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Internal characteristics of domains in Cn

by Vyacheslav Zakharyuta (İstanbul)

Abstract. This paper is devoted to internal capacity characteristics of a domain
D ⊂ Cn, relative to a point a ∈ D, which have their origin in the notion of the conformal
radius of a simply connected plane domain relative to a point. Our main goal is to study
the internal Chebyshev constants and transfinite diameters for a domain D ⊂ Cn and
its boundary ∂D relative to a point a ∈ D in the spirit of the author’s article [Math.
USSR-Sb. 25 (1975), 350–364], where similar characteristics have been investigated for
compact sets in Cn. The central notion of directional Chebyshev constants is based on the
asymptotic behavior of extremal monic “polynomials” and “copolynomials” in directions
determined by the arithmetic of the index set Zn. Some results are closely related to
results on the sth Reiffen pseudometrics and internal directional analytic capacities of
higher order (Jarnicki–Pflug, Nivoche) describing the asymptotic behavior of extremal
“copolynomials” in varied directions when approaching the point a.

1. Introduction. A well-known classical result of geometric function
theory (Fekete [F], Szegö [Sz]) is the coincidence of three characteristics of
a compact set K in C, which are defined in quite different ways:

d(K) = τ(K) = c(K),

where d(K) is the transfinite diameter (a geometric characterization), τ(K) is
the Chebyshev constant (an approximation theory approach), and c(K) is the
capacity (a potential theory point of view). Multidimensional analogs of these
characteristics were studied intensively in last decades, beginning with Leja’s
definition of the multivariate transfinite diameter [Lej] and the author’s article
[Z1], where a multidimensional analog of Fekete’s equality d(K) = τ(K) has
been obtained. In [Z5, Section 3], one can find a survey of results on relations
among various capacity characteristics of compact sets in Cn.

Our main goal is the study of internal Chebyshev constants and trans-
finite diameters for a domain D and its boundary ∂D in Cn relative to a
point a ∈ D in the spirit of [Z1], applying the general approach, developed
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in Section 4 of [Z5]. Namely, our considerations are based on two systems:
the system of monomials

(1.1) ei,a(z) := (z − a)k(i), i ∈ N,

where i 7→ k(i) = (k1(i), . . . , kn(i)) is a standard enumeration of the set Zn+
(see Section 2 below) and its biorthogonal system of analytic functionals
{e′i,a}i∈N defined by

(1.2) e′i,a(f) =
f (k(i))(a)

k(i)!
, i ∈ N, f ∈ A({a}),

where A({a}) is the space of analytic germs at a. We investigate the asymp-
totic behavior of the least deviation (in proper norms related to the do-
main D) from zero δi of either (i) “monic polynomials” with respect to the
system (1.2) e′i,a +

∑
j<i cje

′
j,a (in order to “measure the size of ∂D viewed

from a”) or (ii) “monic copolynomials”, that is, functions whose Taylor ex-
pansion at a is of the form ei,a +

∑
j>i cjej,a (to “measure the size of D

relative to a”).

By analogy with [Z1], for an arbitrary domain D ⊂ Cn, we introduce
in Section 4 the directional Chebyshev constant τ(a,D; θ), which describes
the asymptotic behavior of extremal monic copolynomials with respect to
the system (1.1) in the direction θ, study properties of the characteristics
τ(a,D; θ) as a function of θ, and define the principal Chebyshev constant
τ(a,D) as the geometric mean of directional ones. In Section 5 we consider,
dual in a sense, directional Chebyshev constants τ(a, ∂D; θ) and the prin-
cipal Chebyshev constant τ(a, ∂D) that describe the asymptotic behavior
of extremal monic polynomials (1.2) and “measure the size of ∂D viewed
from the point a ∈ D”. It is shown that, in the case of a strictly plurireg-
ular domain D, these characteristics are mutually reciprocal and remain
the same when the normed spaces used in their definition vary in a wide
range of spaces. Applying the theorem on Hilbert scales of analytic func-
tions (see, e.g., [Z3, Z4]), we show in Section 6 that the asymptotics of the
leading coefficients of orthonormal bases, obtained by the Gram–Schmidt
procedure from the systems (1.1) and (1.2) in appropriate Hilbert spaces,
can be expressed through the Chebyshev constants. The transfinite diameter
d(a, ∂D) of the boundary ∂D viewed from a ∈ D is introduced in Section 7
by means of extremal Vandermondians for the sequence (1.2). The equality
d(a, ∂D) = τ(a, ∂D) = τ(a,D)−1 is proved, which can be considered as an
internal multivariate analog of the Fekete equality.

In Section 3 we consider the one-dimensional case, which displays a di-
rect connection of the above internal characteristics with the logarithmic
capacity of an appropriate compact set and, if D is simply connected, with
its conformal radius relative to a point.
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Section 8 deals with internal analytic capacities of a domain relative to
a point and is closely related to Jarnicki–Pflug’s and Nivoche’s results [JP1,
JP2, JP3, Ni1, Ni3]. Applying the latter, we give an expression of the Robin
function in terms of internal orthonormal bases (which can be considered as
an internal analog of Zeriahi’s result [Ze, Theorem 2]) and consider analogs of
Szegö’s equality by introducing some natural Chebyshev constants, though
different from those considered above. The problem on analogs of Szegö’s
equality for the Chebyshev constants studied in Sections 4–6 (similar to
Rumely’s result for compact sets in Cn [Ru]) remains open; see Section 9,
where some other conclusions and generalizations are discussed.

2. Preliminaries and notation. Given an open set D ⊂ Cn we denote
by A(D) the space of all analytic functions in D with the usual locally convex
topology of locally uniform convergence in D. If K ⊂ Cn is a compact set
then A(K) is the locally convex space of all germs of analytic functions
on K, endowed with the standard inductive topology.

Definition 1. A Stein manifold Ω is called pluriregular (or strongly
pseudoconvex, Cn-pluriregular, P -pluriregular, hyperconvex ) if there exists
a negative function u ∈ Psh(Ω) such that u(zj) → 0 for every sequence
{zj} without limit points in Ω (briefly, if z → ∂Ω). We say that a domain
D in a Stein manifold Ω is strictly pluriregular if there is a pseudoconvex
domain ∆ with D b ∆ ⊂ Ω and a continuous function u ∈ Psh(∆) such
that D = {z ∈ ∆ : u(z) < 0}. If dimΩ = 1, we say that D is strictly regular.

Notice that “strict pluriregularity” is somewhat weaker than “strict hy-
perconvexity” considered in [Ni2].

Definition 2. The (generalized) pluripotential Green function of a Stein
manifold D with a logarithmic singularity at a ∈ D is defined by

(2.1) gD(a, z) := lim sup
ζ→z

sup{u(ζ) : u ∈ G(a,D)},

where G(a,D) consists of all negative functions u ∈ Psh(D) such that u(z)−
ln |ϕ(z)| is bounded from above near a, with ϕ ∈ A(D)n representing local
coordinates at a such that ϕ(a) = 0 (this definition does not depend on the
choice of the local coordinates; if D ⊂ Cn we take ϕ(z) = z − a).

The following assertion will be needed (see, e.g., [Z5, Lemma 2.1]).

Lemma 3. Suppose X, Y is a pair of locally convex spaces and J : X→Y
is an injective continuous linear operator with dense image. Then the adjoint
operator J∗ : Y ∗ → X∗ is also injective and, if X is reflexive, the image
J∗(Y ∗) is dense in X∗.

Remark 4. In what follows, we always treat the operator J as an iden-
tical embedding, identifying x with Jx and using the notation X ↪→ Y for
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a continuous linear embedding. In particular, we also write Y ∗ ↪→ X∗ in the
situation of Lemma 3.

We write |f |E := sup{|f(z)| : z ∈ E} for a function f : E → C. Denote
by Zn+ the set of all integer-valued vectors k = (k1, . . . , kn) with non-negative
coordinates. Let |k| := k1 + · · · + kn be the degree of the multiindex k.
Introduce an enumeration {k(i)}i∈N of the set Zn+ via the conditions: the
sequence s(i) := |k(i)| is non-decreasing and on each set Ks := {|k(i)| = s}
the enumeration coincides with the lexicographic order relative to k1, . . . , kn.
Denote by i(k) the number assigned to k under this ordering. Notice that
the number of multiindices of degree not larger than s is ms :=

(
s+n
s

)
, and

the number of those of degree s is Ns := ms −ms−1 =
(
s+n−1

s

)
for s ≥ 1,

and N0 = 1. Set

(2.2) ls :=
s∑
q=0

qNq

for s = 0, 1, . . . .
We consider the standard (n− 1)-simplex

(2.3) Σ :=
{
θ = (θν) ∈ Rn : θν ≥ 0, ν = 1, . . . , n;

n∑
ν=1

θν = 1
}

and its interior Σ◦ (in the relative topology on the hyperplane containing Σ).
For θ ∈ Σ we denote by Lθ the set of all infinite sequences L ⊂ N such that

k(i)/s(i)
L→ θ. We set k! := k1! · · · kn! for k = (kν) ∈ Zn+. We also use the

notation |z| := (
∑n

ν=1 |zν |2)1/2.
Given a pair of Hilbert spaces H1 ↪→ H0 with dense embedding, we

denote by
Hα = (H0)1−α(H1)α, α ∈ R,

the Hilbert scale generated by the pair H0, H1 (see, e.g., [KPS]).
By H∞(D) we denote the space of all bounded functions f ∈ A(D) with

the uniform norm ‖f‖H∞(D) := |f |D. If D is bounded we consider its sub-

space AC(D) that consists of functions continuously extendible onto D, and
the Bergman space AL2(D) of all analytic functions square integrable with
respect to the Lebesgue measure on D. By Ur(a) we denote the equilateral
polydisk of radius r > 0 centered at a ∈ Cn.

3. One-dimensional case: internal capacity characteristics. The
conformal radius of a simply connected domain D ⊂ C with respect to a
point a ∈ D is the number r(a,D) := 1/|ω′(a)|, where ω : D → U is
a biholomorphic mapping such that ω(a) = 0; it is supposed here that

ω′(∞) := dω(1/ζ)
dζ

∣∣
ζ=0

if a = ∞; the number r(∞, D)−1 is also called the

conformal radius of the compact set K := CrD (see, e.g., [P]).
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The capacity of D relative to a∈D is defined by c(a,D) := exp(−ρ(a,D)),
where ρ(a,D) := limz→a(gD(a, z) − ln |z − a|) is the Robin constant of D
relative to a ∈ D and gD(a, z) is the generalized (subharmonic!) Green func-
tion of D with the normalized (negative) logarithmic singularity at a. If D
is a simply connected domain in C and a ∈ D, then the conformal radius
r(a,D) coincides with the capacity c(a,D).

The characteristic c(a,D) was considered by many authors also under
the name “interior (or inner) radius of D relative to a” (see, e.g., [M]). A
related capacity characteristic, named “radius of ∂D viewed from a ∈ D”,
was also under consideration: c(a, ∂D) := exp ρ(a,D) = 1/c(a,D).

Using the mapping ϕa(z) = 1/(z − a), a 6= ∞, these capacities can be
reduced to the logarithmic capacity of the compact set Ka := ϕa(C\D) (for
a =∞ we have to take K∞ = C \D):

(3.1) c(a,D) = 1/c(Ka), c(a, ∂D) = c(Ka),

where c(K) is the logarithmic capacity of a compact set K in C, which
coincides, by the Fekete–Szegö result, with its transfinite diameter d(K)
and Chebyshev constant τ(K).

For a fixed a ∈ C we consider the system of functions es,a(z) := 1/(z−a)s,
s ∈ N if a 6=∞, and es,∞(z) = zs, s ∈ N, otherwise. Given a domain D 6= C
and a ∈ D we define the Chebyshev constant of ∂D viewed from a by

(3.2) τ(a, ∂D) := lim
s→∞

inf
{(∣∣∣es,a +

∑
0≤j<s

cjej,a

∣∣∣
∂D

)1/s
: cj ∈ C

}
.

and the transfinite diameter of ∂D viewed from a by

(3.3) d(a, ∂D) := lim
s→∞

(
sup
{
|det (eµ,a(ζν))sµ,ν=0| : (ζν) ∈ (C\D)s

})2/s(s−1)
.

Changing variables z = a+ 1/w we obtain

(3.4) τ(a, ∂D) = d(a, ∂D) = τ(Ka) = c(Ka) = c(a, ∂D).

The representations (3.2) and (3.3) give a motivation for the notions of
multivariate internal Chebyshev constants and transfinite diameter of ∂D
viewed from a ∈ D, which we consider in the next sections. However, for
n ≥ 2, one has to deal (see Section 7) with appropriate analytic functionals
instead of the functions 1/(z−a)k, k ∈ Zn, which are not defined on D \{a}
as analytic functions. Since evaluation at a point makes no sense for analytic
functionals, we need to apply, in the definition of the transfinite diameter,
the general approach suggested in Section 4 of [Z5]. As an application, we
obtain an expression of the capacity c(a,D) via extremal Wronskians at a
(Section 7, Corollary 20).
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4. Internal Chebyshev constants. Given a domain D in Cn and a
point a ∈ D we define

(4.1) δi = δi(a,D) := inf{|f |D : f ∈ Ni}, i ∈ N,
where Ni = Ni(a,D) := {f ∈ H∞(D) : e′j,a(f) = 0, j < i; e′i,a(f) = 1}
and the functionals e′i,a are defined in (1.2). Hereafter it is assumed that
inf ∅ = +∞ (this may happen, for instance, if H∞(D) consists only of
constants).

Definition 5. The directional Chebyshev constant of D relative to a
point a ∈ D in a direction θ ∈ Σ is the constant

(4.2) τ(a,D; θ) := lim sup
k(i)/|k(i)|→θ

δ
1/s(i)
i := sup

L∈Lθ
lim sup
i∈L

δ
1/s(i)
i

with δi defined in (4.1).

Lemma 6. The set Σ(a,D) := {θ ∈ Σ : τ(a,D; θ) < ∞} is convex and
the function ln τ(a,D; θ) is convex on Σ(a,D).

Proof. Given θ, θ′ ∈ Σ(a,D) and 0 < α < 1, take natural-valued se-
quences iq, jq, and natural numbers rq < Rq so that s(iq) = s(jq) and

k(iq)

s(iq)
→ θ,

k(jq)

s(jq)
→ θ′,

rq
Rq
→ α as q →∞.

For arbitrary ε > 0 find functions fε,q ∈ Niq and gε,q ∈ Njq such that

|fε,q|D < δiq(1 + ε), |gε,q|D < δjq(1 + ε).

Then the function F (z) = (fε,q)
rq(gε,q)

Rq−rq belongs to the subspace Nlq ,
where lq = i(k(q)) is the number corresponding to the multiindex k(q) =
rqk(iq) + (Rq − rq)k(jq) in the enumeration of the Preliminaries. Therefore

δlq ≤ |F |D ≤ (δiq(1 + ε))rq(δjq(1 + ε))Rq−rq .

Then we take the logarithm and divide by s(lq) = Rqs(iq). By construction,
k(q)/s(lq) → αθ + (1 − α)θ′, therefore, after passage to the upper limit as
q →∞, taking into account that ε > 0 is arbitrary, we obtain

ln τ(a,D;αθ + (1− α)θ′) ≤ α ln τ(a,D; θ) + (1− α) ln τ(a,D; θ′) <∞.
Therefore αθ + (1 − α)θ ∈ Σ(a,D) for every α ∈ (0, 1), hence Σ(a,D) is
convex and the function τ(a,D; θ) is convex on this set.

Corollary 7. The function ln τ(a,D; θ) is continuous on the interior
of Σ(a,D).

Lemma 8. Let r be the radius of an inscribed equilateral polydisc for D,
centered at a. Then τ(a,D; θ) ≥ r for all θ ∈ Σ. If the domain D is bounded
and R is the radius of a circumscribed equilateral polydisc for D, centered
at a, then τ(a,D; θ) is uniformly bounded from above by R.
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By Lemmas 6 and 8 the function τ(a,D; θ) is measurable and bounded
from below. Therefore the following definition makes sense.

Definition 9. The principal Chebyshev constant of D relative to a ∈ D
is

(4.3) τ(a,D) := exp
( �
Σ

ln τ(a,D; θ) dσ(θ)
)
,

where σ is the normalized Lebesgue measure on Σ.

In general, τ(a,D) may be equal to +∞, but if D is bounded then
τ(a,D) ≤ R, where R is defined in Lemma 8.

Lemma 10. Let D be a bounded domain in Cn. Then the usual limit
exists in (4.2) for every θ ∈ Σ◦.

Proof. Suppose that there exist two subsequences {iq} and {jq} such
that

(4.4) lim
q→∞

k(iq)

s(iq)
= lim

q→∞

k(jq)

s(jq)
= θ ∈ Σ◦,

but

lim(δiq)
1/s(iq) =: α < β := lim(δjq)

1/s(jq).

Going to subsequences if necessary, we assume that

kν(jq) ≥ kν(iq) > 0, ν = 1, . . . , n; s(jq)/s(iq)↗∞.

Setting

(4.5) r(q) := inf

{[
kν(jq)

kν(iq)

]
: ν = 1, . . . , n

}
, l(q) := k(jq)− r(q)k(iq),

we see from (4.4), (4.5) that lq ∈ Zn+ and

(4.6) r(q) ∼ s(jq)/s(iq), |l(q)| = o(s(jq)) as q →∞.

Given ε > 0 choose fε,q ∈ Niq so that |fε,q|D < δiq + ε. Then the function

F (z) := (z − a)l(q)(fε,q(z))
r(q) satisfies

(4.7) |F |D ≤ C |l(q)|(δiq + ε)r(q),

where C = max{|z − a| : z ∈ D}. On the other hand, by the feature of the
enumeration k(i), we have F ∈ Njq , hence

(4.8) |F |D ≥ δjq .

Since ε > 0 is arbitrary, combining (4.6)–(4.8) we obtain β ≤ α, contrary to
assumption.
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5. Strictly pluriregular domains. In this section and the next we
suppose that D is a strictly pluriregular domain. We show that, in Defini-
tion 5, one can change H∞(D) to a wide range of Banach spaces so that
the defined characteristic remains the same. This allows us to introduce the
notions of Chebyshev constants of ∂D viewed from a ∈ D. On the other
hand, this permits applying Hilbert space methods.

Let Y be a Banach space with a dense embedding Y ↪→ A({a}), a ∈ Cn.
Then, by Lemma 3, A({a})∗ ↪→ Y ∗. Each germ f ∈ Y is represented by
its Taylor expansion at a: f(z) =

∑∞
i=1 e

′
i,a(f)ei,a(z), which converges ab-

solutely and uniformly on some neighborhood of a; the functionals e′i,a ∈
A({a})∗ ↪→ Y ∗ are defined in (1.2). We introduce two directional Cheby-
shev constants characterizing approximative properties of this system of
functionals with respect to the spaces Y or X := Y ∗. The first one describes
the asymptotic behavior of the least deviation of “monic polynomials with
respect to the system of analytic functionals (1.2)” in the space X:

τ∗Y (a, θ) := lim sup
k(i)/|k(i)|→θ

(∆i,X)1/s(i)(5.1)

:= sup
L∈Lθ

lim sup
i∈L

(∆i,X)1/s(i), θ ∈ Σ,

where

(5.2) ∆i,X = ∆i,a,X := inf
{∥∥∥e′i,a +

∑
j<i

cje
′
j,a

∥∥∥
X

: (cj) ∈ Ci−1
}
, i ∈ N,

and Lθ is defined in the Preliminaries. One can see here an analogy with
the one-dimensional case (see (3.2)) in that the continuous linear functionals
(1.2) can be expressed via

(5.3) e′i,a(f) =

(
1

2πi

)n �

Tr(a)

f(ζ) dζ

(ζ − a)k(i)+I
, f ∈ A({a}), i ∈ N,

where I = (1, . . . , 1), and Tr(a) := {z = (zν) ∈ Cn : |zν − aν | = r} with
some sufficiently small r = r(f) > 0.

The characteristic (5.1) is dual, in a sense, to another one, defined by

(5.4) τY (a, θ) := lim inf
k(i)/|k(i)|→θ

(δi,Y )1/s(i) := inf
L∈Lθ

lim inf
i∈L

(δi,Y )1/s(i), θ ∈ Σ,

where

δi,Y = δi,a,Y := inf{‖f‖Y : f ∈ Ni},(5.5)

Ni = Ni,a,Y := {f ∈ Y : e′j,a(f) = 0, j < i; e′i,a(f) = 1}.
If the space Y is closely related to the given strictly pluriregular domain

D, then (5.1) describes the size of the boundary ∂D viewed from a, while (5.4)
coincides on Σ◦, as will be shown below, with the characteristic τ(a,D; θ)
introduced in the previous section. In the next definition we deal with the
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special space Y = AC(D), but it will be shown below that the space Y can
vary in a quite wide range leaving the above characteristics unchanged.

Definition 11. Let D be a strictly pluriregular domain in Cn, a ∈ D,
and Y = AC(D). Then the number τ(a, ∂D; θ) := τ∗Y (a, θ) is called the
directional Chebyshev constant of ∂D viewed from a in the direction θ ∈ Σ.
The principal Chebyshev constant of ∂D viewed from a is defined by

(5.6) τ(a, ∂D) := exp
( �
Σ

ln τ(a, ∂D; θ) dσ(θ)
)
.

That the integral (5.6) exists follows from τ(a, ∂D, θ) = τ(a,D, θ)−1, θ ∈ Σ◦,
which will be proved below (see Theorem 12).

Given a domain D ⊂ Cn and a ∈ D, consider the sublevel sets of the
pluripotential Green function (λ < 0):

(5.7) Dλ := {z ∈ D : gD(a, z) < λ}, Kλ := {z ∈ D : gD(a, z) ≤ λ}.

Theorem 12. Let D ⊂ Cn be a strictly pluriregular domain, a ∈ D,
Y any Banach space with dense embeddings

(5.8) A(D) ↪→ Y ↪→ A(D),

and set X = Y ∗. Then for each θ ∈ Σ◦ the usual limit exists in (5.1) and
(5.4), and

τY (a, θ) = τ(a,D; θ) = τ∗Y (a, θ)−1 = τ(a, ∂D; θ)−1 if θ ∈ Σ◦.
Moreover

(5.9) lim
s→∞

∣∣∣ ms∏
i=ms−1+1

δi,Y

∣∣∣1/sNs = lim
s→∞

∣∣∣∣ ms∏
i=ms−1+1

1

∆i,X

∣∣∣∣1/sNs = τ(a,D).

Furthermore,

(5.10) τ(a,Dλ; θ) = τ(a,D; θ) expλ, τ(a, ∂Dλ; θ) = τ(a, ∂D; θ) exp(−λ).

This theorem will be proved in the next section after some preliminary
considerations.

6. Asymptotics of leading coefficients of internal orthonormal
bases

Lemma 13. Let a ∈ Cn and H be any Hilbert space with dense embedding
H ↪→ A({a}), a ∈ Cn. Let ϕ′i =

∑i
j=1 ajie

′
j be the orthonormal system in the

dual space H∗ ←↩ A({a})∗, obtained by the Gram–Schmidt procedure applied
to the system {e′i}, defined by (1.2); and let {ϕi} ⊂ H be the biorthogonal
system to {ϕ′i}. Then

δi,H = 1/∆i,H∗ = |aii|
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and for each θ ∈ Σ, we have

τ∗H(a; θ) = lim sup
k(i)/|k(i)|→θ

1

|aii|1/s(i)
, τH(a, θ) = lim inf

k(i)/|k(i)|→θ
|aii|1/s(i).

Let Hλ be the Hilbert space of all x =
∑∞

i=1 ξiϕi ∈ A({a}) with

(6.1) ‖x‖Hλ :=
( ∞∑
i=1

|ξi|2 exp(2λs(i))
)1/2

<∞, λ ≤ 0.

Then

(6.2) τHλ(a, θ) = τH(a; θ) expλ, τ∗Hλ(a, θ) = τ∗H(a; θ) exp(−λ), λ < 0.

Proof. Consider also the dual Hilbert scale

Gλ :=
{
x′ =

∞∑
i=1

ξ′iϕ
′
i ∈ G : ‖x′‖Gλ :=

( ∞∑
i=1

|ξ′i|2 exp(−2λs(i))
)1/2

<∞
}
,

with λ ≤ 0, G0 = G = H∗. The system {ϕi} is an orthogonal basis in each
space Hλ and has an expansion

(6.3) ϕi(z) =
∑
j≥i

bj,iej(z),

converging in some neighborhood of a, while {ϕ′i} is an orthogonal basis in
any Gλ. Moreover,

bi,i =
1

ai,i
, ‖ϕi‖Hλ = exp(λs(i)), ‖ϕ′i‖Gλ = exp(−λs(i)), i ∈ N, λ ≤ 0.

By the extremal property of orthogonal systems, we have

(6.4) δi,Hλ = |aii| expλs(i), ∆i,Hλ = |aii|−1 exp(−λs(i)).
Taking the logarithm and passing to the lower (resp. upper) limit along
subsequences L ∈ Lθ, θ ∈ Σ, we complete the proof.

Proof of Theorem 12. Since A(D) is a nuclear locally convex space, by
Pietsch [Pt, Section 4.4] there exists a Hilbert space H with dense embed-
dings

(6.5) A(D) ↪→ H ↪→ Y, A(D) ↪→ H ↪→ AC(D) ↪→ A(D).

It is known (see, e.g., [Z2, Ze, Z3, Z4]) that, under these restrictions on H,
the system {ϕi} is a common basis in the spaces A(D), A({a}), A(Dλ),
A(Kλ), λ < 0, and the following embeddings hold:

(6.6) A(Kλ) ↪→ Hλ ↪→ A(Dλ), λ < 0,

where Hλ is the scale (6.1) and the sublevel sets Kλ, Dλ are defined in (5.7).
Therefore H ↪→ Y ↪→ A(D) ↪→ Hλ for every λ < 0. Due to (6.4) and (6.5),
there are positive constants C and c = c(λ) such that

(6.7) cδi,Hλ = cδi,H exp(λs(i)) ≤ δi,Y ≤ Cδi,H , i ∈ N.
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On the other hand, since H ↪→ H∞(D) ↪→ A(D) ↪→ Hλ, λ < 0, we obtain,
taking into account Lemma 10,

(6.8) lim sup
i∈L

(cδi,H)1/s(i) expλ ≤ τ(a,D; θ) ≤ lim inf
i∈L

(Cδi,H)1/s(i)

for any L ∈ Lθ, θ ∈ Σ◦ and λ < 0. Hence, if θ ∈ Σ◦, the usual limit exists
in (5.4) with Y = H and τ(a,D; θ) = τH(a, θ). Applying now (6.7) with an
arbitrary Y satisfying the conditions of the theorem, we conclude the same
with τY (a, θ) instead of τH(a, θ). Then, applying the embeddings dual to
(6.6), we obtain

Gλ ↪→ A(D)∗ ↪→ Y ∗ ↪→ G, λ < 0.

In the same token, by Lemma 13, we conclude that

(6.9) τ∗Y (a, θ) = τ(a, ∂D; θ) = 1/τ(a,D; θ), θ ∈ Σ◦,
and the usual limit exists in (5.1) for θ ∈ Σ◦.

An examination of the proofs of Lemmas 5 and 6 in [Z1] shows that,
since the function τ(a,D; θ) is continuous on Σ◦ (see Corollary 7 above)
and the usual limits exist in (5.1), (5.4), we can establish, in the same way
as in [Z1], the following relations:

lim
s→∞

1

Ns

∑
|k(i)|=s

ln τi,Y =
�

Σ

ln τ(a,D; θ) dσ(θ) = ln τ(a,D),

lim
s→∞

1

Ns

∑
|k(i)|=s

ln τ∗i,Y =
�

Σ

ln τ(a, ∂D; θ) dσ(θ) = ln τ(a, ∂D),

where σ is the normalized Lebesgue measure on Σ. Thus (5.9) is proved.

Applying (6.6) once more, we obtain

Hλ+ε ↪→ H∞(Dλ) ↪→ Hλ−ε, λ < 0, 0 < ε < −λ.
Therefore there exist constants C = C(λ, ε) and c = c(λ, ε) such that

cδi,Hλ−ε = cδi,H exp(λ− ε) ≤ δi(a,Dλ)

≤ Cδi,Hλ+ε = Cδi,H exp(λ+ ε), i ∈ N,

where δi(a,Dλ) is defined in (4.1) with Dλ instead D. Passing to the limit
along any sequence L ∈ Lθ, θ ∈ Σ◦, and taking into account (6.2), we obtain

τ(a,D; θ) exp(λ− ε) ≤ τ(a,Dλ; θ) ≤ τ(a,D; θ) exp(λ+ ε), θ ∈ Σ◦.
The first relation in (5.10) follows by letting ε → 0. The remaining state-
ments of the theorem can be derived easily from the proved ones by applying
Lemma 13.

Summarizing the above considerations we obtain the main result of this
section.



226 V. Zakharyuta

Theorem 14. Let Y = H be a Hilbert space satisfying the conditions of
Theorem 12, and let

ϕ′i =
i∑

j=1

aj,ie
′
j , ϕi =

∑
j≥i

bj,iej

be the orthonormal systems constructed for the spaces H∗ and H as in
Lemma 13. Then

lim
i∈L
|bi,i|1/s(i) = 1/τ(a,D; θ), L ∈ Lθ, θ ∈ Σ◦.

The geometric mean of the leading coefficients ai,i = 1/bi,i of degree s satis-
fies an asymptotic relation, determined by the principal Chebyshev constants:

(6.10) lim
s→∞

(( ∏
|k(i)|=s

|ai,i|
)1/Ns)1/s

= τ(a, ∂D) =
1

τ(a,D)
.

Indeed, by Lemma 13, δi,H = |ai,i| = 1/|bi,i|, so it suffices to apply (5.9).

Proposition 15. Let D be a bounded complete logarithmically convex
n-circular domain in Cn and

h(θ) = hD(θ) := sup
{ n∑
ν=1

θν ln |zν | : z = (zν) ∈ D
}
, θ = (θν) ∈ Σ,

its characteristic function. Then τ(0, D; θ) = τ(D, θ) = exp(h(θ)), θ ∈ Σ,
and

(6.11) τ(0, D) = τ(D) = exp
( �
Σ

h(θ) dσ(θ)
)
,

where σ is the normalized Lebesgue measure on Σ (here τ(D, θ) and τ(D)
are, respectively, the directional and principal Chebyshev constants of the
compact set K = D; see [Z1, Z5]).

Proof. Take any Hilbert space H with embeddings

(6.12) A(D) ↪→ H ↪→ A(D)

and such that the monomials ei = zk(i) are pairwise orthogonal; for instance,
one can take the Bergman space AL2(D) of all functions analytic and square
integrable in D. Then {pi = ei/‖ei‖H} is an orthonormal polynomial basis
with ai,i = 1/‖ei‖H in the framework of Theorem 6.1 from [Z5]; on the
other hand, in the context of Theorem 14 it is an orthonormal basis ϕi with
bi,i = 1/‖ei‖H . Therefore, by Theorem 14 above and Theorem 6.1 from [Z5],

(6.13) τ(D, θ) = lim
k(i)/s(i)→θ

‖ei‖1/s(i)H = τ(0, D; θ), θ ∈ Σ◦,

where τ(D, θ) is the directional Chebyshev constant of the compact set
K = D in the direction θ (see [Z5]).
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By (6.12), given ε > 0 there exist positive constants c = c(ε) and C =
C(ε) such that

c exp
(
(1− ε)hD(θ(i))s(i)

)
= c|ei|(1−ε)D ≤ ‖ei‖H ≤ C|ei|(1+ε)D

= C exp
(
(1 + ε)hD(θ(i))s(i)

)
,

where θ(i) = k(i)/s(i), i ∈ N. Hence, as hD is continuous and ε > 0 is
arbitrary, we obtain

lim
k(i)/s(i)→θ

‖ei‖1/s(i)H = exp(hD(θ)), θ ∈ Σ.

Combining this with (6.13), we obtain

τ(D, θ) = τ(0, D; θ) = exp(hD(θ)), θ ∈ Σ◦,

and then, by integration, (6.11).

Problem 16. Characterize all domains D b Cn with 0 ∈ D such that
τ(D) = τ(0, D).

7. Internal transfinite diameters. Let D be a domain in Cn, a ∈ D,
and let e′i = e′i,a ∈ A(D)∗, i ∈ N, be the system of analytic functionals
determined by (1.2). Since, in contrast to the one-dimensional case, evalu-
ation at a point makes no sense for analytic functionals, there is no direct
analog of Leja’s Vandermondians. The general considerations of Section 4
in [Z5] turned out to be useful for an alternative equivalent definition of the
transfinite diameter for compact sets (see [Z5, Theorem 5.1]). This approach
provides a way out in the present situation as well.

Definition 17. The transfinite diameter of ∂D viewed from the point
a is the number

(7.1) d(a, ∂D) := lim sup
i→∞

Ṽ1/ls(i)
i

where s(i) = |k(i)| (see Preliminaries), ls is defined in (2.2), and

(7.2) Ṽi = sup{|det (e′i,α(fβ))iα,β=1| : fβ ∈ BH∞(D), β = 1, . . . , i}

is the sequence of extremal Vandermondians. The internal transfinite diam-
eter of D with respect to a is defined by

d(a;D) := 1/d(a; ∂D).

Let D be a strictly pluriregular domain in Cn, Y be a Banach space with
dense embeddings (5.8), and X := Y ∗. Then, by Lemma 3,

e′i,a ∈ A({a})∗ ↪→ A(D)∗ ↪→ X, i ∈ N.



228 V. Zakharyuta

Set

ṼYi := sup{|det (e′µ(fν))iµ,ν=1| : fν ∈ BY , ν = 1, . . . , i},

dY := lim sup
i→∞

(ṼYi )1/ls(i) .(7.3)

Theorem 18. Under the above assumptions the usual limit exists in
(7.3), it does not depend on the choice of the space Y , namely dY = d(a; ∂D),
and

(7.4) d(a,D) =
1

d(a; ∂D)
= τ(a,D) = exp

( �
Σ

ln τ(a,D; θ) dσ(θ)
)
,

where σ is the normalized Lebesgue measure on Σ.

Proof. By Lemma 4.2 in [Z5], we have the estimates

∆i,X ≤ ṼYi /ṼYi−1 ≤ i∆i,X , i ∈ N,
where ∆i,X is defined in (5.2). Therefore

ms∏
i=ms−1+1

∆i,X ≤ ṼYms/Ṽ
Y
ms−1

≤ (ms)
Ns

ms∏
i=ms−1+1

∆i,X .

Since lnms
s → 0, due to (5.9) we have the asymptotic formula

(7.5) ln ṼYms − ln ṼYms−1
∼ sNs ln τ(a, ∂D), s→∞.

By summing from 1 to s (see, e.g., [dB]), we derive the asymptotic formula

ln ṼYms ∼ ln ṼYms − ln ṼYm0
∼

s∑
q=1

qNq · ln τ(a, ∂D) = ls ln τ(a, ∂D), s→∞.

Let ms−1 < i ≤ ms, that is, s(i) = s. Take positive numbers r, R so that
Ur(a) b D b UR(a), 2R > 1 > r/2. Then, due to Proposition 15, there is
i0 such that (

1

2R

)s(i)
≤ ∆i,X ≤

(
2

r

)s(i)
, i ≥ i0.

Therefore

ṼYi
(

1

2R

)sNs
≤ ṼYi

ms∏
j=i+1

∆j,X ≤ ṼYms ≤ Ṽ
Y
i (ms)

Ns

ms∏
j=i+1

∆j,X

≤ ṼYi (ms)
Ns

(
2

r

)sNs
for i ≥ i0 and s = s(i). Since sNs/ls → 0 as s→∞, by (7.5) we have

ln ṼYi ∼ ls(i) ln τ(a, ∂D) as i→∞,
which implies that the usual limit exists in (7.3), and it does not depend
on Y , namely dY =τ(a, ∂D). Since Y1 :=AC(D) ↪→H∞(D) ↪→AL2(D)=:Y2
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and both Y1, Y2 satisfy the conditions of the theorem, we find that dY =
d(a; ∂D). Then, by Theorem 12 and (4.3), we have

d(a; ∂D) = τ(a, ∂D) = exp
( �
Σ

ln τ(a, ∂D; θ) dσ(θ)
)
,

so (7.4) is proved.

Notice that

(7.6) ls ∼ λs :=
sn+1

(n− 1)!(n+ 1)
as s→∞.

The following statement can be proved similarly to Theorem 5.2 in [Z5].

Theorem 19. Let D be a strictly pluriregular domain in Cn. Then the
Chebyshev constant τ(a; ∂D) is expressed by the formula

(7.7) τ(a; ∂D) = d(a, ∂D) =

(
exp

n+1∑
ν=1

1

ν

)
lim
i→∞

W1/λs(i)
i,a

s(i)
,

where λs(i) is defined in (7.6),

Wi,a = sup
{
|Wa((fν)iν=1)| : |fν |D ≤ 1, ν = 1, . . . , i

}
,

and

Wa((fν)iν=1) = det (f (k(µ))
ν (a))iµ,ν=1

is the multivariate Wronskian of the system {fν}iν=1, evaluated at a.

In particular, we get

Corollary 20. Let D be a strictly regular domain in C, and a ∈ D.
Then

c(a,D) =
1

c(a, ∂D)
= exp

(
−3

2

)
lim
s→∞

s

W2/s2
s,a

,

where

Ws,a = max
{
|det (f (β)

α (a))s−1
a,β=0| : |fα|D ≤ 1, α = 0, . . . , s− 1

}
.

In particular, if D is simply connected and ω : D → B is an analytic bijection
such that ω(a) = 0, then

|ω′(a)| = exp

(
3

2

)
lim
s→∞

W2/s2

s,a

s
.

8. Internal Robin function and capacities in Cn. For n ≥ 2, the
function gD(a, z) − ln |z − a|, in general, has infinitely many partial limits
as z → a. So, in contrast to the case n = 1, there are many ways to define
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capacities of D relative to a. By analogy with [Z1, Z2, Z5], one can define a
natural capacity by

(8.1) C(a,D) := exp
(
− lim sup

z→a
(gD(a, z)− ln |z − a|)

)
.

Similarly to the compact set case (for a survey of related results see [Z5]), in
order to get an analog of the Szegö equality, one can modify the definition of
Chebyshev constants, by normalizing the leading homogeneous polynomial
parts (relative to the variable ζ = z− a), instead of normalizing the leading
coefficients. Namely, let

(8.2) Ms := {f ∈ A(D) : e′i,a(f) = 0, s(i) < s}.
Given f ∈Ms, let

(8.3) f̂s(z) =
∑
s(i)=s

e′i,a(f)(z − a)k(i) = lim
|w|→∞

wsf

(
a+

z − a
w

)
.

be its homogeneous part of degree s (it may be identically zero). Consider
a Chebyshev-type characteristic (cf. [Z1, Z2, Si2]), given by T (a,D) :=
lim infs→∞ Ts(a,D), where

Ts(a,D) := (inf{|f |D : f ∈Ms, |f̂s|Bn ≥ 1})1/s.

Theorem 21. Let D be a strictly pluriregular domain in Cn and a ∈ D.
Then T (a,D) = C(a,D).

This theorem will be proved below after some preliminary considerations.
Without restrictions on D it may not be true, as is seen from

Example 22. Let D = BR \K ⊂ C, where K is the standard Cantor set
on the real line, R > 1, and a ∈ D. Then, since K is regular, but negligible
for bounded analytic functions, we have T (a,D) = T (a,BR) = C(a,BR) 6=
C(a,D).

The following notion was introduced in [BT] (cf. [Lel, Az]).

Definition 23. The Robin function of a Stein manifold D relative to a
point a ∈ D is defined by

ρD(a, ζ) := lim sup
|λ|→0

(gD(a, a+ λζ)− ln |λ|), ζ ∈ Cn.

Let D be a bounded domain in Cn. Then the Robin function ρ(ζ) =
ρD(a, ζ) is continuous, plurisubharmonic in Cn, and logarithmically homo-
geneous, that is,

ρ(tζ) = ρ(ζ) + ln |t|, ζ ∈ Cn, t ∈ C.
Therefore the open set

D̆ = D̆a := {ζ ∈ Cn : ρD(a, ζ) < 0}
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is a complete circular domain, that is, λz ∈ D̆ if z ∈ D̆ and |λ| ≤ 1. It is
clear that

gD̆a(0, ζ) = ρD(a, ζ), ρD̆a(0, ζ) ≡ ρD(a, ζ).

Definition 24 (cf. Jarnicki–Pflug [JP1, JP2, JP3], Nivoche [Ni1, Ni2]).
The ζ-directional analytic capacity of order s for a domain D ⊂ Cn relative
to a point a is the number

γs(a,D; ζ) :=

(
sup

{
1

s!
|d(s)
ζ f(a)| : f ∈Ms, |f |D ≤ 1

})−1/s

(8.4)

= (sup{|f̂s(a+ ζ)| : f ∈Ms, |f |D ≤ 1})−1/s, ζ ∈ Cn,

where d
(s)
ζ stands for the derivative of order s in the direction of the tangent

vector ζ ∈ Cn at the point a, and f̂ is defined in (8.3). One can consider the
reciprocal

γs(a, ∂D; ζ) := (γs(a,D; ζ))−1

as the analytic capacity of order s of ∂D viewed from a in the direction ζ.

For every ζ ∈ Cn the following limit exists (see, e.g., [Ni2]):

(8.5) γ∞(a,D; ζ) := lim
s→∞

γs(a,D; ζ) = inf{γs(a,D; ζ) : s ∈ N}.

This characteristic can be considered as the analytic capacity of infinite
order (transfinite analytic capacity) of D relative to a in the direction ζ.

Proposition 25 (Nivoche [Ni2]). Let D be a strictly pluriregular do-
main in Cn. Then

(8.6) − ln γ∞(a,D; ζ) ≤ ρD(a, ζ), ζ ∈ S.
Equality holds in (8.6) quasi-everywhere on S (i.e., except a set A ⊂ S with
[A] = {[z] ∈ CPn−1 : z ∈ A} polar in CPn−1).

We introduce related directional Chebyshev constants:

Ts(a,D; ζ) := inf{|f |D : f ∈Ms, |f̂s(a+ ζ)| ≥ 1}1/s, s ∈ N,
T (a,D; ζ) := lim inf

s→∞
Ts(a,D; ζ),

with ζ ∈ S. It is easily seen that they coincide with their capacity coun-
terparts (8.4) and (8.5): Ts(a,D; ζ) = γs(a,D; ζ), T (a,D; ζ) = γ∞(a,D; ζ),
ζ ∈ S.

Proof of Theorem 21. It is obvious that

Ts(a,D)−1 = (sup{|f̂s|Bn : f ∈Ms, |f |D ≤ 1})1/s,

so, taking into account (8.4), we have

Ts(a,D)−1 = sup
ζ∈S
{1/γs(D, a; ζ) : ζ ∈ S}.
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It follows from the definition (8.1) that C(a,D) = exp(−λ(a,D)) with

(8.7) λ(a,D) := max{ρD(a, ζ) : ζ ∈ S}.
Then, by (8.6), we obtain

− lnT (a,D) = lim sup
s→∞

(− lnTs(a,D)) ≤ λ(a,D).

For contradiction, suppose that − lnT (a,D) < r < λ(a,D). Then, by (8.5),
− ln γ∞(D, ζ) ≤ r, ζ ∈ S, hence, since equality holds in (8.6) quasi-every-
where on S, we obtain ρD(a, ζ) = lim supξ→ζ(− ln γ∞(D, ξ)) ≤ r < λ(a,D)
for every ζ ∈ S. This contradicts (8.7) and hence yields C(a,D) = T (a,D).

Let D be a strictly pluriregular domain in Cn, and ∆ and u be as in
Definition 1. Then there is ε0 > 0 such that for 0 < ε < ε0 the connected
component ∆ε of the set {z ∈ ∆ : u(z) < ε} containing D is relatively
compact in ∆. The following stability properties can be found, e.g., in [BT,
Dem, Ni3].

Lemma 26. Let D be a strictly pluriregular domain in Cn. Then

gD(a, z) = lim
λ↗0

gDλ(a, z), gD(a, z) = lim
ε↘0

g∆ε(a, z), z ∈ D \ {a},

ρD(a, ζ) = lim
λ↗0

ρDλ(a, ζ), ρD(a, ζ) = lim
ε↘0

ρ∆ε(a, ζ), ζ ∈ Cn \ {0},

where Dλ are the sublevel domains defined in (5.7) and ∆ε are defined above.
Moreover, the convergence in all these relations is locally uniform.

The following statement shows how the Robin function can be expressed
in terms of orthonormal bases (cf. [Ze, Theorem 2]).

Theorem 27. Let D be a strictly pluriregular domain in Cn, H any
Hilbert space with dense embeddings A(D) ↪→ H ↪→ A(D), {ϕi} the or-
thonormal basis from Lemma 13, and gi(a+ζ) :=

∑
s(j)=s(i) e

′
j,a(ϕi)ζ

k(j) the

homogeneous part of ϕi of degree s(i), i ∈ N. Then

(8.8) ρD(a, ζ) = lim sup
ξ→ζ

lim sup
i→∞

ln |gi(a+ ζ)|
s(i)

, ζ ∈ Cn.

Proof. Take λ < 0. Then there exists a positive constant c = c(λ) such
that

(8.9) c|f |Dλ ≤ ‖f‖H , f ∈ H,
where Dλ is defined in (5.7). Set

V (ξ) := lim sup
i→∞

ln |gi(a+ ξ)|
s(i)

= lim sup
s→∞

Vs(ξ),

where Vs(ξ) = sup{ln |gi(a+ ξ)|/s : s(i) = s}. Since, by (8.9),

{cϕi : s(i) = s} ⊂ Ms ∩ BH∞(Dλ),
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we have

Vs(ξ) +
ln c

s
≤ − ln γs(a,Dλ; ξ), ξ ∈ Cn,

and hence, by Proposition 25,

(8.10) ρDλ(a, ζ) = lim sup
ξ→ζ

(− ln γ(a,Dλ; ξ)) ≥ lim sup
ξ→ζ

V (ξ), ζ ∈ Cn.

Let ∆ and u be as in Definition 1. Then there exists ε0 such that for
0 < ε < ε0 the connected component ∆ε of the set {z ∈ ∆ : u(z) < ε}
containing D is relatively compact in ∆. Consider f ∈Ms∩BH∞(∆ε)

. Then

there exists C = C(ε) such that ‖f‖H ≤ C|f |∆ε . Since

f̂s(a+ ξ) =
∑
s(i)=s

cigi(a+ ξ),

where ci = (f, ϕi)H , we have |ci| ≤ ‖f‖H ≤ C. Therefore

|f̂s(a+ ξ)| ≤
∑
s(i)=s

|ci| |gi(a+ ξ)| ≤ CNs sup
s(i)=s

|gi(a+ ξ)|.

Hence,

− ln γs(a,∆ε; ξ) ≤ Vs(ξ) +
lnCNs

s
, ξ ∈ Cn,

and, after passing to the limit, by Proposition 25 we obtain

− ln γ(a,∆ε; ξ) ≤ V (ξ), ξ ∈ Cn.
Thus

(8.11) ρ∆ε(a, ζ) = lim sup
ξ→ζ

(− ln γ(a,∆ε; ξ)) ≤ lim sup
ξ→ζ

V (ξ), ζ ∈ Cn.

Combining (8.10) and (8.11) and applying Lemma 26, we complete the
proof.

Introduce an average capacity by

C(a,D) := exp
(
−
�

S

ln ρD(a, ζ) dω(ζ)
)
.

Corollary 28. Under the assumptions of Theorem 27 we have

lim
s→∞

(
exp

(
1

s
sup
s(i)=s

{�
S

ln |f̂i(a+ ζ)| dω(ζ)
}))

=
1

C(a,D)
.

9. Conclusion

9.1. Theorem 27 could be useful for confirming the following conjecture
(cf. [BC, Theorem 2]).

Conjecture 29. For strictly pluriregular domains,

τ(0, D̆a; θ) = τ(a,D; θ), θ ∈ Σ,
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so that the directional Chebyshev constants and hence the transfinite diam-
eter d(a,D) are uniquely determined by the Robin function ρ(a,D; ζ).

The estimate τ(0, D̆a; θ) ≤ τ(a,D; θ), θ ∈ Σ, can be easily proved sim-
ilarly to [BC]. In order to get τ(a,D; θ) ≤ τ(0, D̆a; θ), θ ∈ Σ, one needs to
prove an internal analogue of Bloom’s Theorem [Bl, Theorem 3.2].

9.2. Rumely [Ru] (see also [DR]) discovered a formula expressing the
transfinite diameter of a compact set K via its Robin function.

Problem 30. Let D be a strictly pluriregular domain in Cn and a ∈ D.
Give an analogue of the Rumely formula, expressing the internal transfinite
diameter d(a, ∂D) via the Robin function ρD(a, z).

9.3. The characteristics from Definitions 5, 9, and 17 can be extended to
Stein manifolds (they will depend on the choice of local coordinates at a!).
Let D be a Stein manifold, a ∈ D, and suppose the analytic mapping ϕ =
(ϕν) : D → Cn gives local coordinates at a with ϕ(a) = 0. For example, the
directional Chebyshev constant τϕ(a,D; θ) can be defined as in Definition 5
with the functionals (1.2) expressed in terms of the chosen local coordinates
at a:

(9.1) e′i(f) = e′i,a(ϕ; f) :=
1

k(i)!

∂|k(i)|f(ϕ−1(ζ))

∂ζk(i)

∣∣∣∣
ζ=0

.

For concrete Stein manifolds one can use some preferable local coordi-
nates at a. If, for example, D is an unbranched Riemann domain over Cn,
π : D → Cn the projection, and a ∈ D, then it is natural to define Chebyshev
constants by applying the local coordinates ϕ(z) = π(z)− π(a).

9.4. There is another way of defining the transfinite diameter and Cheby-
shev constants for an arbitrary Stein manifold D and given local coordinates
ϕ at a ∈ D. Consider a continuous plurisubharmonic function u in D such
that {u(z) < s} is relatively compact in D for every s ∈ N and u(a) < 1.
Let Gs be the connected component of {u(z) < s} which contains a.

Definition 31. The exhausting directional Chebyshev constants of the
domain D relative to the point a and to the local coordinates ϕ are defined
by

(9.2) τ̃ϕ(a,D; θ) := lim
s→+∞

τϕ(a,Gs; θ) = sup
s∈N

τϕ(a,Gs; θ),

and the corresponding principal Chebyshev constant and transfinite diameter
are defined by

(9.3) τ̃ϕ(a,D) := lim
s→+∞

τϕ(a,Gs), d̃ϕ(a,D) := lim
s→+∞

dϕ(a,Gs).

If D ⊂ Cn and ϕ(z) = z−a, we use the notation τ̃(a,D; θ), τ̃(a,D), d̃(a,D),
respectively.
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For strictly pluriregular domains on Stein manifolds, these new char-
acteristics coincide with τϕ(a,D; θ), τϕ(a,D), dϕ(a,D), respectively, but in
general they do not (see, e.g., Example 22). It is easily seen that the equality
(7.4) holds with τ̃ϕ, d̃ϕ instead of τ , d.
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