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A regularity criterion for the 2D MHD
and viscoelastic fluid equations

by Zhuan Ye (Beijing)

Abstract. This paper is dedicated to a regularity criterion for the 2D MHD equations
and viscoelastic equations. We prove that if the magnetic field B, respectively the local
deformation gradient F , satisfies

∇B, ∇F ∈ Lq(0, T ;Lp(R2))

for 1/p + 1/q = 1 and 2 < p ≤ ∞, then the corresponding local solution can be extended
beyond time T .

1. Introduction. In this paper, we consider the following 2D incom-
pressible MHD equations with zero magnetic diffusivity:

(1.1)


∂tu+ (u · ∇)u−∆u+∇P = (B · ∇)B, (x, t) ∈ R2 × (0,∞),

∂tB + (u · ∇)B = (B · ∇)u,

∇ · u = 0, ∇ ·B = 0,

u(x, 0) = u0(x), B(x, 0) = B0(x),

where u = u(x, t) ∈ R2 denotes the velocity, P = P (x, t) ∈ R denotes
scalar pressure and B = B(x, t) ∈ R2 denotes the magnetic field, while
u0(x) and B0(x) are the given initial velocity and initial magnetic field with
∇ · u0(x) = 0 and ∇ ·B0(x) = 0, respectively.

For system (1.1), Jiu and Niu [JN] established local existence of solutions
in 2D for initial data inHs with s ≥ 3. Very recently, the local well-posedness
result in Hs with only s > 1 was established by Fefferman et al. [FMRR].
Jiu and Niu [JN] also proved the following regularity condition:

B ∈ Lq(0, T ;W 2,p(R2)), 1/p+ 2/q ≤ 2, 2 < p ≤ ∞, 1 ≤ q ≤ 4/3.

Later, Zhou and Fan [ZF] obtained the regularity criterion

∇B ∈ L1(0, T ; BMO(R2)).
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For some other interesting regularity criteria, we refer the readers to [FO,
LMZ, Ye].

2. Theorems. Before stating our results, let us say something about
local smooth solutions to systems (1.1) and (2.2). A solution pair (u,B) is
a local smooth solution of system (1.1) in the interval [0, T ] for (u0, B0) ∈
H2(R2)×H2(R2) provided that (u,B) ∈ C(0, T ;H2(R2))×C(0, T ;H2(R2)).
For system (2.2) the definition is the same.

Now our main theorem can be stated as follows:

Theorem 2.1. Assume that (u0, B0) ∈ H2(R2)×H2(R2) with ∇ · u0 =
∇ · B0 = 0. Let (u,B) be a local smooth solution of system (1.1). Suppose
that

∇B ∈ Lq(0, T ;Lp(R2)),(2.1)

for 1/p+ 1/q = 1 and 2 < p ≤ ∞. Then the solution (u,B) remains smooth
on [0, T ].

Remark 2.2. It should be noted that system (1.1) has the following
scaling property: if (u,B) is a solution of (1.1), then for any λ > 0 the
functions

uλ(x, t) = λu(λx, λ2t), Bλ(x, t) = λB(λx, λ2t),

also yield a solution of (1.1) with the initial data u0,λ(x) = λu0(λx), B0,λ(x)
= λB0(λx). It is important to note that the solution ∇B in the space
Lα(0, T ;Lβ(R2)) with 1/α+ 1/β = 1 is scaling invariant, that is,

‖∇B(x, t)‖Lα(0,T ;Lβ(R2)) = ‖∇Bλ(x, t)‖Lα(0,T ;Lβ(R2)).

Thus under the regularity criterion (2.1) the gradient ∇B belongs to the
invariant space.

The method may also be adapted with almost no change to the study of
the following viscoelastic model:

(2.2)


∂tu+ (u · ∇)u−∆u+∇P = ∇ · (FF T ),

∂tF + (u · ∇)F = ∇uF,
∇ · u = 0, ∇ · F T = 0,

u(x, 0) = u0(x), F (x, 0) = F0(x),

where u(x, t) : R2 × (0,∞) → R2 is the unknown velocity field of the flow,
P (x, t) : R2×(0,∞)→ R is scalar pressure and F (x, t) : R2×(0,∞)→M2×2
represents the local deformation gradient of the fluid (M2×2 denotes the
2 × 2 matrices). One can consult [Lar, LLZ] for a detailed discussion on
the derivation and physical background of the viscoelastic equations. Due
to its physical applications and mathematical significance, system (2.2) has
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been extensively studied and important progress has been made (see e.g.
[CZ, LLZ, LLZh] and the references therein). Recently, a large number of
papers have been devoted to regularity criteria for the viscoelastic equations
(2.2) (see e.g. [HH, QF, Yuan, YL] and the references therein).

It should be noted that

(∇ · F )j = ∂iFji and (∇ · F T )j = ∂iFij = 0.

Here and below we adopt the Einstein summation convention over repeated
indices. The second equation of (2.2) reads

∂tFij + (u · ∇)Fij = ∂kuiFkj , i, j = 1, . . . , n.

Letting F.k = Fek denote the columns of F we take the divergence of the
second equation in (2.2) to arrive at

∂t(∇ · F.k) + (u · ∇)(∇ · F.k) = 0.

Therefore, if ∇ · F.k(x, 0) = 0 initially, it will remain so for later times,
namely ∇ · F.k(x, t) = 0 for any t > 0. Under this assumption, we can show

∇ · (FF T ) =

n∑
k=1

(F.k · ∇)F.k.

Moreover, it is easy to check that (2.2) is equivalent to

∂tu+ (u · ∇)u−∆u+∇P =
n∑
k=1

(F.k · ∇)F.k,

∂tF.k + (u · ∇)F.k = (F.k · ∇)u, k = 1, . . . , n,

∇ · u = 0, ∇ · F.k = 0,

u(x, 0) = u0(x), F (x, 0) = F0(x).

Due to the similar structure to system (1.1), it is not difficult to show that
the viscoelastic model (2.2) admits the same conclusion as Theorem 2.1.
More precisely, we have

Theorem 2.3. Assume that (u0, F0) ∈ H2(R2)×H2(R2) with ∇ · u0 =
∇ · F T0 = 0. Let (u, F ) be a local smooth solution of system (2.2). Suppose
that

(2.3) ∇F ∈ Lq(0, T ;Lp(R2))

for 1/p+ 1/q = 1 and 2 < p ≤ ∞. Then the solution (u, F ) remains smooth
on [0, T ].

3. The proof of Theorem 2.1. Before proving our result, we point
out that the local existence can be established without difficulty through
the classical theory of symmetric hyperbolic quasi-linear systems, thus the
proof is based on the establishment of a priori estimates. In this paper, all



126 Z. Ye

constants will be denoted by C; they depend only on the quantities specified
in the context.

By the basic energy estimate, we easily get

(3.1) ‖u(t)‖2L2 + ‖B(t)‖2L2 + 2

t�

0

‖∇u(τ)‖2L2 dτ ≤ C <∞.

In order to get H1 estimates, multiplying (1.1)1 and (1.1)2 by ∆u and ∆B,
respectively, after integration by parts and taking the divergence-free prop-
erty into account, we have

(3.2)
1

2

d

dt
(‖∇u(t)‖2L2 + ‖∇B(t)‖2L2) + ‖∆u‖2L2

=
�

R2

(u · ∇B) ·∆B dx−
�

R2

{(B · ∇u) ·∆B + (B · ∇B) ·∆u} dx

, N +K,

where we have used �

R2

(u · ∇u) ·∆udx = 0.

Using the divergence-free condition as well as integration by parts, the terms
N and K can be rewritten as follows:

(3.3) N = −
�

R2

∂i(uk∂kBj)∂iBj dx = −
�

R2

∂iuk∂kBj∂iBj dx

and

K =
�

R2

{∂i(Bk∂kuj)∂iBj + ∂i(Bk∂kBj)∂iuj} dx(3.4)

=
�

R2

{∂iBk∂kuj∂iBj + ∂iBk∂kBj∂iuj} dx

+
�

R2

{Bk∂k∂iuj∂iBj +Bk∂k∂iBj∂iuj} dx

=
�

R2

{∂iBk∂kuj∂iBj + ∂iBk∂kBj∂iuj} dx

Invoking the Hölder inequality and the Gagliardo–Nirenberg inequality, we
find

|N |+ |K| ≤ C‖∇u‖L2p/(p−2)‖∇B‖2L4p/(p+2)(3.5)

≤ C‖∇u‖(p−2)/p
L2 ‖∆u‖2/p

L2 ‖∇B‖L2‖∇B‖Lp

≤ 1
2‖∆u‖

2
L2 + C‖∇u‖(p−2)/(p−1)

L2 ‖∇B‖p/(p−1)
L2 ‖∇B‖p/(p−1)Lp

≤ 1
2‖∆u‖

2
L2 + C‖∇B‖p/(p−1)Lp (‖∇u‖2L2 + ‖∇B‖2L2).
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Plugging (3.5) into (3.2) and absorbing the dissipative term, we get

(3.6)
d

dt
(‖∇u(t)‖2L2 + ‖∇B(t)‖2L2) + ‖∆u‖2L2

≤ C‖∇B‖p/(p−1)Lp (‖∇u‖2L2 + ‖∇B‖2L2).

Under the assumption of (2.1), by using the Gronwall inequality we obtain

(3.7) ‖∇u(t)‖2L2 + ‖∇B(t)‖2L2 +

t�

0

‖∆u(s)‖2L2 ds

≤ (‖∇u0‖2L2 + ‖∇B0‖2L2) exp
[ t�
0

C‖∇B(s)‖p/(p−1)Lp ds
]
≤ C <∞.

The estimates (3.1) and (3.7) imply that

u,B ∈ L∞(0, T ;Lq(R2)) for any 2 ≤ q <∞.(3.8)

The Hölder inequality and the Gagliardo–Nirenberg inequality give

‖u · ∇u‖L(p+2)/2 ≤ C‖u‖Lp(p+2)/(p−2)‖∇u‖Lp(3.9)

≤ C‖u‖Lp(p+2)/(p−2)‖∇u‖2/pL2 ‖∆u‖
(p−2)/p
L2

and

‖B · ∇B‖L(p+2)/2 ≤ C‖B‖Lp(p+2)/(p−2)‖∇B‖Lp .(3.10)

Noticing the bounds (3.1), (3.7) and (3.8), we can immediately obtain

(3.11)
u · ∇u ∈ L2p/(p−2)(0, T ;L(p+2)/2(R2)),

B · ∇B ∈ Lp/(p−1)(0, T ;L(p+2)/2(R2)).

Recall the first equation of (1.1), namely

∂tu−∆u+∇P = f := −(u · ∇)u+B · ∇B.(3.12)

From (3.11), we know that

f ∈ Lp/(p−1)(0, T ;L(p+2)/2(R2)).(3.13)

Thanks to the divergence-free condition, we can deduce from (3.12) that

∇P = −∇div

−∆
f.

Here the notation ∇div−∆ can be viewed as
(∇div
−∆

)
i,j

=
∂xi∂xj
−∆ = RiRj , where

Ri is the standard Riesz operator.
Hence, we rewrite (3.12) as

∂tu−∆u =

(
I +
∇div

−∆

)
f.(3.14)

Now we recall the following maximal LqtL
p
x regularity for the heat kernel

(see, e.g., [Lem]),
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Proposition 3.1. The operator A defined by

Af(x, t) ,
t�

0

e(t−s)∆∆f(s, x) ds

is bounded from Lp(0, T ;Lq(Rn)) to Lp(0, T ;Lq(Rn)) for every (p, q) ∈
(1,∞)× (1,∞) and T ∈ (0,∞].

Applying the operator ∆ to equality (3.14), one arrives at

∂t(∆u)−∆(∆u) = ∆

(
I +
∇div

−∆

)
f.

By Duhamel’s Principle, the above equation can be solved by

(3.15) ∆u(x, t) = et∆∆u0(x) +

t�

0

e(t−s)∆∆

(
I +
∇div

−∆

)
f(x, s) ds.

By Proposition 3.1, one can conclude from (3.15) that (with H(t, x) =
1

2πtexp
[
− |x|

2

4t

]
)

(3.16) ‖∆u‖
L
p/(p−1)
T L

(p+2)/2
x

≤ ‖et∆∆u0‖Lp/(p−1)
T L

(p+2)/2
x

+

∥∥∥∥t�
0

e(t−s)∆∆

(
I +
∇div

−∆

)
f(x, s) ds

∥∥∥∥
L
p/(p−1)
T L

(p+2)/2
x

≤ C‖H(t, x)‖
L
p/(p−1)
T L

(2p+4)/(p+6)
x

‖∆u0‖L2
x

+ C

∥∥∥∥(I +
∇div

−∆

)
f(x, s)

∥∥∥∥
L
p/(p−1)
T L

(p+2)/2
x

≤ C(T )‖u0‖H2 + C‖f‖
L
p/(p−1)
T L

(p+2)/2
x

≤ C <∞,

where in the third inequality we have used the boundedness of the Calderón–

Zygmund operator between the L
(p+2)/2
x (1 < p <∞) spaces. The estimates

(3.7) and (3.16) imply that

u ∈ Lp/(p−1)(0, T ;W 2,(p+2)/2(R2)).(3.17)

As p > 2, we have

∇u ∈ L1(0, T ;L∞(R2)).(3.18)

The global H1-bound (3.7) and the estimate (3.18) allow us to derive the
H2-bound for u and B. Now we apply Λ2 (Λ := (−∆)1/2) to system (1.1)
and multiply the resulting equations by Λ2u and Λ2B respectively and add
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them up to obtain

(3.19)
1

2

d

dt
(‖Λ2u(t)‖2L2 + ‖Λ2B(t)‖2L2) + ‖Λ3u‖2L2

= −
�

R2

[Λ2, u · ∇]u · Λ2u dx+
�

R2

[Λ2, B · ∇]B · Λ2u dx

−
�

R2

[Λ2, u · ∇]B · Λ2B dx+
�

R2

[Λ2, B · ∇]u · Λ2B dx

:= J1 + J2 + J3 + J4;

here and in what follows, [Λ2, f ]g stands for the standard commutator no-
tation, [Λ2, f ]g = Λ2(fg)− fΛ2g. Moreover, we have used the identities

�

R2

u · ∇Λ2u · Λ2u dx =
�

R2

u · ∇Λ2B · Λ2B dx = 0,

�

R2

B · ∇Λ2B · Λ2u dx+
�

R2

B · ∇Λ2u · Λ2B dx = 0.

In order to estimate the terms J1–J4, we need the following bilinear com-
mutator estimate (see [KP]):

(3.20) ‖[Λs, f ]g‖Lp ≤ C(‖∇f‖Lp1‖Λs−1g‖Lp2 + ‖Λsf‖Lp3‖g‖Lp4 ),

with s > 0 and p2, p3 ∈ (1,∞) such that

1

p
=

1

p1
+

1

p2
=

1

p3
+

1

p4
.

According to inequality (3.20), we have

J1 ≤ ‖[Λ2, u · ∇]u‖L2‖Λ2u‖L2 ≤ C‖∇u‖L∞‖Λ2u‖2L2 .

The Gagliardo–Nirenberg inequality as well as inequality (3.20) allow us to
show that

J2 ≤ ‖[Λ2, B · ∇]B‖L4/3‖Λ2u‖L4

≤ C‖∇B‖L4‖Λ2B‖L2‖Λ2u‖L4

≤ C‖∇B‖1/2
L2 ‖Λ2B‖1/2

L2 ‖Λ2B‖L2‖Λ2u‖1/2
L2 ‖Λ3u‖1/2

L2

≤ 1
8‖Λ

3u‖2L2 + C‖∇B‖2/3
L2 ‖Λ2u‖2/3

L2 ‖Λ2B‖2L2 ,

J3, J4 ≤ ‖[Λ2, u · ∇]B‖L2‖Λ2B‖L2 + ‖[Λ2, B · ∇]u‖L2‖Λ2B‖L2

≤ C‖∇u‖L∞‖Λ2B‖2L2 + C‖∇B‖L4‖Λ2u‖L4‖Λ2B‖L2

≤ 1
8‖Λ

3u‖2L2 + C‖∇u‖L∞‖Λ2B‖2L2 + C‖∇B‖2/3
L2 ‖Λ2u‖2/3

L2 ‖Λ2B‖2L2 .
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Combining all the above estimates, we immediately arrive at

(3.21)
d

dt
(‖Λ2u(t)‖2L2 + ‖Λ2B(t)‖2L2) + ‖Λ3u‖2L2

≤ C‖∇u‖L∞(‖Λ2u‖2L2 + ‖Λ2B‖2L2)

+ C‖∇B‖2/3
L2 ‖Λ2u‖2/3

L2 ‖Λ2B‖2L2 .

The following H2-bound is an easy consequence of the Gronwall inequality
and the key bound (3.18):

max
0≤t≤T

(‖u(t)‖H2 + ‖B(t)‖H2) <∞.(3.22)

Therefore, the solution (u, θ) remains smooth on [0, T ]. Thus, the proof of
Theorem 2.1 is complete.
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[Lem] P. G. Lemarié-Rieusset, Recent Developments in the Navier–Stokes Problem,
Chapman & Hall/CRC Res. Notes Math. 431, Chapman & Hall/CRC, Boca
Raton, FL, 2002.

http://dx.doi.org/10.3934/krm.2009.2.293
http://dx.doi.org/10.1016/j.jfa.2014.04.020
http://dx.doi.org/10.1007/s00021-012-0124-z
http://dx.doi.org/10.1002/cpa.3160410704
http://dx.doi.org/10.1007/s00205-007-0089-x
http://dx.doi.org/10.1016/j.jde.2009.07.011


A regularity criterion for MHD equations 131

[LLZh] F. Lin, C. Liu and P. Zhang, On hydrodynamics of viscoelastic fluids, Comm.
Pure Appl. Math. 58 (2005), 1437–1471.

[QF] H. Qiu and S. Fang, A BKM’s criterion of smooth solution to the incompressible
viscoelastic flow, Comm. Pure Appl. Anal. 13 (2014), 823–833.

[Ye] Z. Ye, Two regularity criteria to the 2D generalized MHD equations with zero
magnetic diffusivity, J. Math. Anal. Appl. 420 (2014), 954–971.

[Yuan] B. Yuan, Note on the blowup criterion of smooth solution to the incompressible
viscoelastic flow, Discrete Contin. Dynam. Systems 33 (2013), 2211–2219.

[YL] B. Yuan and R. Li, The blowup criterion of a smooth solution to the incom-
pressible viscoelastic flow, J. Math. Anal. Appl. 406 (2013), 158–164.

[ZF] Y. Zhou and J. Fan, A regularity criterion for the 2D MHD system with zero
magnetic diffusivity, J. Math. Anal. Appl. 378 (2011), 169–172.

Zhuan Ye
School of Mathematical Sciences
Beijing Normal University
Laboratory of Mathematics and Complex Systems
Ministry of Education
Beijing 100875, People’s Republic of China
E-mail: yezhuan815@126.com

Received 2.10.2014
and in final form 24.5.2015 (3509)

http://dx.doi.org/10.1002/cpa.20074
http://dx.doi.org/10.1016/j.jmaa.2014.06.041
http://dx.doi.org/10.1016/j.jmaa.2013.04.055
http://dx.doi.org/10.1016/j.jmaa.2011.01.014



	1 Introduction
	2 Theorems
	3 The proof of Theorem 2.1
	References

