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A predator-prey model with state dependent
impulsive effects

by Changming Ding (Xiamen)

Abstract. We investigate a Lotka–Volterra predator-prey model with state depen-
dent impulsive effects, in which the control strategies by releasing natural enemies and
spraying pesticide at different thresholds are considered. We present some sufficient condi-
tions to guarantee the existence and asymptotical stability of semi-trivial periodic solutions
and positive periodic solutions.

1. Introduction. Many systems in physics, chemistry, biology, and in-
formation science have impulsive dynamical behavior due to abrupt jumps
at certain instants during the evolving processes. Those systems are often
modeled by impulsive differential equations. For Lotka–Volterra type sys-
tems, the effect of pest control in population dynamics has been studied
extensively (see, e.g., [JL, NP, TS] and the references therein).

The following system is investigated in [NP]:

(1.1)



dx(t)
dt = x(t)[b1 − a11x(t)− a12y(t)]

dy(t)
dt = y(t)[−b2 + a21x(t)]

}
x 6= h1, h2,

4x = 0

4y = y(t+)− y(t) = α

}
x = h1,

4x = x(t+)− x(t) = −px(t)

4y = y(t+)− y(t) = −qy(t)

}
x = h2,

where x(t) and y(t) represent the population densities at time t; b1, b2, a12
and a21 are positive constants, a11, α ≥ 0, p, q ∈ (0, 1) and h2 > h1 >
(1 − p)h2 > 0. When the amount x(t) of prey reaches the threshold h1 at
time th1 , we release natural enemies (the predator) and the amount y(t) of
predator abruptly turns to y(th1) + α. Further, when the amount of prey
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reaches the threshold h2 at time th2 , we spray pesticide and the amounts of
prey and predator abruptly turn to (1− p)x(th2) and (1− q)y(th2), respec-
tively. In [NP], the authors present several sufficient conditions for the exis-
tence and stability of a semi-trivial solution and a positive periodic solution.

Tian et al. [TS] deny most results of [NP] by an example (see [TS,
Example 1]). In fact, when the prey x(t) reaches the threshold h1, the preda-
tor y(t) jumps to y(t) +α and x(t) remains unchanged. Since the amount of
prey is still h1, the idea in [TS, Example 1] is that the impulsive effect works
instantaneously, thus x(t) remains equal to h1 and y(t) turns to y(t) + 2α.
Inductively, this process leads to y(t) + kα→∞ as k →∞.

However, we think the idea in [TS, Example 1] is inappropriate. First,
practically, it is impossible to apply an infinite number of impulsive effects at
the same time. Second, in the mathematical theory of impulsive dynamical
systems, after an impulsive action occurs, the trajectory of the impulsive
system goes according to the original system without impulsive effects (see
[K1] and [LB, Sec. 4.7], or the next section). So, Theorems 2–5 in [NP] are
valid. However, in [NP, Theorems 3–5] the authors give some complicated
conditions to guarantee the existence of a positive periodic orbit, whereafter
they present a still more complicated condition relating to the unknown
periodic orbit to get its asymptotic stability. Clearly, such results are hard
to use. On the other hand, our conclusions in this paper just depend on the
given parameters and are easy to test. Finally, indeed there is a mistake in
[NP, Theorem 1] (see Section 3).

Our goal in this paper is to use some easy analysis and simple compu-
tations to get strong results. The paper is organized as follows. In the next
section, we present some basic definitions and notations. In Section 3, first
we show that Theorem 1 in [NP] is not correct; next we state and prove new
criteria for the existence and asymptotic stability of a semi-trivial periodic
solution of system (1.1). Sufficient conditions for the existence and stability
of positive periodic solutions of (1.1) are established in Section 4.

2. Preliminaries. For convenience, we first fix some terminology. Con-
sider the following autonomous system that models the interaction of prey
and predator:

(2.1) ẋ = x(b1 − a11x− a12y), ẏ = y(−b2 + a21x).

In the qualitative analysis of system (2.1), the isoclines b1−a11x−a12y = 0
and −b2+a21x = 0 play important roles. Throughout this paper, we assume
that (2.1) has a unique positive equilibrium, i.e., the condition b1a21 > b2a11
holds. Then it is easy to obtain the phase portrait of (2.1) in Figure 1.
Clearly, Ω = {(x, y) | x, y ≥ 0} is an invariant region of (2.1). We will
consider (2.1) only in the region Ω.
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Figure 1: the phase portrait of System (2.1).
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Fig. 1. The phase portrait of system (2.1)

It is easy to see that the solutions of (2.1) define a dynamical system
in Ω, i.e., a continuous function π : Ω × R→ Ω satisfying:

(1) π(P, 0) = P for each P ∈ Ω,
(2) π(π(P, t), s) = π(P, t+ s) for each P ∈ Ω and t, s ∈ R.

For brevity, we write P ·t = π(P, t), and also let S ·J = {P ·t | P ∈ S, t ∈ J}
for S ⊂ Ω and J ⊂ R. If either S or J is a singleton, i.e., S = {P} or J = {t},
then we simply write P · J and S · t for {P} · J and S · {t}, respectively.
For any P ∈ Ω, the function πP : R → Ω defined by πP (t) = π(P, t) is
clearly continuous, and we call πP the trajectory (or motion) through P .
The set P ·R is said to be the orbit of P , and is sometimes denoted by γ(P ).
Similarly, denote γ+(P ) = P · R+, the positive orbit of P . Replacing R
by R+ in the definition of a dynamical system, we get the definition of a
semi-dynamical system. For the elementary properties of dynamical systems
and semi-dynamical systems, we refer to [BH, BS, NS].

Let Σ = {(x, y) | x = (1 − p)h1 and y ≥ 0}, Σ1 = {(x, y) | x = h1 and
y ≥ 0} and Σ2 = {(x, y) | x = h2 and y ≥ 0}. Denote M = Σ1 ∪Σ2, which
is the impulsive set of (1.1). We define the impulsive function I : M → Ω to
be the following continuous map:

I(x, y) =

{
(x, y + α) if (x, y) ∈ Σ1,

((1− p)x, (1− q)y) if (x, y) ∈ Σ2.

If P = (x, y) ∈M , we shall denote I(P ) by P+ and say that P jumps to P+.
For each P ∈ Ω, we set M+(P ) = (P · R+ ∩M) \ {P}. Obviously, we can
define a continuous map φ : Ω → R+ ∪ {∞} by

φ(P ) =

{
s if P · s ∈M and P · t 6∈M for t ∈ (0, s),

+∞ if M+(P ) = ∅.
For the continuity of φ, we refer to [C].
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Now, following Kaul [K2], we define an impulsive semi-dynamical system
π̃(P, t) by specifying the positive orbit of each point in Ω. The impulsive tra-
jectory of P ∈ Ω is an Ω-valued function π̃P defined on R+. If M+(P ) = ∅,
then we set π̃P (t) = P · t for all t ∈ R+. If M+(P ) 6= ∅, it is easy to see
that there is a smallest positive number t0 such that P · t0 = P1 ∈ M and
P · t 6∈M for 0 < t < t0. Thus, we define π̃P on [0, t0] by

π̃P (t) =

{
P · t, 0 ≤ t < t0,

P+
1 , t = t0,

where P+
1 = I(P1) and φ(P ) = t0.

Since t0 < +∞, we continue the process by starting with P+
1 . Similarly,

if M+(P+
1 ) = ∅, i.e., φ(P+

1 ) = +∞, we define π̃P (t) = P+
1 · (t − t0) for

t0 < t < +∞. Otherwise, let φ(P+
1 ) = t1 and P+

1 · t1 = P2 ∈ M , then we
define π̃P (t) on [t0, t0 + t1] by

π̃P (t) =

{
P+
1 · (t− t0), t0 ≤ t < t0 + t1,

P+
2 , t = t1,

where P+
2 = I(P2).

Thus, continuing inductively, the process above either ends after a finite
number of steps, when M+(P+

n ) = ∅ for some n, or it continues indefinitely,
if M+(P+

n ) 6= ∅ for n = 1, 2, . . . , and π̃P is well defined on R+. We call
{tn =

∑n
i=0 ti | n = 0, 1, 2, . . . } the impulsive times of π̃P . Obviously, this

gives rise to either a finite or an infinite number of jumps at points {Pn}
for the trajectory π̃P . Having the trajectory π̃P for every point P in Ω, we
let π̃(P, t) = π̃P (t) for P ∈ Ω and t ∈ R+, and then we get a discontinuous
system with the following properties:

(i) π̃(P, 0) = P for P ∈ Ω,
(ii) π̃(π̃(P, t), s) = π̃(P, t+ s) for P ∈ Ω and t, s ∈ R+.

We call π̃(P, t), with π̃ as defined above, the impulsive semi-dynamical
system associated with (1.1). Also, we denote P ∗t = π̃(P, t) for brevity. Then
(ii) reads (P ∗ t)∗s = P ∗ (t+s). For the theory of impulsive semi-dynamical
systems, we refer to [A, HC, K1, K2, LB].

Throughout the paper, for a point P in Ω, let B(P, δ) = {Q ∈ Ω |
d(P,Q) < δ} be the open disk in Ω with center P and radius δ > 0, where
d is the ordinary metric on R2. In addition, for S ⊂ Ω, the r-neighborhood
of S in Ω is denoted by N(S, r) = {P ∈ Ω | d(P, S) < r} for r > 0, where
d(P, S) = inf{d(P,Q) | Q ∈ S}. Here, with no confusion, we also use d for
the distance between a point and a set. Now, we recall several definitions.

Definition 2.1 ([SB]). Let P0 ∈ Ω. The positive orbit P0 ∗ R+ is said
to be orbitally stable if, given an ε > 0, there exists a δ = δ(ε) > 0 such that
for any P ∈ B(P0, δ), we have P ∗ R+ ⊂ N(P0 ∗ R+, ε).
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Definition 2.2 ([SB]). Let P0 ∈ Ω. The positive orbit P0 ∗ R+ is said
to be asymptotically orbitally stable if it is orbitally stable and there exists
an η > 0 such that if P ∈ B(P0, η), then limt→∞ d(P ∗ t, P0 ∗ R+) = 0.

Definition 2.3 ([K1]). An orbit P0 ∗R+ for P0 ∈ Ω is periodic if there
exists a t > 0 such that P0 = P0 ∗ t; then π̃P0 is called a periodic trajectory
with period t. In particular, if a periodic orbit P0 ∗R+ lies on the boundary
∂Ω of Ω, i.e., P0 ∗ R+ lies on the positive x-axis or y-axis, then we call it a
semi-trivial periodic orbit.

For a periodic orbit, the concept of order has been defined in [K1]. How-
ever, in this paper we only deal with 1-order periodic orbits (see [NP]), so
we just call it a periodic orbit with period t.

Finally, we end this section by recalling the Lambert W function (see
[CG]), defined to be a multivalued inverse of the function f : z 7→ zez

satisfying W (z) exp(W (z)) = z. For z ≥ −1/e, the Lambert function W (z)
has two branches; the branch satisfying −1 ≤ W (z) is denoted by W0(x),
and the branch satisfying W (x) ≤ −1 by W−1(x).

3. Semi-trivial periodic orbits. In this section, we consider the exis-
tence and stability of semi-trivial periodic orbits. By definition, the existence
of such an orbit for (1.1) implies α = 0, since otherwise, at the point (h1, 0)
the orbit jumps to a point in the interior of Ω. Thus, in this section we
always assume α = 0.

Clearly, in the x-axis, y(t) ≡ 0 holds for t ∈ [0,+∞), and we have the
subsystem

(3.1)

{
dx(t)
dt = x(t)[b1 − a11x(t)], x 6= h2,

4x = x(t+)− x(t) = −px(t), x = h2.

Note that there exists an equilibrium on the positive x-axis. Without the
impulsive effect, each orbit on the positive x-axis tends to the equilibrium
(b1/a11, 0). Let

(3.2) λ = (1− q)(1− p)b2/b1
[
b1 − (1− p)a11h2

b1 − a11h2

]a21/a11−b2/b1
.

In [NP, Theorem 1], the authors assert that if 0 < λ < 1, then system (1.1)
with α = 0 has a semi-trivial periodic orbit. However, if h2 > b1/a11, we
can choose a sufficiently small p and a q close to 1 such that both b1 −
(1 − p)a11h2 < 0 and 0 < λ < 1; then (1.1) with α = 0 has no semi-trivial
periodic orbits. In fact, for h2 > b1/a11, the orbit through ((1−p)h2, 0) does
not reach the section Σ2, so the system has no semi-trivial periodic orbits.
Hence, Theorem 1 in [NP] is not true.
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In the following, we only deal with the cases h2 ≤ b2/a21 and b2/a21 <
h2 < b1/a11. From the phrase portrait of (1.1) with α = 0 (see Figure 2), it
is easy to deduce the following result.
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Figure 2: the existence and stability of semi-trivial periodic orbits.
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Fig. 2. The existence and stability of semi-trivial periodic orbits: (1) the case h2 ≤ b2/a21;
(2) the case b2/a21 < h2 < b1/a11

Theorem 3.1. If α = 0 and h2 ≤ b2/a21, then system (1.1) has an
asymptotically orbitally stable semi-trivial periodic orbit.

Proof. Let P0 = ((1 − p)h2, 0). Clearly, π̃P0 is a semi-trivial periodic
trajectory, and its orbit is P0∗R+ = {(x, 0) | (1−p)h2 ≤ x < h2}. For a point
P = ((1− p)h2, y0) ∈ Σ close to P0, its trajectory meets Σ2 at P1 = (h2, y1)
with y1 < y0 (see Figure 2(1)). Now, P1 jumps to P+

1 = ((1−p)h2, y+1 ), where
y+1 = (1−q)y1. Then, the trajectory goes ahead and reaches Σ2 again at the
point P2 = (h2, y2) with y2 < y+1 . By induction, there exist two sequences of
points {Pn = (h2, yn)} ⊂ Σ2 and {P+

n = ((1−p)h2, y+n )} ⊂ Σ (n = 1, 2, . . . )
satisfying yn+1 < y+n and y+n = (1 − q)yn. Thus, yn+1 < (1 − q)ny1, and
so yn → 0 and y+n → 0 as n → ∞. Hence, P+

n → P0 as n → ∞. By
the continuous dependence on the initial conditions (see [NS, p. 327]), we
have d(P ∗ t, P0 ∗ R+) → 0 as t → +∞. Clearly, for each point Q ∈ Ω
close to P0, from the phase portrait (see Figure 2(1)) it is easy to see that
the trajectory π̃Q has a similar dynamical behavior to π̃P . Thus, the orbit
P0 ∗ R+ is asymptotically orbitally stable.

Theorem 3.2. If α = 0, b2/a21 < h2 < b1/a11 and

0 < λ = (1− q)(1− p)b2/b1
[
b1 − (1− p)a11h2

b1 − a11h2

]a21/a11−b2/b1
< 1,

then system (1.1) has an asymptotically orbitally stable semi-trivial periodic
orbit.

Proof. Let P0 = ((1 − p)h2, 0). Obviously, π̃P0 is a semi-trivial periodic
trajectory. Choose a point Q = ((1 − p)h2, n0) ∈ Σ close to P0, where
n0 > 0 is sufficiently small. Let Q1 = Q · φ(Q) = (h2, n). By the continuous
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dependence on initial conditions, n = n(n0) is also small. Thus, by a simple
estimate of the integral

h2�

(1−p)h2

−b2 + a21x

x(b1 − a11x− a12y)
dx,

where y = y(x, n0) is small and {(x, y(x)) | (1− p)h2 ≤ x ≤ h2} is an orbit
segment of system (2.1) through the point Q, we have

(3.3) n = n0(1− p)b2/b1
[
b1 − (1− p)a11h2

b1 − a11h2

]a21/a11−b2/b1
+ o(n0).

This can also be obtained immediately from formula (2.13) in [Y, p. 29].
Now, let Q ∗ φ(Q) = Q+

1 = ((1 − p)h2, n1), where n1 = n(1 − q). Hence,
if 0 < λ < 1, it follows that n1 < n0 for any small n0, i.e., Q+

1 lies below
Q in Σ. Then, the trajectory π̃Q goes ahead and meets Σ2 at a point Q2

below Q1. Again, Q2 jumps to a point Q+
2 in Σ, where Q+

2 lies below Q+
1 .

By induction, the sequence {Q+
k } goes down in Σ as k → ∞. If Q+

k → P0,
it is easy to see that P0 ∗ R+ is asymptotically orbitally stable, and we are
done. Otherwise, if Q+

k → Q′ ∈ Σ, it follows from [K1, Theorem 2] that
π̃Q′ is a periodic trajectory. However, by the argument above, Q′ ∗ φ(Q′)
lies below Q′ in Σ, which means that π̃Q′ is not periodic. This contradiction
completes the proof.

4. Positive periodic orbits. In this section, we consider the existence
and stability of positive periodic orbits of (1.1) with a11 = 0. In this case
the function

(4.1) H(x, y) = a21x+ a12y − b2 lnx− b1 ln y

is constant on each orbit of (2.1) in the interior of Ω (see [HS, p. 261]). In the
following, we deal separately with the cases h2≤b2/a21 and h1≤b2/a21<h2.

4.1. The case h2 ≤ b2/a21. Let U = {(x, y) | 0 < x < b2/a21, 0 < y <
b1/a12} in Ω. Clearly, by (2.1) we have ẋ > 0 and ẏ < 0 in U . It is easy to
obtain the phase portrait of system (1.1) with a11 = 0 (see Figure 3). Now,
we define the Poincaré map in Σ as follows. Let A = ((1− p)h2, b1/a12) and
A1 = A · φ(A) = (h1, yb), where yb is defined by H(h1, yb) = H(A), i.e.,

(4.2) yb = − b1
a12

W0

(
− exp

{
1

b1
[H(A)−H(h1, b1) + b1(a12 − ln a12)]

})
.

Assume that yb + α ≤ b1/a12, which means that C = A ∗ φ(A) lies on Σ1

and below the line y = b1/a12. Thus, C1 = C · φ(C) lies on Σ2 and also
below the line y = b1/a12 (see Figure 3). Let D = ((1 − p)h2, 0). On the
segment AD = {(x, y) | x = (1− p)h2 and 0 ≤ y ≤ b1/a12} in Σ, we define
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Figure 3: the case
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Fig. 3. The case h2 ≤ b2/a21

the Poincaré map F : AD → AD by F (P ) = (P ∗ φ(P )) ∗ φ(P ∗ φ(P )) for
each point P ∈ AD. It is easy to verify that F is a continuous map.

Lemma 4.1. Assume that h2 ≤ b2/a21, yb+α ≤ b1/a12 and α(1−q) ≤ 1.
Then the map F : AD → AD defined as above is contractive, i.e., for any
different points P and Q in AD, we have d(F (P ), F (Q)) < d(P,Q).

Proof. Let P and Q be different points in AD, and suppose their trajec-
tories meet Σ1 at P1 and Q1 respectively. Assume that the orbit segments
PP1 and QQ1 are the graphs of two functions y = f(x) and y = g(x) for
(1− p)h2 ≤ x ≤ h1, respectively. Clearly,

(4.3)
df(x)

dx
=
f(x)(−b2 + a21x)

x(b1 − a12f(x))
and

dg(x)

dx
=
g(x)(−b2 + a21x)

x(b1 − a12g(x))
.

If f((1− p)h2) > g((1− p)h2), then f(x) > g(x) for (1− p)h2 ≤ x ≤ h1. Let
H(x) = f(x)− g(x). By (4.3) we have

(4.4)
dH(x)

dx
=

b1(a21x− b2)H(x)

x(b1 − a12f(x))(b1 − a12g(x))
.

Since the orbit segments PP1 and QQ1 are below the line y = b1/a12,
it means that g(x) < f(x) < b1/a12. From h2 ≤ b2/a21, it follows that
dH(x)/dx < 0 for (1− p)h2 < x < h1. Thus, d(P1, Q1) < d(P,Q).

Now, assume that the trajectories of P+
1 and Q+

1 meet Σ2 at P2 and Q2,
respectively. By a similar argument, d(P2, Q2) < d(P+

1 , Q
+
1 ). Note that

F (P ) = P+
2 and F (Q) = Q+

2 . So,

d(F (P ), F (Q)) = (1− q)d(P2, Q2) < (1− q)d(P+
1 , Q

+
1 )

= α(1− q)d(P1, Q1) < d(P,Q).

Theorem 4.2. If h2 ≤ b2/a21 and yb + α ≤ b1/a12, then system (1.1)
with a11 = 0 has a positive periodic orbit in U . Further, if α(1 − q) ≤ 1,
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then system (1.1) with a11 = 0 has a unique periodic orbit in U that is
asymptotically orbitally stable.

Proof. For h2 ≤ b2/a21 and yb+α ≤ b1/a12, we can define the continuous
Poincaré map F : AD → AD as above. Since AD is homeomorphic to the
interval [0, 1], it has the fixed point property. It follows that there exists a
fixed point P0 ∈ AD of F , thus π̃P0 is a positive periodic orbit in U of (1.1)
with a11 = 0. Further, if α(1 − q) ≤ 1, then Lemma 4.1 states that F is
contractive, so it has a unique fixed P0. Clearly, for each P ∈ AD we have
Fn(P )→ P0 as n→∞. Hence, π̃P0 is asymptotically orbitally stable.

4.2. The case h1 ≤ b2/a21 < h2. Note that in the interior of Ω, all
orbits of (2.1) with α = 0 are periodic, and surround the equilibrium E =
(b2/a21, b1/a12). For two such periodic orbits γ1 and γ2, if γ1 lies in the
region surrounded by γ2, it is easy to see that H has a greater value on γ2
than on γ1. Of course, H has a minimum at E.

Figure 4: the case
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Fig. 4. The case h1 ≤ b2/a21 < h2

Let C = (h2, b1/a12) and G = (h1, b1/a12) (see Figure 4). Assume
H(C) ≥ H(G). Then the negative orbit C ·R− of (2.1) meets Σ1 at a point
C0 = (h1, yc), which lies in Σ1 and below G. Note that yc is determined by
H(h1, yc) = H(C), i.e.,

(4.3) yc = − b1
a12

W0

(
− exp

{
1

b1
[H(C)−H(h1, b1) + b1(a12 − ln a12)]

})
.

Let A = C+ = ((1− p)h2, (1− q)b1/a12). Then A1 = A · φ(A) = (h1, ya) lies
in Σ1 and below G, where ya is determined by H(h1, ya) = H(A), i.e.,

(4.4) yc = − b1
a12

W0

(
− exp

{
1

b1
[H(C+)−H(h1, b1) + b1(a12 − ln a12)]

})
.
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Suppose that ya + α ≤ yc. Then, as in Section 4.1, we define the Poincaré
map F : AD → AD by F (P ) = (P ∗ φ(P )) ∗ φ(P ∗ φ(P )) for each P ∈ AD.
Clearly, F is a continuous map and has a fixed point in AD. Thus, we deduce
the following result.

Theorem 4.3. Assume that h1 ≤ b2/a21 < h2 and H(h2, b1/a12) ≥
H(h1, b1/a12). If ya +α ≤ yc, where ya and yc are defined by (4.3) and (4.4)
respectively, then system (1.1) with a11 = 0 has a positive periodic orbit.

Now, in order to get asymptotic stability, we are going to find a condition
ensuring that F is contractive. Choose P = (h1, y0) and Q = (h1, y0 + η)
in Σ1 below the line y = b1/a12, where η ∈ (0, b1/a12). Next, denote
P1 = P · φ(P ) = (h2, y1) and Q1 = Q · φ(Q) = (h2, y2). Then we have
the following lemma.

Lemma 4.4. Assume that h1≤b2/a21<h2, H(h2, b1/a12)≥H(h1, b1/a12)
and ya + α ≤ yc. If a21(h2 − h1) ≤ b2 ln(h2/h1), then d(P1, Q1) ≤ d(P,Q)
for each η ∈ (0, b1/a12).

Proof. Since a21(h2 − h1) ≤ b2 ln(h2/h1), it follows that

a21h1 + a12λ− b2 lnh1 − b1 lnλ ≥ a21h2 + a12λ− b2 lnh2 − b1 lnλ

for each λ ∈ (0, b1/a12), i.e., H(h1, λ) ≥ H(h2, λ). Thus, y0 ≥ y1: in fact,
let λ = y0; since H(h2, y1) = H(h1, y0) ≥ H(h2, y0), it follows that y0 ≥ y1.
Then, y0/(y0 + η) ≥ y1/(y1 + η) for each η ∈ (0, b1/a12), which leads to

(4.5) ln y0 − ln(y0 + η) ≥ ln y1 − ln(y1 + η).

On the other hand, from H(Q1) = H(Q) = H(h1, y0 + η) it follows that

H(Q1)−H(h2, y1 + η) = H(h1, y0 + η)−H(h2, y1 + η)

= H(P ) + a12η + b1 ln y0 − b1 ln(y0 + η)

− [H(P1) + a12η + b1 ln y1 − b1 ln(y1 + η)]

= b1[ln y0 − ln y1 + ln(y1 + η)− ln(y0 + η)].

By (4.5), we have H(Q1)−H(h2, y1 + η) ≥ 0, which means y2 ≤ y1 + η, and
so d(P1, Q1) ≤ η = d(P,Q). The proof is complete.

Theorem 4.5. Assume that h1 ≤ b2/a21 < h2, H(h2, b1/a12) ≥
H(h1, b1/a12) and ya + α ≤ yc, where ya and yc are determined by (4.3)
and (4.4) respectively. If a21(h2− h1) ≤ b2 ln(h2/h1) and α(1− q) ≤ 1, then
system (1.1) with a11 = 0 has a positive periodic orbit that is asymptotically
orbitally stable.

Proof. Consider the Poincaré map F defined as above. Let P and Q be
different points in AD, and suppose their trajectories meet Σ1 at P1 and
Q1 respectively. Since h1 ≤ b2/a21, by a similar argument to the proof of
Lemma 4.1, we have d(P1, Q1) < d(P,Q). Next, assume that the trajectories



A predator-prey model 307

of P+
1 and Q+

1 meet Σ2 at P2 and Q2, respectively. It follows from Lemma
4.4 that d(P2, Q2) ≤ d(P+

1 , Q
+
1 ). Thus, we obtain

d(F (P ), F (Q)) = d(P+
2 , Q

+
2 ) = (1− q)d(P2, Q2)

≤ (1− q)d(P+
1 , Q

+
1 ) = α(1− q)d(P1, Q1) < d(P,Q),

i.e., F is contractive. So, F has a unique fixed point in AD, which cor-
responds to an asymptotically orbitally stable periodic orbit of (1.1) with
a11 = 0.
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