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On uniqueness for nonlinear differential polynomials

sharing the same 1-point

by Abhijit Banerjee (Kalyani)

Abstract. We study the uniqueness of meromorphic functions when two nonlinear
differential polynomials generated by two meromorphic functions share the same 1-points.
Our results improve results of Fang–Fang and Lin–Yi and supplement a recent result of
Lahiri–Pal.

1. Introduction, definitions and results. Let f and g be two non-
constant meromorphic functions defined in the open complex plane C. If for
some a ∈ C ∪ {∞}, f − a and g − a have the same set of zeros with the
same multiplicities, we say that f and g share the value a CM (counting
multiplicities), and if we do not consider the multiplicities then f and g are
said to share the value a IM (ignoring multiplicities).

Let m be a positive integer or infinity and a ∈ C ∪ {∞}. We denote by
Em)(a; f) the set of all a-points of f with multiplicities not exceeding m,
where an a-point is counted according to its multiplicity. Also we denote by
Em)(a; f) the set of distinct a-points of f(z) with multiplicities not greater
than m. If for some a ∈ C ∪ {∞}, E∞)(a; f) = E∞)(a; g) we say that f , g
share the value a CM .

We denote by T (r) the maximum of T (r, f) and T (r, g). The notation
S(r) indicates any quantity satisfying S(r) = o(T (r)) as r → ∞, outside of
a possible exceptional set of finite linear measure.

We use I to denote any set of 0 < r < ∞ of infinite linear measure.

During the last few years a great deal of research has been carried out
on the uniqueness of meromorphic functions generating differential poly-
nomials (cf. [1], [2], [3], [5], [9], [12]–[15]). In [5] and [9] Lahiri studied the
problem of uniqueness of meromorphic functions when two linear differential
polynomials generated by them share the same 1-points.
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In [5] the following question was asked.

What can be said if two nonlinear differential polynomials generated

by two meromorphic functions share 1 CM?

A considerable amount of research has already been done in this direc-
tion. (cf. [1]–[3], [12]–[15]). In 2002 Fang and Fang [2] and in 2004 Lin–Yi [15]
independently proved the following result.

Theorem A. Let f and g be two nonconstant meromorphic functions

and n ≥ 13 be an integer. If fn(f − 1)2f ′ and gn(g − 1)2g′ share 1 CM ,
then f ≡ g.

Also in [2] Fang and Fang proved the following theorem.

Theorem B. Let f and g be two nonconstant meromorphic functions

and n ≥ 28 be an integer. If fn(f −1)2f ′ and gn(g−1)2g′ share 1 IM , then

f ≡ g.

In [2] Fang and Fang and recently in [12] Lahiri–Pal proved the following
result.

Theorem C. Let f and g be two nonconstant meromorphic functions

and n ≥ 13 be an integer. If E3)(1; fn(f − 1)2f ′) = E3)(1; gn(g − 1)2g′),
then f ≡ g.

In 2001 an idea of gradation of sharing of values was introduced in [7], [8]
to measure how close a shared value is to being shared CM or IM. This notion
is known as weighted sharing and is defined as follows.

Definition 1.1 ([7], [8]). Let k be a nonnegative integer or infinity. For
a ∈ C ∪ {∞} we denote by Ek(a; f) the set of all a-points of f , where an
a-point of multiplicity m is counted m times if m ≤ k and k + 1 times
if m > k. If Ek(a; f) = Ek(a; g), we say that f, g share the value a with

weight k.

The definition implies that if f, g share a value a with weight k then z0

is an a-point of f with multiplicity m ≤ k if and only if it is an a-point of g
with multiplicity m ≤ k, and z0 is an a-point of f with multiplicity m > k
if and only if it is an a-point of g with multiplicity n > k, where m is not
necessarily equal to n.

We write f, g share (a, k) to mean that f, g share the value a with
weight k. Clearly if f, g share (a, k), then f, g share (a, p) for any integer p,
0 ≤ p < k. Also we note that f, g share a value a IM or CM if and only if
f, g share (a, 0) or (a,∞) respectively.

In this paper we employ the idea of weighted sharing of values and trun-
cated sharing of values to investigate the uniqueness of meromorphic func-
tions when the nonlinear differential polynomials of the form mentioned in
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Theorem A share the value 1. We now give the following five theorems which
are our main results.

Theorem 1.1. Let f and g be two nonconstant meromorphic functions

and n > 12− 2Θ(∞; f)− 2Θ(∞; g)−min{Θ(∞; f), Θ(∞; g)} be an integer.

If fn(f − 1)2f ′ and gn(g − 1)2g′ share (1, 2) then f ≡ g.

Remark 1.1. If in Theorem 1.1 we take min{Θ(∞; f), Θ(∞; g)} > 0
then the assertion is true for n ≥ 12. Clearly Theorem 1.1 is an improvement
of Theorem A.

Theorem 1.2. Let f and g be two nonconstant meromorphic functions

and n > 29/2 − 3Θ(∞; f) − 3Θ(∞; g) be an integer. If fn(f − 1)2f ′ and

gn(g − 1)2g′ share (1, 1) then f ≡ g.

Theorem 1.3. Let f and g be two nonconstant meromorphic functions

and n > 27− 5Θ(∞; f)− 5Θ(∞; g)−min{Θ(∞; f), Θ(∞; g)} be an integer.

If fn(f − 1)2f ′ and gn(g − 1)2g′ share (1, 0) then f ≡ g.

Remark 1.2. If in Theorem 1.3 we take min{Θ(∞; f), Θ(∞; g)} > 0
then the assertion is true for n ≥ 27.

Theorem 1.4. Let f and g be two nonconstant meromorphic functions

and n ≥ 12 be an integer. If

E4)(1; fn(f − 1)2f ′) = E4)(1; gn(g − 1)2g′),

E2)(1; fn(f − 1)2f ′) = E2)(1; gn(g − 1)2g′)

and min{Θ(∞; f), Θ(∞; g)} > 0 then f ≡ g.

Remark 1.3. If in Theorem 1.4 we take n ≥ 13 then the condition
min{Θ(∞; f), Θ(∞; g)} > 0 can be removed and in that case Theorem 1.4
improves Theorem A.

Theorem 1.5. Let f and g be two nonconstant meromorphic functions

and n ≥ 13 be an integer. If

E3)(1; fn(f − 1)2f ′) = E3)(1; gn(g − 1)2g′),

E1)(1; fn(f − 1)2f ′) = E1)(1; gn(g − 1)2g′)

and min{Θ(∞; f), Θ(∞; g)} > 1/4 then f ≡ g.

Remark 1.4. If in Theorem 1.5 we take n ≥ 15 then the condition
min{Θ(∞; f), Θ(∞; g)} > 1/4 can be removed.

Though we use the standard notations and definitions of the value dis-
tribution theory available in [4], we explain some definitions and notations
which are used in the paper.

Definition 1.2 ([6]). For a ∈ C ∪ {∞} we denote by N(r, a; f |= 1)
the counting function of simple a-points of f . For a positive integer m we
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denote by N(r, a; f | ≤ m) (resp. N(r, a; f | ≥ m)) the counting function of
those a-points of f whose multiplicities are not greater (resp. less) than m
where each a-point is counted according to its multiplicity.

N(r, a; f | ≤ m) and N(r, a; f | ≥ m) are defined similarly, but ignoring
multiplicities.

Also N(r, a; f |< m), N(r, a; f |>m), N(r, a; f |< m) and N(r, a; f |> m)
are defined analogously.

Definition 1.3 ([8], cf. [20]). We denote by N2(r, a; f) the sum
N(r, a; f) + N(r, a; f | ≥ 2).

Definition 1.4. Let m and r be two positive integers such that 1 ≤ r <
m− 1 and for some a ∈ C, Em)(a; f) = Em)(a; g), Er)(a; f) = Er)(a; g). Let
z0 be a zero of f(z)−a of multiplicity p and a zero of g(z)−a of multiplicity q.
We denote by NL(r, a; f) (resp. NL(r, a; g)) the reduced counting function
of those a-points of f and g for which p > q ≥ r + 1 (resp. q > p ≥

r + 1), by N
(r+1
E (r, a; f) the reduced counting function of those a-points of

f and g for which p = q ≥ r + 1, and by Nf≥m+1(r, a; f | g 6= a) (resp.
Ng≥m+1(r, a; g | f 6= a)) the reduced counting functions of those a-points of
f and g for which p ≥ m + 1 and q = 0 (resp. q ≥ m + 1 and p = 0).

Definition 1.5. Let Em)(a; f) = Em)(a; g) for some a ∈ C. Also let z0

be a zero of f − a of multiplicity p and a zero of g − a of multiplicity q. We
denote by N(r, a; f |= p; g |= q) the reduced counting functions of common
a-points of f and g with multiplicity p and q respectively. Also we denote
by Nf>s(r, a; g) (resp. Nf>s(r, a; g)) the reduced counting functions of those
a-points of f and g for which p > q = s (resp. q > p = s).

Definition 1.6 ([10]). Let a, b∈C∪{∞}. We denote by N(r, a; f | g = b)
the counting function of those a-points of f , counted according to multiplic-
ity, which are b-points of g.

Definition 1.7 ([10]). Let a, b∈C∪{∞}. We denote by N(r, a; f | g 6= b)
the counting function of those a-points of f , counted according to multiplic-
ity, which are not b-points of g.

2. Lemmas. In this section we present some lemmas which will be
needed in what follows. Let f , g, F , G be four nonconstant meromorphic
functions. Henceforth we shall denote by h and H the following two func-
tions:

h =

(

f ′′

f ′
−

2f ′

f − 1

)

−

(

g′′

g′
−

2g′

g − 1

)

,

H =

(

F ′′′

F ′′
−

2F ′′

F ′ − 1

)

−

(

G′′′

G′′
−

2G′′

G′ − 1

)

.
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Lemma 2.1. If f , g are two nonconstant meromorphic functions such

that E1)(1; f) = E1)(1; g) and h 6≡ 0 then

N(r, 1; f |= 1) = N(r, 1; g |= 1)≤N(r, 0; h)≤N(r,∞; h)+S(r, f) + S(r, g).

Proof. Since f and g have the same simple 1-points it can be easily
verified by direct computation that h is zero whenever f − 1 has a simple
zero. This proves the lemma.

Lemma 2.2. Let Em)(1; f) = Em)(1; g), E1)(1; f) = E1)(1; g) and h 6≡ 0,
where m ≥ 3. Then

N(r,∞; h) ≤ N(r, 0; f | ≥ 2) + N(r, 0; g | ≥ 2) + N(r,∞; f | ≥ 2)

+ N(r,∞; g | ≥ 2) + NL(r, 1; f) + NL(r, 1; g)

+ Nf≥m+1(r, 1; f | g 6= 1) + Ng≥m+1(r, 1; g | f 6= 1)

+ N0(r, 0; f ′) + N0(r, 0; g′),

where N0(r, 0; f ′) is the reduced counting function of those zeros of f ′ which

are not the zeros of f(f − 1), and N0(r, 0; g′) is similarly defined.

Proof. We can easily verify that possible poles of h occur at (i) multiple
zeros of f and g, (ii) multiple poles of f and g, (iii) common zeros of f − 1
and g − 1 whose multiplicities are different, (iv) those 1-points of f (or g)
which are not 1-points of g (or f), (v) zeros of f ′ which are not zeros of
f(f − 1), (vi) zeros of g′ which are not zeros of g(g − 1).

Since all poles of h are simple, the lemma follows from the above.

Lemma 2.3 ([11]). If N(r, 0; f (k) | f 6= 0) denotes the counting function

of those zeros of f (k) which are not zeros of f , where a zero of f (k) is

counted according to its multiplicity , then

N(r, 0; f (k) | f 6= 0) ≤ kN(r,∞; f) + N(r, 0; f |< k)

+ kN(r, 0; f | ≥ k) + S(r, f).

Lemma 2.4 (cf. [16], [17]). Let f be a nonconstant meromorphic function

and P (f) = a0 + a1f + · · · + anfn, where a0, a1, . . . , an are constants and

an 6= 0. Then T (r, P (f)) = nT (r, f) + O(1).

Lemma 2.5. If E3)(1; f) = E3)(1; g) and E1)(1; f) = E1)(1; g), then

2NL(r, 1; f) + 2NL(r, 1; g) + N
(2
E (r, 1; f)

+ 3Ng≥4(r, 1; g | f 6= 1) − Nf>2(r, 1; g)

≤ N(r, 1; g) − N(r, 1; g).

Proof. Let z0 be a 1-point of f with multiplicity p and a 1-point of g with
multiplicity q. If q = 2 the possible values of p are (i) p = 2, (ii) p = 3. When
q = 3, the possible values of p are (i) p = 2 (ii), p = 3. If q = 4 the possible
values of p are (i) p = 4, (ii) p ≥ 5, (iii) p = 0. Similarly when q = 5 the
possible values of p are (i) p = 4, (ii) p = 5, (iii) p ≥ 6, (iv) p = 0. If q ≥ 6
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we can similarly find the possible values of p. The lemma now follows from
the above discussion since the simple 1-points of f and g are the same.

Lemma 2.6. If E3)(1; f) = E3)(1; g) and E1)(1; f) = E1)(1; g) then

Nf>2(r, 1; g) ≤ 1
2N(r, 0; f) + 1

2N(r,∞; f) − 1
2N0(r, 0; f ′) + S(r, f),(i)

Ng>2(r, 1; f) ≤ 1
2N(r, 0; g) + 1

2N(r,∞; g) − 1
2N0(r, 0; g′) + S(r, g).(ii)

Proof. We prove (i) since the proof of (ii) can be carried out similarly.

Using Lemma 2.3 we get

Nf>2(r, 1; g) ≤ N(r, 1; f | ≥ 3) ≤ 1
2N(r, 0; f ′ | f = 1)

≤ 1
2N(r, 0; f) + 1

2N(r,∞; f) − 1
2N0(r, 0; f ′) + S(r, f).

Lemma 2.7. Let E3)(1; f) = E3)(1; g), E1)(1; f) = E1)(1; g) and h 6≡ 0.
Then

T (r, f) + T (r, g) ≤ 2{N2(r, 0; f) + N2(r,∞; f) + N2(r, 0; g) + N2(r,∞; g)}

+ 1
2 [N(r, 0; f) + N(r,∞; f) + N(r, 0; g) + N(r,∞; g)]

− m(r, 1; f) − m(r, 1; g) + S(r, f) + S(r, g).

Proof. By the second fundamental theorem we get

T (r, f) + T (r, g) ≤ N(r, 0; f)+N(r,∞; f)+N(r, 0; g)+N(r,∞; g)(2.1)

+ N(r, 1; f) + N(r, 1; g) − N0(r, 0; f ′)

− N0(r, 0; g′) + S(r, f) + S(r, g).

By Lemmas 2.1, 2.2 and 2.5 we get

(2.2) N(r, 1; f) + N(r, 1; g)

≤ N(r, 1; f |= 1) + NL(r, 1; f) + NL(r, 1; g)

+ N
(2
E (r, 1; f) + Nf≥4(r, 1; f | g 6= 1) + N(r, 1; g)

≤ N(r, 0; f | ≥ 2) + N(r,∞; f | ≥ 2) + N(r, 0; g | ≥ 2)

+ N(r,∞; g | ≥ 2) + Nf≥4(r, 1; f | g 6= 1)

+ Ng≥4(r, 1; g | f 6= 1) + NL(r, 1; f) + NL(r, 1; g)

+ N0(r, 0; f ′) + N0(r, 0; g′) + NL(r, 1; f)

+ NL(r, 1; g) + N
(2
E (r, 1; f) + Nf≥4(r, 1; f | g 6= 1)

+ N(r, 1; g) − 2NL(r, 1; f) − 2NL(r, 1; g)

− N
(2
E (r, 1; f) − 3Ng≥4(r, 1; g | f 6= 1)

+ Nf>2(r, 1; g) + S(r, f) + S(r, g)
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≤ N(r, 0; f | ≥ 2) + N(r,∞; f | ≥ 2) + N(r, 0; g | ≥ 2)

+ N(r,∞; g | ≥ 2) + 2Nf≥4(r, 1; f | g 6= 1)

− 2Ng≥4(r, 1; g | f 6= 1) + Nf>2(r, 1; g) + T (r, g) − m(r, 1; g)

+ N0(r, 0; f ′) + N0(r, 0; g′) + S(r, f) + S(r, g).

Using Lemma 2.6 we deduce from (2.1) and (2.2) that

T (r, f) ≤ N2(r, 0; f) + N2(r,∞; f) + N2(r, 0; g) + N2(r,∞; g)(2.3)

+ 2Nf≥4(r, 1; f | g 6= 1) − 2Ng≥4(r, 1; g | f 6= 1)

+ 1
2N(r, 0; f) + 1

2N(r,∞; f) − m(r, 1; g)

+ S(r, f) + S(r, g).

Similarly we can obtain

T (r, g) ≤ N2(r, 0; f) + N2(r,∞; f) + N2(r, 0; g) + N2(r,∞; g)(2.4)

+ 2Ng≥4(r, 1; g | f 6= 1) − 2Nf≥4(r, 1; f | g 6= 1)

+ 1
2N(r, 0; g) + 1

2N(r,∞; g) − m(r, 1; f)

+ S(r, f) + S(r, g).

Adding (2.3) and (2.4) we get the conclusion of the lemma.

Lemma 2.8 ([22], [23]). If h ≡ 0, then f and g share 1 CM.

Lemma 2.9 ([18]). If f , g share 1 CM , then one of the following cases

holds:

(i) T (r, f)+T (r, g)≤ 2{N2(r, 0; f)+N2(r, 0; g)+N2(r,∞; f)+N2(r,∞; g)}

+ S(r, f) + S(r, g);

(ii) f ≡ g;

(iii) fg ≡ 1.

Lemma 2.10. If E4)(1; f) = E4)(1; g) and E2)(1; f) = E2)(1; g) then the

conclusion of Lemma 2.9 holds.

Proof. If h ≡ 0 then the result follows from Lemmas 2.8 and 2.9. So
we suppose that h 6≡ 0. Then by the second fundamental theorem and
Lemmas 2.1 and 2.2 we get

(2.5) T (r, f)+T (r, g) ≤ N(r, 0; f)+N(r,∞; f)+N(r, 0; g)+N(r,∞; g)

+ N(r, 1; f |= 1)+N(r, 1; f | ≥ 2)+N(r, 1; g)

− N0(r, 0; f ′) − N0(r, 0; g′) + S(r, f) + S(r, g)
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≤ N2(r, 0; f) + N2(r,∞; f) + N2(r, 0; g) + N2(r,∞; g)

+ NL(r, 1; f) + NL(r, 1; g) + Nf≥5(r, 1; f | g 6= 1)

+ Ng≥5(r, 1; g | f 6= 1) + N(r, 1; f | ≥ 2) + N(r, 1; g)

+ S(r, f) + S(r, g).

Since

N(r, 1; f |= 4; g |= 3) + N(r, 1; f |= 4) ≤ 2N(r, 1; f |= 4),

N(r, 1; f |= 3; g |= 4) + N(r, 1; g |= 4) ≤ 2N(r, 1; g |= 4),

we see that

NL(r, 1; f) + NL(r, 1; g) + Nf≥5(r, 1; f | g 6= 1) + Ng≥5(r, 1; g | f 6= 1)

+ N(r, 1; f | ≥ 2) + N(r, 1; g)

≤ N(r, 1; f |= 4; g |= 3) + N(r, 1; f | ≥ 6) + N(r, 1; g |= 4; f |= 3)

+ N(r, 1; g | ≥ 6) + N(r, 1; f | ≥ 5) + N(r, 1; g | ≥ 5) + N(r, 1; f |= 2)

+ N(r, 1; f |= 3) + N(r, 1; f |= 4) + N(r, 1; f | ≥ 5) + N(r, 1; g |= 1)

+ N(r, 1; g |= 2) + N(r, 1; g |= 3) + N(r, 1; g |= 4) + N(r, 1; g | ≥ 5)

≤ 1
2N(r, 1; f |= 1) + 1

2N(r, 1; g |= 1) + N(r, 1; f |= 2) + N(r, 1; g |= 2)

+ N(r, 1; f |= 3) + N(r, 1; g |= 3) + 2N(r, 1; f |= 4) + 2N(r, 1; g |= 4)

+ 2N(r, 1; f | ≥ 5) + 2N(r, 1; g | ≥ 5) + N(r, 1; f | ≥ 6) + N(r, 1; g | ≥ 6)

≤ 1
2 [N(r, 1; f) + N(r, 1; g)] ≤ 1

2 [T (r, f) + T (r, g)].

Now the lemma follows from (2.5).

Lemma 2.11 ([19]). Let f be a nonconstant meromorphic function. Then

N(r, 0; f (k)) ≤ kN(r,∞; f) + N(r, 0; f) + S(r, f).

Lemma 2.12 ([1]). Let f , g be two nonconstant meromorphic functions

that share (1, 1) and have h 6≡ 0. Then

T (r, f) ≤ N2(r, 0; f) + N2(r,∞; f) + N2(r, 0; g) + N2(r,∞; g)

+ 1
2N(r, 0; f) + 1

2N(r,∞; f) + S(r, f) + S(r, g).

Lemma 2.13 ([1]). Let f , g be two nonconstant meromorphic functions

that share (1, 0) and have h 6≡ 0. Then

T (r, f) ≤ N2(r, 0; f) + N2(r,∞; f) + N2(r, 0; g) + N2(r,∞; g) + 2N(r, 0; f)

+ 2N(r,∞; f) + N(r, 0; g) + N(r,∞; g) + S(r, f) + S(r, g).
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Lemma 2.14 ([1], cf. [21]). If h ≡ 0 and

lim sup
r→∞

r∈I

N(r, 0; f) + N(r,∞; f) + N(r, 0; g) + N(r,∞; g)

T (r)
< 1,

then f ≡ g or fg ≡ 1.

Lemma 2.15 ([12]). Let f and g be two nonconstant meromorphic func-

tions. Then

fn(f − 1)2f ′gn(g − 1)2g′ 6≡ 1

for any integer n ≥ 7.

Lemma 2.16 ([12]). Let

F = fn+1

(

f2

n + 3
−

2f

n + 2
+

1

n + 1

)

, G = gn+1

(

g2

n + 3
−

2g

n + 2
+

1

n + 1

)

,

where n ≥ 5 is an integer. Then F ′ ≡ G′ implies F ≡ G.

Lemma 2.17 ([12]). Let F and G be as in Lemma 2.16 and

a =
n + 3

n + 2
+ i

√

n + 3

n + 1
·

1

n + 2
.

Then

T (r, F ) ≤ T (r, F ′) + N(r, 0; f) + N(r, a; f) + N(r, a; f)(i)

− 2N(r, 1; f) − N(r, 0; f ′) + S(r, f),

T (r, G) ≤ T (r, G′) + N(r, 0; g) + N(r, a; g) + N(r, a; g)(ii)

− 2N(r, 1; g) − N(r, 0; g′) + S(r, g).

Lemma 2.18 ([12]). Let F and G be as in Lemma 2.16. Then F ≡ G
implies f ≡ g.

Lemma 2.19 ([8]). Let f , g share (1, 2). Then one of the following cases

holds.

(i) T (r) ≤ N2(r, 0; f) + N2(r, 0; g) + N2(r,∞; f) + N2(r,∞; g)

+ S(r, f) + S(r, g);

(ii) f ≡ g;

(iii) fg ≡ 1.

Lemma 2.20. Let F and G be as in Lemma 2.16. Then S(r, F ′) = S(r, f)
and S(r, G′) = S(r, g).

Proof. Using Lemma 2.4 we see that

T (r, F ′) ≤ 2T (r, F ) + S(r, F ) = 2(n + 3)T (r, f) + S(r, f)

T (r, G′) ≤ 2T (r, G) + S(r, G) = 2(n + 3)T (r, g) + S(r, g).

Hence S(r, F ′) = S(r, f) and S(r, G′) = S(r, g).
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Lemma 2.21 ([2]). Let f and g be two meromorphic functions, and n≥ 8
be an integer. Also let F = fn(f − 1)2f ′ and G = gn(g − 1)2g′. If

F =
(b + 1)G + (a − b − 1)

bG + (a − b)
,

where a 6= 0, b are two constants, then f ≡ g.

3. Proofs of the theorems

Proof of Theorem 1.1. Let F and G be as in Lemma 2.16. Then it follows
that F ′ and G′ share (1, 2). So by Lemmas 2.11, 2.17, 2.19 and 2.20 we
obtain, for all ε > 0,

T (r, F ) ≤ T (r, F ′) + N(r, 0; f) + N(r, a; f) + N(r, a; f)(3.1)

− 2N(r, 1; f) − N(r, 0; f ′) + S(r, f)

≤ N2(r, 0; F ′)+N2(r,∞; F ′)+N2(r, 0; G′)+N2(r,∞; G′)

+ N(r, 0; f) + N(r, a; f) + N(r, a; f) − 2N(r, 1; f)

− N(r, 0; f ′) + S(r, f) + S(r, g)

≤ 2N(r, 0; f) + 2N(r,∞; f) + 3T (r, f) + 2N(r, 0; g)

+ 2N(r, 1; g) + N(r, 0; g′) + 2N(r,∞; g)

+ S(r, f) + S(r, g)

≤ 5T (r, f) + 5T (r, g) + 2N(r,∞; f) + 3N(r,∞; g)

+ S(r, f) + S(r, g)

≤ (7−2Θ(∞; f)+ε)T (r, f)+(8−3Θ(∞; g)+ε)T (r, g)

+ S(r, f) + S(r, g)

≤ (15 − 2Θ(∞; f) − 3Θ(∞; g) + 2ε)T (r) + S(r).

Using Lemma 2.4 we get

(3.2) (n + 3)T (r, f) ≤ (15 − 2Θ(∞; f) − 3Θ(∞; g) + 2ε)T (r) + S(r).

In a similar manner we obtain

(3.3) (n + 3)T (r, g) ≤ {15 − 3Θ(∞; f) − 2Θ(∞; g) + 2ε}T (r) + S(r).

Combining (3.2) and (3.3) we obtain

(3.4) [n − 12 + 2Θ(∞; f) + 2Θ(∞; g)

+ min{Θ(∞; f), Θ(∞; g)} − 2ε]T (r) ≤ S(r).

We choose

0 < ε <
n − 12 + 2Θ(∞; f) + 2Θ(∞; g) + min{Θ(∞; f), Θ(∞; g)}

2
.

Then (3.4) implies a contradiction and hence H ≡ 0.
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Therefore case (i) of Lemma 2.19 does not hold. According to Lem-
ma 2.15, F ′ 6≡ G′. So case (iii) of Lemma 2.19 does not hold either. Hence we
must have F ′ ≡ G′. Now the theorem follows from Lemmas 2.16 and 2.18.

Proof of Theorem 1.2. Let F and G be as in Lemma 2.16. Then F ′ and
G′ share (1, 1). Suppose H 6≡ 0. Then by Lemma 2.12 we get

T (r, F ′) ≤ N2(r, 0; F ′) + N2(r,∞; F ′) + N2(r, 0; G′) + N2(r,∞; G′)

+ 1
2N(r, 0; F ′) + 1

2N(r,∞; F ′) + S(r, F ′) + S(r, G′).

Now by Lemmas 2.4, 2.11, 2.17 and 2.20 and proceeding in the same way
as for Theorem 1.1 we obtain, for all ε > 0,

(n + 3)T (r, f) ≤ [35/2 − 3Θ(∞; f) − 3Θ(∞; g) + 2ε]T (r) + S(r).(3.5)

In a similar manner we obtain

(n + 3)T (r, g) ≤ [35/2 − 3Θ(∞; f) − 3Θ(∞; g) + 2ε]T (r) + S(r).(3.6)

From (3.5) and (3.6) we get

(3.7) [n − 29/2 + 3Θ(∞; f) + 3Θ(∞; g) − 2ε]T (r) ≤ S(r).

Since ε > 0 is arbitrary, (3.12) implies a contradiction. Hence H ≡ 0. Since

N(r, 0; f ′) ≤ T (r, f ′) − m(r, 1/f ′) ≤ 2T (r, f) − m(r, 1/f ′) + S(r, f),

we note that

(3.8) N(r, 0; F ′) + N(r,∞; F ′) + N(r, 0; G′) + N(r,∞; G′)

≤ N(r, 0; f) + N(r, 1; f) + N(r,∞; f) + N(r, 0; f ′) + N(r, 0; g)

+ N(r, 1; g) + N(r,∞; g) + N(r, 0; g′)

≤ 5T (r, f) + 5T (r, g) − m(r, 0; f ′) − m(r, 0; g′) + S(r)

≤ 10T (r) − m(r, 0; f ′) − m(r, 0; g′) + S(r).

Also using Lemma 2.4 we get

(3.9) T (r, F ′) + m(r, 1/f ′)

= m(r, fn(f − 1)2f ′) + m(r, 1/f ′) + N(r,∞; fn(f − 1)2f ′)

≥ m(r, fn(f − 1)2) + N(r,∞; fn(f − 1)2)

= T (r, fn(f − 1)2) = (n + 2)T (r, f) + O(1).

Similarly

(3.10) T (r, G′) + m(r, 1/g′) ≥ (n + 2)T (r, g) + O(1).

From (3.9) and (3.10) we get

(3.11) max{T (r, F ′), T (r, G′)}

≥ (n + 2)T (r) − m(r, 1/f ′) − m(r, 1/g′) + O(1).
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By (3.8) and (3.11) applying Lemma 2.14 we get either F ′ ≡ G′ or F ′G′ ≡ 1.
Now the theorem follows from Lemmas 2.15, 2.16 and 2.18.

Proof of Theorem 1.3. Let F and G be as in Lemma 2.16. Then F ′ and
G′ share (1, 0). Suppose H 6≡ 0. Now using Lemma 2.13, follow the proof of
Theorem 1.2.

Proof of Theorem 1.4. Let F and G be as in Lemma 2.16. From the as-
sumptions it follows that E4)(1; F ′) = E4)(1; G′) and E2)(1; F ′) = E2)(1; G′).
If possible suppose that

(3.12) T (r, F ′) + T (r, G′)

≤ 2{N2(r, 0; F ′) + N2(r, 0; G′) + N2(r,∞; F ′) + N2(r,∞; G′)}

+ S(r, F ′) + S(r, G′).

Then by Lemmas 2.11, 2.17 and 2.20 we deduce from (3.12) that

T (r, F ) + T (r, G) ≤ T (r, F ′) + T (r, G′) + N(r, 0; f) + N(r, a; f)

+ N(r, a; f) − 2N(r, 1; f) − N(r, 0; f ′) + N(r, 0; g)

+ N(r, a; g) + N(r, a; g) − 2N(r, 1; g) − N(r, 0; g′)

+ S(r, f) + S(r, g)

≤ 4N(r, 0; f) + 4N(r, 1; f) + 2N(r, 0; f ′) + 4N(r,∞; f)

+ 4N(r, 0; g) + 4N(r, 1; g) + 2N(r, 0; g′) + 4N(r,∞; g)

+ N(r, 0; f) + N(r, a; f) + N(r, a; f) − 2N(r, 1; f)

− N(r, 0; f ′) + N(r, 0; g) + N(r, a; g) + N(r, a; g)

− 2N(r, 1; g) − N(r, 0; g′) + S(r, f) + S(r, g)

≤ 10T (r, f) + 5N(r,∞; f) + 10T (r, g) + 5N(r,∞; g)

+ S(r, f) + S(r, g).

So by Lemma 2.4 we get

(3.13) (n − 7)T (r, f) + (n − 7)T (r, g)

≤ 5N(r,∞; f) + 5N(r,∞; g) + S(r, f) + S(r, g).

Choose 0 < ε < n − 12 + min{Θ(∞; f), Θ(∞; g)}. Then from (3.13) we get

(n − 12 + Θ(∞; f) − ε)T (r, f) + (n − 12 + Θ(∞; g) − ε)T (r, g)

≤ S(r, f) + S(r, g),

which is a contradiction. Therefore the inequality (3.12) does not hold. So
from Lemma 2.10 we see that either F ′ ≡ G′ or F ′G′ ≡ 1. Now the theorem
follows from Lemmas 2.15, 2.16 and 2.18.

Proof of Theorem 1.5. Let F and G be as in Lemma 2.16. From the as-
sumptions it follows that E3)(1; F ′) = E3)(1; G′) and E1)(1; F ′) = E1)(1; G′).
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Then by Lemmas 2.7, 2.17 and 2.20 we get

(3.14) T (r, F ) + T (r, G)

≤ 2{N2(r, 0; F ′) + N2(r, 0; G′) + N2(r,∞; F ′) + N2(r,∞; G′)}

+ 1
2 [N(r, 0; F ′) + N(r,∞; F ′) + N(r, 0; G′) + N(r,∞; G′)]

+ N(r, 0; f) + N(r, a; f) + N(r, a; f) − 2N(r, 1; f) − N(r, 0; f ′)

+ N(r, 0; g) + N(r, a; g) + N(r, a; g) − 2N(r, 1; g) − N(r, 0; g′)

+ S(r, f) + S(r, g).

Using Lemmas 2.4 and 2.11 we infer from (3.14) that

(n + 3)T (r, f) + (n + 3)T (r, g)

≤ 4N(r, 0; f) + N(r, 0; f) + 2N(r, 1; f) + 5N(r,∞; f) + 3T (r, f)

+ 1
2 [N(r, 0; f) + N(r, 1; f) + N(r, 0; f) + 2N(r,∞; f)]

+ 4N(r, 0; g) + N(r, 0; g) + 2N(r, 1; g) + 5N(r,∞; g) + 3T (r, g)

+ 1
2 [N(r, 0; g)+N(r, 1; g)+N(r, 0; g)+2N(r,∞; g)]+S(r, f) + S(r, g)

≤ 23
2 T (r, f) + 23

2 T (r, g) + 6N(r,∞; f) + 6N(r,∞; g) + S(r, f) + S(r, g),

i.e.

(3.15) (n − 17/2)T (r, f) + (n − 17/2)T (r, g)

≤ 6N(r,∞; f) + 6N(r,∞; g) + S(r, f) + S(r, g).

Choose 0 < ε < n − 29/2 + 6min{Θ(∞; f), Θ(∞; g)}. Then from (3.15) we
get

(n − 29/2 + 6Θ(∞; f) − ε)T (r, f) + (n − 29/2 + 6Θ(∞; g) − ε)T (r, g)

≤ S(r, f) + S(r, g),

which is a contradiction. Therefore H ≡ 0. So

F ′ =
(b + 1)G′ + (a − b − 1)

bG′ + (a − b)
,

where a 6= 0, b are two constants. Hence by Lemma 2.21 the theorem fol-
lows.
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