ (θ−z (δ), 0], we have

∂

∂θ
|ψ−z (δ; θ)| = (1− |ξ|2)|ϕξ(u)|

%−k(δ)(θ) cos(δπ/2)
Re
{

iei(θ−δπ/2)f(u)

(1− ξu)(u− ξ)f ′(u)

}
,

where u = ω−θ (δ; z). Observe that

(3.17) −π
2
< arg

{
iei(θ−δπ/2)f(u)

(1− ξu)(u− ξ)f ′(u)

}
<
π

2
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if and only if

θ − δ π
2
< arg

{
(1− ξu)(u− ξ)f ′(u)

f(u)

}
< π + θ − δ π

2
.

Since for β ≤ δ < 1 and −(1− δ)π/2 ≤ θ−z (δ) < θ ≤ 0 we have

θ − δ π
2
≤ −β π

2
, π + θ − δ π

2
≥ π

2
,

(3.1) yields (3.17). This implies that the function

(θ−z (δ), 0] 3 θ 7→ |ψ−z (δ; θ)|
is strictly increasing for every δ ∈ [β, 1), so |ψ−z (δ; θ)| < |ψ−z (δ; 0)| = |ϕξ(z)|
and, consequently,

ϕ−ξ(ψ−z (δ; θ)) = f−1(f(z)%−k(δ)(θ)e
iθ) ∈ B(ξ, ρ)

for θ ∈ (θ−z (δ), 0). Thus

f(ϕ−ξ(ψ−z (δ; θ))) = f(z)%−k(δ)(θ)e
iθ ∈ f(B(ξ, ρ)), θ ∈ (θ−z (δ), 0),

i.e., for every z ∈ Cρ,
(3.18) {f(z)%−k(δ)(θ)e

iθ : θ ∈ (θ−z (δ)), 0} ⊂ f(B(ξ, ρ)).

Let

w−z (δ) =
{
f(z)%−k(δ)(θ

−
z (δ))eiθ

−
z (δ), θ−z (δ) 6= −(1− δ)π/2,

0, θ−z (δ) = −(1− δ)π/2.

Suppose that w−z (δ) 6= 0, i.e. θ−z (δ) 6= −(1 − δ)π/2. By (3.18), we have
w−z (δ) ∈ ∂f(B(ξ, ρ)) = f(Cρ). Consequently, there exists z−(δ) ∈ Cρ such
that w−z (δ) = f(z−(δ)). Hence D(w−z (δ), ε) ⊂ f(D) for some ε > 0. Thus we
conclude that

{f(z)%−k(δ)(θ)e
iθ : θ ∈ (θ−(ε), θ−z (δ)]} ⊂ f(D)

for some θ−(ε) < θ−z (δ), so

{f(z)%−k(δ)(θ)e
iθ : θ ∈ (θ−(ε), 0]} ⊂ f(D).

This contradicts the definition of θ−z (δ) and shows θ−z (δ) = −(1− δ)π/2 and
w−z (δ) = 0. In this way we proved that

(3.19) {f(z)%−k(δ)(θ)e
iθ : θ ∈ (−(1− δ)π/2, 0]} ⊂ f(D)

for every δ ∈ [β, 1).

(c) Set
tz = inf{t ∈ [0, 1] : [tf(z), f(z)] ⊂ f(D)}.

Since f is an open mapping, tz < 1. For t ∈ (tz, 1] define

ωt(z) = f−1(tf(z)), ψz(t) = ϕξ ◦ ωt(z).
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As in (3.13) for t ∈ (tz, 1] we have

d

dt
|ψz(t)| =

1
t

(1− |ξ|2)|ϕξ(u)|Re
{

f(u)

(1− ξu)(u− ξ)f ′(u)

}
,

where u = ωt(z). Thus from (3.1) we obtain
d

dt
|ψz(t)| > 0, t ∈ (tz, 1].

This implies that the function (tz, 1] 3 t 7→ |ψz(t)| is strictly increasing, so
|ψz(t)| < |ψz(1)| = |ϕξ(z)| and, consequently,

ϕ−ξ(ψz(t)) = f−1(tf(z)) ∈ B(ξ, ρ)

for t ∈ (tz, 1). Thus

f(ϕ−ξ(ψz(t))) = tf(z) ∈ f(B(ξ, ρ)), t ∈ (tz, 1),

i.e., for every z ∈ Cρ,
(3.20) (wz, f(z)) ⊂ f(B(ξ, ρ)),

where wz = tzf(z).
Suppose that wz 6= 0, i.e. tz 6= 0. By (3.20), wz ∈ ∂f(B(ξ, ρ)) = f(Cρ).

Consequently, there exists z0 ∈ Cρ such that wz = f(z0). Hence D(wz, ε) ⊂
f(D) for some ε > 0. Thus we conclude that

(t(ε)f(z), tzf(z)] ⊂ f(D)

for some t(ε) < tz, so
(t(ε)f(z), f(z)] ⊂ f(D).

This contradicts the definition of tz and shows that tz = 0 and wz = 0. In
this way we proved that

(3.21) (0, f(z)] ⊂ f(D).

3. Finally, from part B1 of this proof, (3.16), (3.19) and (3.21) it follows
that f(D) ∈ Z∗(α, β). This ends the proof of the sufficiency.

Corollary 3.2. Let α, β ∈ (0, 1]. If f ∈ S∗(α, β; 0), then

(3.22) −β π
2
< arg

{
zf ′(z)
f(z)

}
< α

π

2
, z ∈ D.

Conversely , if f ∈A with f ′(0) 6= 0 satisfies (3.22), then f ∈S∗(α, β; 0).

4. Spiralshaped domains of order (α, β)

4.1. For α, β ∈ [0, 1] we denote by L+(α) and L−(β) the closures of the
sets {exp(−e−i(1−α)π/2t) : t ≥ 0} and {exp(ei(1−β)π/2t) : t ≤ 0}, respec-
tively.

(a) Let α, β ∈ (0, 1). Then L+(α) and L−(β) are two closed logarithmic
spirals joining 0 and 1 parametrized as in their definitions. We see that L+(α)



180 A. Lecko

from 1 to 0, and L−(β) from 0 to 1. It is convenient to write L+(α) \ {0}
and L−(β) \ {0} in polar coordinates:

L+(α) \ {0} : z = r+
α (θ)eiθ, θ ∈ [0,∞),

L−(β) \ {0} : z = r−β (θ)eiθ, θ ∈ (−∞, 0],

where

r+
α (θ) = exp(−θ tan(απ/2)), r−β (θ) = exp(θ tan(βπ/2)).

(b) Let α = β = 0. Then we set

L+(0) = {eit : t ∈ [0, 2π)} = T, L−(0) = {eit : t ∈ (−2π, 0]} = T.
(c) Let α = β = 1. Then we have

L+(1) = {e−t : t ≥ 0} ∪ {0} = [0, 1], L−(1) = {et : t ≤ 0} ∪ {0} = [0, 1].

4.2. Now we introduce some sets defined by using L+(α) and L−(β).
For α, β ∈ (0, 1], (α, β) 6= (1, 1), let

(4.1) θ(α, β) =





2π tan(βπ/2)
tan(απ/2) + tan(βπ/2)

, α, β ∈ (0, 1),

0, α = 1,
2π, β = 1.

(a) For α, β ∈ (0, 1), let

L+
0 (α, β) = {r+

α (θ)eiθ : θ ∈ [0, θ(α, β)]},
L−0 (α, β) = {r−β (θ)eiθ : θ ∈ [−2π + θ(α, β), 0]}.

Let L(α, β) be the closed domain bounded by L+
0 (α, β)∪L−0 (α, β). The sets

L+
0 (α, β) and L−0 (α, β) will be treated as oriented arcs in such a way that

L+
0 (α, β) ∪ L−0 (α, β), i.e. the boundary of L(α, β), is a positively oriented

closed curve.

(b) For α, β ∈ [0, 1] we set

L+
0 (0) = L+

0 (0, β) = L+
0 (α, 0) = L+(0) = T,

L−0 (0) = L−0 (0, β) = L−0 (α, 0) = L−(0) = T.

Then L(0, β) = L(α, 0) = D, α, β ∈ [0, 1].

(c) Let L+
0 (1) = L+

0 (1, 1) = L+(1) = [0, 1] and L−0 (1) = L−0 (1, 1) =
L−(1) = [0, 1]. Set L(1, 1) = [0, 1].

(d) Let α = 1 and β ∈ (0, 1). Now, by (4.1), θ(1, β) = 0 and let L−0 (1, β)
be the part of L−(β) joining the points r−β (−2π) = exp(−2π tan(βπ/2)) and
r−β (0) = 1. We set L+

0 (1, β) = [0, 1], so L(1, β) is the closed domain bounded
by the spiral L−0 (1, β) and the line segment [r−β (−2π), 1]. Its boundary is
positively oriented.
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(e) Let β = 1 and α ∈ (0, 1). As in (d) we see by (4.1) that θ(α, 1)
= 2π and let L+

0 (α, 1) be the part of L+(α) joining the points r+
α (0) = 1

and r+
α (2π) = exp(−2π tan(απ/2)). We set L−0 (α, 1) = [0, 1], so L(α, 1) is

the closed domain bounded by the spiral L+
0 (α, 1) and the line segment

[r+
α (2π), 1]. Its boundary is positively oriented.

Note that for every z ∈ L+(α) \ {0}, α ∈ (0, 1), the directed angle from
iz to the tangent vector to L+(α) \ {0} at z equals

arg

d

dθ
(r+
α (θ)eiθ)

ir+
α (θ)eiθ

= arg{i tan(απ/2) + 1} = α
π

2
.

Similarly, for every z ∈ L−(β) \ {0}, β ∈ (0, 1), the directed angle from iz
to the tangent vector to L−(β) \ {0} at z equals

arg

d

dθ
(r−β (θ)eiθ)

ir−β (θ)eiθ
= arg{−i tan(βπ/2) + 1} = −β π

2
.

Therefore we have the well known geometrical property of logarithmic
spirals formulated in parts (1) and (2) of the observation below.

Observation 4.1. (1) For every z ∈ L+(α)\{0}, α ∈ (0, 1), the directed
angle from iz to the tangent vector to L+(α) \ {0} at z is constant
and equals απ/2 (at z = 1 we take the one-sided tangent vector to
L+(α)).

(2) For every z ∈ L−(β) \ {0}, β ∈ (0, 1), the directed angle from iz to
the tangent vector to L−(β) \ {0} at z is constant and equals −βπ/2
(at z = 1 we take the one-sided tangent vector to L−(β)).

(3) For every z in L+(0) or in L−(0) the directed angle from iz to the
tangent vector to L+(0) or L−(0) at z is constant and equals 0.

(4) For every z ∈ L+(1) \ {0, 1} (resp. L−(1) \ {0, 1}) the directed angle
from iz to the tangent vector to L+(1) \ {0, 1} (resp. L−(1) \ {0, 1})
at z is constant and equals π/2 (resp. −π/2).

4.3. Now we define the class Za(α, β).

Definition 4.1. A domain Ω ⊂ C, Ω 6= C, belongs to Za(α, β), α, β ∈
[0, 1] if wL(α, β) ⊂ Ω for every w ∈ Ω. Domains in Za(α, β) will be called
spiralshaped of order (α, β). Domains in Za(α, α), α ∈ [0, 1], are called
spiralshaped of order α. For short, let Za(α) = Za(α, α) for α ∈ [0, 1].

Remark 4.1. (1) The spiralshaped domains of order (1, 1) are the star-
like domains, i.e. Za(1, 1) = Z∗.

(2) Since Za(α, β) ⊂ Z∗ for all α, β ∈ [0, 1], every domain in Za(α, β)
is simply connected.

Since L(0, β) = L(α, 0) = D we have at once
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Observation 4.2. For any α, β ∈ [0, 1],

Za(α, 0) = Za(0, β) = {Dr : r > 0}.
The observation below has an important consequence for classes of uni-

valent functions.

Observation 4.3. Every domain in Za(α, β) for α, β ∈ [0, 1], (α, β)
6= (1, 1), is bounded.

Proof. 1. The cases: α = 0, β ∈ [0, 1] and β = 0, α ∈ [0, 1], reduce to
Observation 4.2.

2. Let α, β ∈ (0, 1], (α, β) 6= (1, 1). Assume that Ω ∈ Za(α, β). Then
wL(α, β) ⊂ Ω for every w ∈ Ω. Observe first that from strict monotonicity
of the functions

[0,∞) 3 θ 7→ r+
α (θ) = exp(−θ tan(απ/2))

and
(−∞, 0] 3 θ 7→ r−β (θ) = exp(θ tan(βπ/2))

defined in Section 4.1, the set L(α, β) contains the closed disk Dr(α,β), where

r(α, β) = r+
α (θ(α, β)) = r−β (2π − θ(α, β)) = exp(−θ(α, β) tan(απ/2)),

where θ(α, β) is given by (4.1). Thus

(4.2) D|w|r(α,β) ⊂ wL(α, β).

Suppose now that Ω is unbounded. Then there exists a sequence (wn) of
points of Ω such that limn→∞ wn = ∞. Since wn ∈ Ω, we have wnL(α, β)
⊂ Ω for every n ∈ N. By (4.2), D|wn|r(α,β) ⊂ Ω for every n ∈ N. Since
limn→∞ |wn| =∞ we deduce that Ω = C. Thus we have a contradiction, so
Ω is bounded.

Remark 4.2. As was noted in Remark 4.1(1), the spiralshaped domains
of order (1, 1) are exactly the starlike domains. It is evident that starlike
domains need not be bounded.

4.4. Now we prove that strong starlikeneness and spirallikeness of a
given order yield the same class of plane domains. Let us start with the
following observation.

Observation 4.4. Ek(α),k(β) ⊂ L(α, β) for every α, β ∈ [0, 1].

Proof. 1. The inclusion is evident for α = 0 or β = 0, since then L(0, β) =
L(α, 0) = D, α, β ∈ [0, 1]. Clearly, Ek(1),k(1) = L(1, 1) = [0, 1].

2. Assume that α, β ∈ (0, 1]. Recall that the boundary of Ek(α),k(β)

consists of two arcs Γ+
k(α) and Γ−k(β) which are either circular arcs or the

segment [0, 1].
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(a) Let first α, β ∈ (0, 1). As in Section 2.3, Γ+
k(α) \ {0} and Γ−k(β) \ {0}

with k = k(α) = 2 cos(απ/2) and l = k(β) = 2 cos(βπ/2) have the polar
equations (2.3) and (2.4), respectively. Moreover,

%+
k(α)((1− α)π/2)) = lim

θ→[(1−α)π/2]−
%+
k(α)(θ) = 0,

%−k(β)(−(1− β)π/2)) = lim
θ→[−(1−β)π/2]+

%−k(β)(θ) = 0.

We will show that

(4.3) a(θ) := r+
α (θ)− %+

k(α)(θ) ≥ 0

for θ ∈ [0, (1− α)π/2], where r+
α (θ) is given in 4.1. Since

a′(θ) =
1

cos(απ/2)
(sin(θ + απ/2)− exp(−θ tan(απ/2)) sin(απ/2))

≥ 1
cos(απ/2)

(sin(θ + απ/2)− sin(απ/2)) > 0

for θ ∈ (0, (1−α)π/2), the function a is strictly increasing in (0, (1− α)π/2).
Moreover a(0) = r+

α (0) − %+
k(α)(0) = 0 and a((1 − α)π/2) > 0. This

yields (4.3).
In a similar way we show r−β (θ)−%−k(β)(θ) ≥ 0 for θ ∈ [−(1−β)π/2, 0].

Consequently,Ek(α),k(β) lies in the intersection of L(α, β) and the closed con-
vex angle with vertex at zero and arms l[0, (1−α)π/2] and l[0,−(1−β)π/2].
In particular, Ek(α),k(β) ⊂ L(α, β).

(b) Let β = 1 and α ∈ (0, 1). Then Ek(α),k(1) is the closed domain
bounded by the circular arc Γ+

k(α) and the line segment [0, 1], and L(α, 1) is

the closed domain bounded by the spiral L+
0 (α, 1) and the segment

[r+
α (2π), 1]. As in part 2(a) we show (4.3). Thus Ek(α),k(1) lies in the in-

tersection of L(α, 1) and the closed convex angle with vertex at zero and
arms l[0, (1− α)π/2] and l[0, 0]. In particular, Ek(α),k(1) ⊂ L(α, 1).

Similarly we prove the case α = 1 and β ∈ (0, 1).

From Observation 4.4 we have

Corollary 4.1. Za(α, β) ⊂ Z∗(α, β) for all α, β ∈ [0, 1].

Now we prove the reverse inclusion.

Lemma 4.1. Z∗(α, β) ⊂ Za(α, β) for all α, β ∈ [0, 1].

Proof. 1. The case α = β = 1 is evident since Z∗(1, 1) = Za(1, 1) = Z∗.
The case α = 0 and β ∈ [0, 1] (β = 0 and α ∈ [0, 1]) follows from

Lemma 2.2 and Observation 4.2. Then

Z∗(0, β) = Za(0, β) = Z∗(α, 0) = Za(α, 0) = {Dr : r > 0}.
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2. Assume that α, β ∈ (0, 1], (α, β) 6= (1, 1). Let Ω ∈ Z∗(α, β). Then
wEk(α),k(β) ⊂ Ω for every w ∈ Ω. We prove that wL(α, β) ⊂ Ω.

Fix w ∈ Ω. Without loss of generality we can assume that w = r ∈ R+.

(a) Assume first that β ∈ (0, 1). Then rΓ−k(β) ⊂ Ω. We now prove that
rL−(β) ⊂ Ω, i.e. for every t ≤ 0,

reit exp(t tan(βπ/2)) ∈ Ω.

To this end, fix t < 0 and n ∈ N such that t/n > −(1 − β)π/2. Since
rEk(α),k(β) ⊂ Ω, by a simple computation we have

w1 = eit/nr(cos(t/n)− sin(t/n) tan(βπ/2)) ∈ rΓ−k(β).

Consequently, w1Γ
−
k(β) ⊂ Ω since w1 ∈ Ω. Hence

w2 = e2it/n|w1|(cos(t/n)− sin(t/n) tan(βπ/2))

= e2it/nr(cos(t/n)− sin(t/n) tan(βπ/2))2 ∈ w1Γ
−
k(β).

Clearly, w2 ∈ Ω. In this way we can find n+ 1 points w0, w1, w2, . . . , wn of
Ω such that w0 = r and

wk = eikt/n|wk−1|(cos(t/n)− sin(t/n) tan(βπ/2))

= eikt/nr(cos(t/n)− sin(t/n) tan(βπ/2))k ∈ wk−1Γ
−
k(β)

for k = 1, . . . , n. Since, in particular,

wn = eitr(cos(t/n)− sin(t/n) tan(βπ/2))n

we have

lim
n→∞

wn = eitr lim
n→∞

(cos(t/n)− sin(t/n) tan(βπ/2))n

= eitr lim
n→∞

exp(n log(cos(t/n)− sin(t/n) tan(βπ/2)))

= eitr lim
n→∞

exp
(
−n(2 sin2(t/2n)− sin(t/n) tan(βπ/2))

× log(1− 2 sin2(t/2n)− sin(t/n) tan(βπ/2)))
−2 sin2(t/2n)− sin(t/n) tan(βπ/2)

)

= reit exp(t tan(βπ/2)).

Thus we showed that rL−(β) ⊂ Ω. Since also r1L
−(β) ⊂ Ω for every

positive r1 in Ω such that r1 > r, we deduce at once that rL−(β) ⊂ Ω.
By the same argument we show that rL+(α) ⊂ Ω when α ∈ (0, 1).

Consequently, rL(α, β) ⊂ Ω for α, β ∈ (0, 1).
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(b) Let α = 1 and β ∈ (0, 1). As in part 2(a) we show that rL−(β) ⊂ Ω.
Since moreover rL+(1) = [0, r] ⊂ Ω, we see that L(1, β) ⊂ Ω.

The case of β = 1 and α ∈ (0, 1) is similar.
Thus the proof of the lemma is finished.

Corollary 4.1 and Lemma 4.1 yield

Theorem 4.1. Z∗(α, β) = Za(α, β) for all α, β ∈ [0, 1].

From the above and from Observation 4.3 we have

Corollary 4.2. Every domain in Z∗(α, β) for α, β ∈ [0, 1], (α, β)
6= (1, 1), is bounded.

5. Spirallike functions of order (α, β)

5.1. For α, β ∈ [0, 1] let Sa(α, β) ⊂ S be the class of functions f such
that f(D) ∈ Za(α, β). Functions in Sa(α, β) for α, β ∈ [0, 1] are called
spirallike of order (α, β). Let Sa(α, β; ξ) = Sa(α, β) ∩ S(ξ) and Sa(α) =
Sa(α, α). Functions in Sa(α) are called spirallike of order α.

By Lemma 2.2 and Observation 4.2, for α, β ∈ [0, 1], we have

Sa(0, β; ξ) = S∗(0, β; ξ) = Sa(α, 0; ξ) = S∗(α, 0; ξ) = {aϕξ : a ∈ C \ {0}}.
5.2. The next two theorems are fundamental for the concepts of strong

starlikeness and spirallikeness. The first one is an immediate consequence of
Theorem 4.1, and the second, of Observation 4.3 and Corollary 4.2. These
results are known for α = β ∈ (0, 1) but their proofs based on some prop-
erties of strongly starlike functions of order α which follow from their an-
alytic formula are nonelementary (see e.g. [Su]). Theorem 5.3 for the class
S∗(α), α ∈ (0, 1), was proved in [BK].

Theorem 5.1. If α, β ∈ (0, 1] and ξ ∈ D, then

Sa(α, β; ξ) = S∗(α, β; ξ).

Theorem 5.2. Every function in S∗(α, β) and in Sa(α, β) for α, β ∈
(0, 1] with (α, β) 6= (1, 1), is bounded.

Summarizing we have

Theorem 5.3. Let α, β ∈ (0, 1], ξ ∈ D and f ∈ A with f ′(ξ) 6= 0. Then
the following conditions are equivalent :

(1) f satisfies (3.1);
(2) f ∈ S∗(α, β; ξ);
(3) f ∈ Sa(α, β; ξ).

Theorem 5.4. Let α, β ∈ (0, 1] and Ω ⊂ C, Ω 6= C, be a simply con-
nected domain. Then the following conditions are equivalent :
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(1) For each ξ ∈ D there exists f ∈ A(ξ) with f ′(ξ) 6= 0 such that
Ω = f(D) and f satisfies (3.1). In particular , Ω = f(D) for some
f ∈ A(0), with f ′(0) 6= 0, satisfying (3.22);

(2) Ω ∈ Z∗(α, β);
(3) Ω ∈ Za(α, β).

6. Meromorphic strongly starlike and spirallike functions
of order (α, β)

6.1. For α, β ∈ [0, 1] let

Eα,β(∞) =
{
w ∈ C : −(1− α)

π

2
≤ arg(w − 1) ≤ (1− β)

π

2

}
∪ {1,∞}.

Definition 6.1. A simply connected domain Ω ⊂ C, Ω 6= C, belongs
to the class Z∗(α, β;∞), α, β ∈ [0, 1], and will be called strongly starlike of
order (α, β) with respect to infinity if wEα,β(∞) ⊂ Ω for every w ∈ Ω.

Let Z∗(α;∞) = Z∗(α, α;∞), α ∈ [0, 1], denote the class of strongly
starlike domains of order α with respect to infinity.

Let Z∗(∞) = Z∗(1;∞) denote the class of starlike domains with respect
to infinity (as an interior point).

6.2. For α, β ∈ [0, 1] we denote by L+(α;∞) and L−(β;∞) the closures
in C of the sets {exp(e−i(1−α)π/2t) : t ≥ 0} and {exp(−ei(1−β)π/2t) : t ≤ 0},
respectively.

(a) Let α, β ∈ (0, 1). Then L+(α;∞) and L−(β;∞) are two logarithmic
spirals closed in C joining 1 and ∞. Let us write L+(α;∞) \ {∞} and
L−(β;∞) \ {∞} in polar coordinates:

L+(α;∞) \ {∞} : z = r+
α (θ;∞)e−iθ, θ ∈ [0,∞),

L−(β;∞) \ {∞} : z = r−β (θ;∞)e−iθ, θ ∈ (−∞, 0],

where

r+
α (θ;∞) = exp(θ tan(απ/2)), r−β (θ;∞) = exp(−θ tan(βπ/2)).

We see that L+(α;∞) is oriented from 1 to ∞, and L−(β;∞) from ∞ to 1.

(b) Let α = β = 0. Then we set

L+(0;∞) = {e−it : t ∈ [0, 2π)} = T,
L−(0;∞) = {e−it : t ∈ (−2π, 0]} = T.

(c) Let α = β = 1. Then we have

L+(1;∞) = {et : t ≥ 0} ∪ {∞}, L−(1;∞) = {e−t : t ≤ 0} ∪ {∞}.
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6.3. Now we introduce some sets defined via L+(α;∞) and L−(β;∞).

(a) For α, β ∈ (0, 1), let

L+
0 (α, β;∞) = {r+

α (θ;∞)e−iθ : θ ∈ [0, θ(α, β)]},
L−0 (α, β;∞) = {r−β (θ;∞)e−iθ : θ ∈ [−2π + θ(α, β), 0]},

where θ(α, β) is given by (4.1).
Let L(α, β;∞) be the complement in C of the domain bounded by

L+
0 (α, β;∞) ∪L−0 (α, β;∞).

(b) For α, β ∈ [0, 1] we set

L+
0 (0;∞) = L+

0 (0, β;∞) = L+
0 (α, 0;∞) = L+(0;∞) = T,

L−0 (0;∞) = L−0 (0, β;∞) = L−0 (α, 0;∞) = L−(0;∞) = T.

Then L(0, β;∞) = L(α, 0;∞) = D∗, α, β ∈ [0, 1].

(c) Let L+
0 (1;∞) = L+

0 (1, 1;∞) = L+(1;∞) = [1,∞) ∪ {∞} and let
L−0 (1;∞) = L−0 (1, 1;∞) = L−(1;∞) = [1,∞) ∪ {∞}. Set L(1, 1;∞) =
[1,∞) ∪ {∞}.

(d) Let α = 1 and β ∈ (0, 1). Now, by (4.1) we see that θ(1, β) = 0 and
let L−0 (1, β;∞) be the part of L−(β;∞) joining the points r−β (−2π;∞) =
exp(2π tan(βπ/2)) and r−β (0;∞) = 1. We set L+

0 (1, β;∞) = [1,∞) ∪ {∞},
so L(1, β;∞) is the complement in C of the domain bounded by L+

0 (1, β;∞)
and the line segment [1, r−β (−2π;∞)].

(e) Let β = 1 and α ∈ (0, 1). By (4.1) we see that θ(α, 1) = 2π and
let L+

0 (α, 1;∞) be the part of L+(α;∞) joining the points r−α (0;∞) = 1
and r+

α (2π;∞) = exp(2π tan(βπ/2)). We set L−0 (α, 1;∞) = [1,∞) ∪ {∞},
so L(α, 1;∞) is the complement in C of the domain bounded by the line
segment [1, r−β (−2π;∞)] and L−0 (1;∞).

Since L(α, β;∞) ∈ E∞ we can formulate the following definition.

Definition 6.2. A simply connected domain Ω ⊂ C, Ω 6= C, belongs to
the class Za(α, β;∞), α, β ∈ [0, 1], and will be called spiralshaped of order
(α, β) with respect to infinity if wL(α, β;∞) ⊂ Ω for every w ∈ Ω.

Let Za(α;∞) = Za(α, α;∞), α ∈ [0, 1], be the class of spiralshaped
domains of order α with respect to infinity .

Clearly, Za(1;∞) = Z∗(∞).
Since L(0, β;∞) = L(α, 0;∞) = D∗ we have at once

Observation 6.1. (1) For all α, β ∈ [0, 1],

Za(α, 0;∞) = Za(0, β;∞) = {D∗r : r > 0}.
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Observation 6.2. Let α, β ∈ [0, 1]. Then

(1) 0 /∈ Ω for every Ω ∈ Z∗(α, β;∞);
(2) 0 /∈ Ω for every Ω ∈ Za(α, β;∞).

Proof. (1) Indeed, assume that 0 ∈ Ω for some Ω ∈ Z∗(α, β;∞). Since
Ω is a proper subdomain of C, there exists a finite point w0 ∈ ∂Ω such that
[0, w0) ⊂ Ω. Hence the sector wEα,β(∞) does not lie in Ω for any point w
of the segment [0, w0).

(2) Similar.

The facts below are clear.

Observation 6.3. Let α, β ∈ [0, 1]. Then

(1) Eα,β(∞) = (Ek(α),k(β))−1;
(2) L(α, β;∞) = (L(α, β))−1;
(3) Ω ∈ Z∗(α, β;∞) if and only if Ω−1 ∈ Z∗(α, β);
(4) Ω ∈ Za(α, β;∞) if and only if Ω−1 ∈ Za(α, β).

Let Ω ∈ Z∗(α, 0;∞) for some α ∈ [0, 1]. Then Ω−1 ∈ Z∗(α, 0) by
Observation 6.3(3). By Lemma 2.2, Ω−1 = Dr for some positive r. Thus
Ω = D∗1/r. Hence we have

Observation 6.4. For all α, β ∈ [0, 1],

Z∗(α, 0;∞) = Z∗(0, β;∞) = {D∗r : r > 0}.
6.4. For α, β ∈ [0, 1] let Σ∗(α, β) ⊂ Σ be the class of all functions g such

that g(D∗) ∈ Z∗(α, β;∞), and let Σa(α, β) ⊂ Σ be the class of all functions
g such that g(D∗) ∈ Za(α, β;∞). Such functions will be called meromorphic
strongly starlike and meromorphic spirallike of order (α, β), respectively.
For α ∈ [0, 1], let Σ∗(α) = Σ∗(α, α) be the class of functions meromor-
phic strongly starlike of order α, and let Σa(α) = Σa(α, α) be the class of
functions meromorphic spirallike of order α. Clearly, Σ∗(1) = Σa(1) = Σ∗

is the class of meromorphic starlike functions. In view of Observation 6.2,
Σ∗(α, β) and Σa(α, β) are subsets of Σ′.

To find an analytic characterization of functions in Σ∗(α, β) or Σa(α, β)
we can use results of the previous sections.

For α, β ∈ [0, 1] from Observations 6.1 and 6.4 we have

Σ∗(α, 0) = Σ∗(0, β) = Σa(α, 0) = Σa(0, β)

= {bζ : ζ ∈ D∗, b ∈ C \ {0}}.
Therefore assume that α, β ∈ (0, 1]. Let Ω ∈ Z∗(α, β;∞) (resp.

Za(α, β;∞)) and g ∈ Σ∗(α, β) (resp. Σa(α, β;∞)) be such that g(D∗) = Ω.
By Observation 6.3(3) we see that Ω−1 ∈ Z∗(α, β) (resp. Za(α, β)). More-
over f = }◦g ◦} belongs to S∗(α, β; 0) (resp. Sa(α, β; 0)), and f(D) = Ω−1.
For this reason using Corollary 3.2 and Theorems 5.3–5.4 for ξ = 0 we have



Starlike and spirallike functions 189

Theorem 6.1. Let α, β ∈ (0, 1] and g be of the form

(6.1) g(ζ) = bζ +
∞∑

n=0

bn
ζn
, ζ ∈ D∗, b ∈ C \ {0}.

Then the following conditions are equivalent :

(1) g satisfies the condition

(6.2) −β π
2
< arg

{
ζg′(ζ)
g(ζ)

}
< α

π

2
, ζ ∈ D∗;

(2) g ∈ Σ∗(α, β);
(3) g ∈ Σa(α, β).

Theorem 6.2. Let α, β ∈ (0, 1] and Ω ⊂ C, Ω 6= C, be a simply con-
nected domain. Then the following conditions are equivalent :

(1) There exists a meromorphic function g of the form (6.1) such that
Ω = g(D∗) and g satisfies (6.2);

(2) Ω ∈ Z∗(α, β;∞);
(3) Ω ∈ Za(α, β;∞).

6.5. Now we summarize the results of this section.

Theorem 6.3. Let α, β ∈ (0, 1], (α, β) 6= (1, 1), and Ω ⊂ C, Ω 6= C, be
a simply connected domain. Then the following conditions are equivalent :

(1) For each ξ ∈ D there exists f ∈ A(ξ) with f ′(ξ) 6= 0 such that
Ω = f(D) and f satisfies (3.1);

(2) There exists a meromorphic function g of the form (6.1) such that
ExtΩ = g(D∗) and g satisfies (6.2);

(3) Ω ∈ Z∗(α, β);
(4) Ω ∈ Za(α, β);
(5) ExtΩ ∈ Z∗(α, β;∞);
(6) ExtΩ ∈ Za(α, β;∞).

Proof. (a) This theorem is known for β = α ∈ (0, 1) (see e.g. [Su]) and
summarizes the knowledge about the class of strongly starlike functions of
order α.

The method of proof presented here for the class of strongly starlike
functions of order (α, β) is elementary and different from that in [Su]. The-
orem 5.4 yields the equivalences (1)⇔(3)⇔(4), and Theorem 6.2 yields the
equivalences (2)⇔(5)⇔(6). Now we prove that (4)⇔(6) using only geomet-
rical arguments.

(b) Let Ω ∈ Za(α, β). We prove first that wL(α, β) ⊂ Ω for every w ∈ Ω.
This is evident for w ∈ Ω since then wL(α, β) ⊂ Ω. Therefore let w ∈ ∂Ω.
Assume that w0 ∈ wL(α, β), i.e. w0 = wu0 for some u0 ∈ L(α, β). Since
w ∈ ∂Ω, there exists a sequence (wn) of points in Ω convergent to w. The
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inclusion wnL(α, β) ⊂ Ω shows that wnu0 ∈ Ω for every n ∈ N. Since
limn→∞(wnu0) = wu0 = w0, we see that our claim holds. In particular,
wL+(α) ⊂ Ω and wL−(β) ⊂ Ω for every w ∈ Ω.

(c) The domainΩ is bounded as was shown in Observation 4.3. Therefore
ExtΩ 6= ∅ and ∞ ∈ ExtΩ. Now we prove that wL+(α;∞) ⊂ ExtΩ and
wL−(β;∞) ⊂ ExtΩ for every w ∈ ExtΩ. Indeed, let w ∈ ExtΩ. Suppose,
on the contrary, that there exists a point w0 ∈ wL+(α;∞) such that w0 /∈
ExtΩ. Since w0 ∈ wL+(α;∞), there exists t0 > 0 such that

w0 = w exp(e−i(1−α)π/2t0).

Hence
w = w0 exp(−e−i(1−α)π/2t0),

which means that w ∈ w0L
+(α).

Since w0 /∈ ExtΩ, we see that w0 ∈ Ω and by part (2) of this proof we
deduce that w0L

+(α) ⊂ Ω. But w ∈ w0L
+(α) so w ∈ Ω, which yields a

contradiction.
Similarly we prove that wL−(β;∞) ⊂ ExtΩ.

(d) Let w ∈ ExtΩ. Recall from Section 6.3 the spirals wL+
0 (α, β;∞) ⊂

wL+(α;∞) and wL−0 (α, β;∞) ⊂ wL−(β;∞). Thus by part (c) of this
proof, wL+

0 (α, β;∞) ⊂ ExtΩ and wL−0 (α, β;∞) ⊂ ExtΩ. Consequently,
Ω lies in the interior of the bounded set with wL+

0 (α, β;∞)∪wL−0 (α, β;∞)
as its boundary. Since wL+

0 (α, β;∞) ∪ wL−0 (α, β;∞) is the boundary
of wL(α, β;∞), we deduce that wL(α, β;∞) ⊂ ExtΩ. This proves that
ExtΩ ∈ Za(α, β;∞).

(e) Similarly, we show that if ExtΩ ∈ Za(α, β;∞), then Ω ∈ Za(α, β).
This ends the proof of the theorem.

7. Remarks

7.1. Theorem 3.2 characterizes analytically the class S∗(α, β; ξ) of
strongly starlike functions of order (α, β). We have shown that the same
analytic condition (3.1) describes the class Sa(α, β; ξ) of spirallike functions
of order (α, β). For ξ = 0, (3.1) reduces to (3.22) and defines the class
of functions introduced by Bucka and Ciozda [BC]. Now this class comes
equipped with a geometric interpretation.

For β = α ∈ (0, 1] and ξ = 0 Theorem 3.2 was proved by Brannan and
Kirwan [BK] whereas Theorem 5.3 can be found in [SW] and [Su].

7.2. Wald [W] considered the class ST (ξ) ⊂ S, ξ ∈ D, of functions f
standardly normalized by f(0) = f ′(0) − 1 = 0 and such that f(D) is a
starlike domain with respect to f(ξ). For details see [G, Vol. I, pp. 155–164].
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He proved that

(7.1) Re
{

(1− ξ z)(z − ξ)f ′(z)
f(z)− f(ξ)

}
> 0, z ∈ D,

is a necessary and sufficient condition for f to be in ST (ξ). Clearly, (3.1)
reduces to (7.1) (f(ξ) = 0) for α = β = 1. In fact, Wald transformed the
condition

(7.2) Re
{

zf ′(z)
f(z)− f(ξ)

}
> 0, z ∈ D,

into the form (7.1) (see [G, Vol. I, p. 156]). The inequality (7.2) means
that the domains f(Dr) are starlike with respect to f(ξ) for all r such
that |ξ| < r < 1. Note that at z = ξ the expression on the left-hand
side of (7.2) has a pole. For more about the condition (7.2) see [G, Vol. I,
p. 156].

7.3. Classes of meromorphic univalent functions have been intensively
studied by various authors. The condition (6.2) for α = β = 1 describes
analytically the class Σ∗ of meromorphic starlike functions (see e.g.
[G, Vol. II, pp. 230–232]). The case α = β ∈ (0, 1] in (6.2) yields the class
Σ∗(α) of meromorphic starlike functions of order α (see e.g. [G, Vol. II,
pp. 233–235]).

7.4. For β = α ∈ (0, 1) and ξ = 0 Theorem 6.3 appeared in [Su]. In this
case, the equivalence of (1), (5) and (6) was proved by J. Stankiewicz in
[S1]; the equivalence of (1) and (3) was proved by Ma and Minda in [MM].
Sugawa in his proof used also some property of the class S∗(α) discovered
by Fait, Krzyż and Zygmunt [FKZ]. In our case proving the equivalence of
(4) and (6) we completed the theorem in an elementary way.
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