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Density of Morse functions

on sets definable in o-minimal structures

by Ta Lê Loi (Dalat)

Abstract. We present a tameness property of sets definable in o-minimal structures
by showing that Morse functions on a definable closed set form a dense and open subset
in the space of definable C

p functions endowed with the Whitney topology.

Introduction. In Morse theory it is proved that the topological shape
of a space can be described via data given by Morse functions defined on the
space. For Morse theory on compact smooth manifolds we refer the readers
to the book by Milnor [Mi], and for Morse theory on singular spaces to
the book by Goresky and MacPherson [GM]. [GM] proves the density and
openness of Morse functions on closed Whitney stratified subanalytic sets
in the space of smooth functions endowed with the Whitney topology (see
also [Mo], [Mi], [La], [Be], [P], [O] and [Br]).

In this note we present similar results for definable sets in o-minimal
structures. The definitions of o-minimal structures and Morse functions are
given in Section 1, and the main theorems are stated and proved in Section 2.
The proofs are based on Sard’s theorem and an approximation theorem in
the o-minimal context. The proofs of Proposition 1 and Theorem 2 are es-
sentially the same as the corresponding proofs in [GM], with “subanalytic”
replaced by “definable”. Since the proofs are short, they are included for
completeness. Note that the spiral {(x,y)∈R

2 :x=e−ϕ2

cosϕ,y=e−ϕ2

sinϕ,
ϕ≥0}∪{(0,0)} or the oscillation {(x,y)∈R

2 :y=xsin(1/x),x>0}∪{(0,0)}
has no Morse functions, even though the first one is a closed Whitney strat-
ified set (see Remark 1 in 1.4). Therefore, in some sense, our results show a
tameness property of definable sets.

A part of this note was presented at the Conference on Real Algebraic
Geometry and its Applications, at the ICTP, Trieste, 2003. The author
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thanks the institute and the organizers of the conference for invitation and
hospitality.

1. Preliminaries. In this section, we recall some notions and notations,
and give results needed to prove our main theorems.

1.1. O-minimal structures. The theory of o-minimal structures is a gen-
eralization of semialgebraic and subanalytic geometry. Here we only recall
the definition. For the details we refer the readers to [D], [DM] and [C].

A structure on the real field (R,+, ·) is a sequence D = (Dn)n∈N such
that the following conditions are satisfied for all n ∈ N:

• Dn is a Boolean algebra of subsets of R
n.

• If A ∈ Dn, then A× R, R ×A ∈ Dn+1.
• If A ∈ Dn+1, then π(A) ∈ Dn, where π : R

n+1 → R
n is the projection

on the first n coordinates.
• Dn contains {x∈R

n :P (x)=0} for every polynomial P ∈R[X1, . . . ,Xn].

A structure D is said to be o-minimal if

• Each set in D1 is a finite union of intervals and points.

A set belonging to D is said to be definable (in that structure). Definable

maps in D are maps whose graphs are definable sets in D.

In recent years, many interesting o-minimal structures have been found,
and it is shown that o-minimal structures share many important results with
those of semialgebraic geometry or subanalytic geometry (see the survey
[DM]).

In this note we fix an o-minimal structure on (R,+, ·). “Definable” means
definable in this structure. Let p be a positive integer, p ≥ 2.

1.2. Definable stratifications. A definable Cp Whitney stratification of
X ⊂ R

n is a partition S of X into finitely many subsets, called strata, such
that:

• Each stratum is a Cp submanifold of R
n and also a definable set.

• For every S ∈ S, S \ S is a union of strata.
• For every S,R ∈ S, if S ⊂ R \ R, then (S,R) satisfies Whitney’s

conditions A and B (defined in [Wh]).

We say that the stratification S is compatible with a class A of subsets
of R

n if for each S ∈ S and A ∈ A, S ⊂ A or S ∩A = ∅.

The following theorem is proved in [Lo].

Theorem 1. Given a finite collection A of definable sets in R
n, there

exists a definable Cp Whitney stratification of R
n compatible with A.
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1.3. Tangents to definable sets. Let X be a definable subset of R
n. Let

S be a definable Cp Whitney stratification of X. Note that if S is a definable
submanifold of R

n, then the tangent bundle TS and the cotangent bundle
T ∗S are definable submanifolds of TR

n and T ∗
R

n, respectively.

For S ∈ S, the conormal bundle of S in R
n is defined by

T ∗
SR

n = {(ξ, x) ∈ (Rn)∗ × S : ξ|TxS = 0}

Note that T ∗
SR

n is a definable submanifold of T ∗
R

n of dimension n.

A generalized tangent space Q at x ∈ S is any plane of the form

Q = lim
y→x

TyR

where R ∈ S and S ⊂ R.

The cotangent vector (ξ, x) is degenerate if there exists a generalized
tangent space Q at x, Q 6= TxS, such that ξ|Q = 0.

Proposition 1. The set of degenerate cotangent vectors which are co-

normal to S is a conical definable set of dimension ≤ n− 1.

Proof. Let R be a stratum in S with S ⊂ R\R, and dimR = r. Consider
the mapping

g : R→ Gr(R
n), g(x) = TxR

(where Gr(R
n) denotes the Grassmannian of r-dimensional vector subspaces

of R
n). The graph g of this mapping is a definable set of dimension r. So its

closure g in R
n × Gr(R

n) is a definable set, and hence dim(g \ g) ≤ r − 1.
Let

AR = {(ξ, x,Q) ∈ T ∗
SR

n ×Gr(R
n) : (x,Q) ∈ g \ g, ξ|Q = 0}.

Then AR is definable. For each (x,Q) ∈ g \ g the fiber AR ∩ (Rn)∗ × (x,Q)
has dimension ≤ n− r. Hence, dimAR ≤ dim(g \ g) + (n− r) = n− 1.

Since there are a finite number of strata R in S such that S ⊂ R\R, the
set of degenerate cotangent vectors which are conormal to S is of dimension
≤ n− 1.

1.4. Morse functions on stratified sets (cf. [Be], [La], [P] and [GM]). Let
X be a subset of R

n and S be a Cp Whitney stratification of X.

A Morse function f on X is the restriction of a Cp function f̃ : R
n → R

satisfying the following conditions:

(M1) For each S ∈ S, the critical points of f |S are nondegenerate, i.e.
if dimS ≥ 1, then the Hessian of f |S at each critical point is
nonsingular.

(M2) For every critical point x ∈ S of f |S, and for each generalized

tangent space Q at x with Q 6= TxS, df̃(x)|Q 6= 0, i.e. df̃(x) is not



292 T. L. Loi

a degenerate cotangent vector (where df̃(x) denotes the derivative

of f̃ at x).

Remark 1. The property of being a Morse function depends strictly
on the particular stratification of X. For example, every zero-dimensional
stratum is a critical point of f . We also note that all lines through (0, 0) are
generalized tangent spaces of the spiral as well as of the oscillation mentioned
at the beginning of this note. So there are no Morse functions on these sets.

Remark 2. From the definition, one can check that if S ′ is a definable
Cp Whitney stratification of X compatible with S, and Z is a union of strata
of S, and f is a Morse function on (X,S ′), then f is Morse on (X,S) and
on (Z,S|Z).

2. Density of Morse functions on definable sets. Throughout this
section, let X be a definable closed subset of R

n, which is endowed with a
definable Cp Whitney stratification S. We will show that the set of Morse
functions on X is dense and open in the space of definable Cp functions
on R

n, equipped with the definable Whitney topology (see 2.2 for the defi-
nition). The main results are Theorems 2 and 3.

2.1. Parameter version of the density for Morse functions. Let T be a
definable Cp manifold. Let F : T × R

n → R, F (t, x) = ft(x) be a definable
Cp function. Define Φ : T×R

n → T ∗
R

n by Φ(t, x) = (dft(x), x). Consider the
set of “Morse parameters” M(F,X) = {t ∈ T : ft|X is a Morse function}.
Note that M(F,X) is a definable set.

Theorem 2. If Φ is a submersion, then M(F,X) is an open subset of

T and dim(T \M(F,X)) < dimT .

Proof. For each S ∈ S, set

M1 =M1(S) = {t ∈ T : ft|S has nondegenerate critical points},

M2 =M2(S) = {t ∈ T : dft(x) is a nondegenerate covector for each x∈S}.

It is easy to check that M1 and M2 are definable sets.

Now we claim that dim(T \M1 ∩M2) < dimT . To prove this, let

D = D(S) = {(ξ, x) ∈ T ∗
SR

n : ξ is a degenerate cotangent vector at x}.

Then D is a definable set. Let ΦS : T ×S → T ∗S, ΦS(t, x) = ((dft|S)(x), x),
and π : T ×R

n → T be the natural projection. Since Φ is submersive, ΦS is
transverse to the zero section S of T ∗S. So the set V1 = Φ−1

S (S) is a definable
submanifold of T × S. Furthermore, t ∈ M1 if and only if t is not a critical
value of π|V1

. By Sard’s theorem (see [Wi, Th. 2.7]), dim(T \M1) < dimT .

On the other hand, Φ is transverse to each stratum of any Whitney
stratification of D, and by Proposition 1, dimD ≤ n − 1, so the set V2 =
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Φ−1(D) is a definable set of dimension ≤ dimT − 1. So dim(T \ M2) =
dimπ(V2) ≤ dimT − 1.

Since the collection S is finite, the claim implies dim(T \M(F,X)) <
dimT . Openness of M(F,X) follows from the second part of Theorem 3
below.

Corollary 1. Consider the square of distance function

F : R
n × R

n → R, F (t, x) = ‖t− x‖2.

Let M = {t ∈ R
n : F (t, ·) is a Morse function on X}. Then M is definable,

open and dense in R
n.

Corollary 2. Let f : R
n → R be a definable Cp function. Consider

the linear deformations f + L, where L is a linear form of R
n. Let

M = {L ∈ L(Rn,R) : f + L is a Morse function on X}.

Then M is definable, open and dense in L(Rn,R).

Remark 3. Using the same arguments as in the proof of Theorem 2,
we obtain the following proposition (cf. [S, Th. II.5.4(3)]).

Proposition 2. Let M,N and T be definable Cp manifolds, and Φ :
T ×M → N be a definable Cp map. Let A be a finite collection of definable

submanifolds of N , and D be a definable subset of N of codimension ≥
dimM + 1. If Φ is submersive, then the set

τ(Φ,A, D) = {t ∈ T : Φ(t, ·) is transverse to A and Φ(t,M) ∩D = ∅}

is a definable set and dim(T \ τ(Φ,A, D)) < dimT .

2.2. Density and openness of Morse functions in Dp(Rn). Let Dp(Rn)
denote the space of definable Cp functions on R

n. On this space the definable
Whitney topology is defined as follows.

Let f ∈ Dp(Rn). For each positive continuous definable function ε on R
n,

the ε-neighborhood of f in this topology is defined by

Uε(f) = {g ∈ Dp(Rn) : |∂α(g − f)| < ε, ∀α ∈ N
n, |α| ≤ p}

where α = (α1, . . . , αn) ∈ N
n, |α| = α1+· · ·+αn, ∂αf = ∂|α|f/∂xα1

1 · · · ∂xαn
n .

Theorem 3. The set of definable Cp functions on R
n which are Morse

functions on X and have distinct critical values is dense and open in Dp(Rn).

Before proving the theorem, we prepare some lemmas.
Let d(·, ·) and ‖ · ‖ denote the distance and the norm on R

n induced by
the Euclidean inner product, respectively. Let L(Rn,R) denote the space of
linear forms on R

n, and L2(R
n,R) the space of bilinear forms on R

n. For
L ∈ L(Rn,R), B ∈ L2(R

n,R), and T ∈ Gk(R
n), as usual, we define

‖L|T‖ = sup{|L(v)| : v ∈ T, ‖v‖ = 1},

‖B|T‖ = sup{|B(u, v)| : u, v ∈ T, ‖u‖ = ‖v‖ = 1},
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and detB|T to be the determinant of the matrix representation of B|T with
respect to an orthonormal basis of T .

By the definition we have

Lemma 1. The mappings

L(Rn,R) ×Gk(R
n) → R, (L, T ) 7→ ‖L|T‖,

L2(R
n,R) ×Gk(R

n) → R, (B, T ) 7→ ‖B|T ‖,

L2(R
n,R) ×Gk(R

n) → R, (B, T ) 7→ detB|T ,

are continuous and semialgebraic.

Let f ∈ Dp(Rn). To test the Morsity of f |S at x ∈ S ∈ S, we define

mf,S(x) = ‖df(x)|TxS‖ + |det d2f(x)|TxS |
d(x, ∂S)

1 + d(x, ∂S)
,

where d2f(x) is the second derivative of f at x, ∂S = S \S, and d(x, ∅) = 1.
Note that, by Lemma 1, mf,S is a continuous definable function on S, and
f |S is Morse at x if and only if mf,S(x) > 0. In general, mf,S cannot be
continuously extended to the closure S. Instead, for a Morse function f ,mf,S

is bounded from below by the restriction of a positive continuous function
on R

n, constructed as follows.

Lemma 2. Let f ∈ Dp(Rn). Then f is a Morse function on X if and

only if there exists a positive continuous definable function mf on R
n such

that for each S ∈ S, mf (x) ≤ mf,S(x) for all x ∈ S.

Proof. Assume f is Morse on X. To construct mf , we imitate the argu-
ments of the proof of Lemma 6.12 in [C].

For each S ∈ S, let

µ(r) = inf{mf,S(x) : x ∈ S, ‖x‖ ≤ r}.

Then µ(r) is defined when r ≥ r0 for some r0 > 0. So µ : [r0,∞) → R is
a positive definable nonincreasing function. To prove µ(r) > 0, suppose to
the contrary that µ(r) = 0. Then there exists a sequence (xk) in S with
‖xk‖ ≤ r and mf,S(xk) → 0. By the boundedness, taking a subsequence if
necessary, we can assume that xk → x ∈ S and Txk

S → Q. This implies

‖df(x)|Q‖ + |det d2f(x)|Q|
d(x, ∂S)

1 + d(x, ∂S)
= 0.

If x ∈ S, then Q = TxS and hence the above equality contradicts condition
(M1).

If x ∈ ∂S, then Q is a generalized tangent space. Since X is closed
and the strata of S satisfy the Whitney condition A, the above equality
contradicts condition (M2).

By the monotonicity theorem (see [D, Th. 1.2, Ch. 3]), there exists a ≥ r0
such that µ is continuous on [a,∞). Let θ : R → [0, 1] be a continuous
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nondecreasing definable function such that θ = 0 on (−∞, a], θ = 1 on
[a+ 1,∞). Define φS : R

n → R by

φS(x) = θ(‖x‖)µ(‖x‖) + (1 − θ(‖x‖))µ(a+ 1).

Then φS is positive, continuous, definable and by construction φS ≤ mf,S

on S. Define mf = min{φS : S ∈ S}. Then mf has the desired properties.
Now assume conversely that mf is a positive continuous definable func-

tion on R
n such that for each S ∈ S, mf (x) ≤ mf,S(x) for all x ∈ S. Then

mf,S(x) > 0, and hence f |S satisfies condition (M1). On the other hand,
if a sequence of points xk ∈ S converges to y ∈ ∂S, and Txk

S converges
to Q, then the above inequality implies ‖df(y)|Q‖ ≥ mf (y) > 0, and hence
f satisfies condition (M2). Therefore, f is Morse on X.

Roughly speaking, the following lemma says that in the (ε, δ)-formulation
of continuity, δ can be chosen to be continuously dependent on ε and the
variables.

Lemma 3. Let ψ : F → R be a continuous definable function. Suppose

F is a closed subset of R
n. Then there exists a positive continuous definable

function δ : R+ × F → R satisfying

x′ ∈ F, ‖x′ − x‖ < δ(ε, x) ⇒ |ψ(x′) − ψ(x)| < ε.

Proof. Let

A = {(ε, x, δ) : ε > 0, x ∈ F, δ > 0,

(∀x′ ∈ F, ‖x′ − x‖ < δ ⇒ |ψ(x′) − ψ(x)| < ε)}.

Then A is a definable set. For each (ε, x) ∈ R+ × F , define

δ(ε, x) = min{sup{δ : (ε, x, δ) ∈ A}, 1}.

Since ψ is a continuous definable function, δ is well defined, definable and
positive on R+ × F . For r > 0, define

µ(r) = 1
2 inf{δ(ε, x) : ε ≥ 1/r, x ∈ F, ‖x‖ ≤ r}.

Then µ : (0,∞) → R is a definable nonincreasing function. Moreover,
µ(r) > 0 for all r > 0. Indeed, by the uniform continuity of ψ on {x ∈ F :
‖x‖ ≤ r+1}, there exists δ0 ∈ (0, 1) such that if x, x′ ∈ F, ‖x‖ ≤ r+1, ‖x′‖ ≤
r+1, and ‖x−x′‖ < δ0, then |ψ(x)−ψ(x′)| < 1/r. So, by the definition of δ,
if ε ≥ 1/r, x ∈ F and ‖x‖ ≤ r, then δ(ε, x) ≥ δ(1/r, x) ≥ δ0 > 0. Therefore,
µ(r) ≥ δ0/2 > 0.

Repeat the arguments of the proof of Lemma 2 for this µ, keep the
notations there, and then define δ : R+ × F → R by

δ(ε, x) = θ(max(1/ε, ‖x‖))µ(max(1/ε, ‖x‖))

+ (1 − θ(max(1/ε, ‖x‖)))µ(a+ 1).

It is easy to check that δ has the desired properties.
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Lemma 4. Let ε : R
n → R be a positive continuous definable function.

Then there exists a positive definable Cp function ϕ : R
n → R such that

|∂αϕ| < ε, ∀|α| ≤ p.

Proof. For n = 1, by the monotonicity theorem and approximation the-
orem (see [E, Th. 1.1]), we are reduced to proving the lemma for ε being an
even, strictly decreasing on R+, positive, Cp definable function.

If limt→∞ ε(t) > 0, then take ϕ = c, where c is a constant, 0 < c <
mint∈R ε(t).

If limt→∞ ε(t) = 0, then by the monotonicity theorem, ε′ is strictly in-
creasing on a neighborhood of ∞, and tends to 0 at ∞. Repeating the
previous argument for ε′′, . . . , ε(p), we get t0 > 0 such that ε, ε′, . . . , ε(p) are
strictly monotone on (t0,∞), tend to 0 at ∞, and |ε(t)| < 1, . . . , |ε(p)(t)| < 1,
for all |t| > t0. If we take a constant M large enough, then ϕ = εp+1/M has
the desired properties.

For general n, let ε1(x) = ε(x)/N(1 + ‖x‖p), where N is a positive num-
ber. Let α(t) = min{ε1(x) : ‖x‖2 ≤ |t|}. Applying the case n = 1, we have
a positive definable Cp function g : R → R such that |g(k)| < α for all
k ∈ {0, . . . , p}. Now let ϕ(x) = g(‖x‖2). Then by the chain rule, when N is
large enough, we have

|∂αϕ(x)| < Nε1(x)‖x‖
|α| < ε(x), ∀x ∈ R

n, ∀|α| < p.

Proof of Theorem 3. We divide the proof into two parts: density and
openness.

Density. Let f ∈ Dp(Rn), and ε : R
n → R be a positive continuous

definable function. We will find a Morse function onX in the ε-neighborhood
of f .

Let N = 1 + n2p. By Lemma 4, there exists a positive definable Cp

function ϕ : R
n → R such that

|∂αϕ(x)| <
ε(x)

N(1 + ‖x‖)
, ∀|α| ≤ p.

Consider the family

F : In+1 × R
n → R, F (t, x) = ft(x) = f(x) + t0ϕ(x) +

n∑

i=1

tixiϕ(x),

where I = (−1, 1), t = (t0, t1, . . . , tn), and x = (x1, . . . , xn). To apply Theo-
rem 2, we check that

Φ(t, x) =

( n∑

j=1

(
∂f

∂xj
(x) + t0

∂ϕ

∂xj
(x) + tjϕ(x) +

n∑

i=1

tixi
∂ϕ

∂xj
(x)

)
dxj , x

)

is submersive. Indeed, since ϕ(x) 6= 0, the rank of the Jacobian JΦ(t, x) =
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0 0 0 · · · 0 In
∂ϕ
∂x1

(x) ϕ(x) + x1
∂ϕ
∂x1

(x) x2
∂ϕ
∂x1

(x) · · · xn
∂ϕ
∂x1

(x) ∗
∂ϕ
∂x2

(x) x1
∂ϕ
∂x2

(x) ϕ(x) + x2
∂ϕ
∂x2

(x) · · · xn
∂ϕ
∂x2

(x) ∗
...

...
...

...
...

∂ϕ
∂xn

(x) x1
∂ϕ
∂xn

(x) x2
∂ϕ
∂xn

(x) · · · ϕ(x) + xn
∂ϕ
∂xn

(x) ∗




is n + rank(ϕ′(x), ϕ(x)e1 + x1ϕ
′(x), . . . , ϕ(x)en + xnϕ

′(x)) = 2n (where
e1, . . . , en is the standard basis of R

n). So the set {t ∈ In+1 : ft is Morse
on X} is dense in In+1.

On the other hand, by Leibniz’s rule, it is easy to see that for each α ∈ N
n

with |α| ≤ p, we have

|∂α(ft − f)(x)| ≤ |t0| |∂
αϕ(x)| +

n∑

i=1

|ti| |∂
α(xiϕ)(x)|

< (1 + n2p) ε(x)/N = ε(x).

Therefore, there exists t ∈ In+1 such that ft is a Morse function on X in
the ε-neighborhood of f in Dp(Rn).

To get a Morse function with distinct critical values, we construct it
as follows. Suppose f is a Morse function on X. For each S ∈ S, the set
of critical points of f |S is finite, because it is definable and discrete. So f
has only finitely many critical points on X. Let x1, . . . , xq be the critical
points for f |S, for all S in S. Let r > 0 be small enough so that the balls
B(xi, r), i = 1, . . . , q, are disjoint. For i = 1, . . . , q, choose a definable Cp

function λi : R
n → [0, 1] such that λi = 0 on R

n \B(xi, r), and λi(x) = 1 on
B(xi, r/2). Consider the approximations of f of the form

g = f + c1λ1 + · · · + cqλq.

Then in any neighborhood U of f , we can choose c1, . . . , cq so that g ∈ U , g
is a Morse function on X with the set of critical points being {x1, . . . , xq},
and g(xi) 6= g(xj) when i 6= j. This completes the proof of the density part.

Openness. Let f ∈ Dp(Rn) be a Morse function on X with distinct
critical values. We will find a neighborhood of f that contains only Morse
functions on X with distinct critical values.

By Lemma 2, there is a positive continuous definable function mf :
R

n → R such that for each S ∈ S,

mf (x) ≤ ‖df(x)|TxS‖ + |det d2f(x)|TxS |
d(x, ∂S)

1 + d(x, ∂S)
, ∀x ∈ S.

Define εX = 1
3mf .
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By Lemmas 1 and 3, there exists a positive continuous semialgebraic
function δ : R+ × L2(R

n,R) → R satisfying the following condition for all
k ∈ {0, . . . , n} and all T ∈ Gk(R

n):

B′ ∈ L2(R
n,R), ‖B −B′‖ < δ(ε,B) ⇒ |detB|T − detB′|T | < ε.

Let ε = min{εX , δ(εX , d
2f)}. Then ε is a positive continuous definable func-

tion on R
n. By the construction of ε, if g ∈ Dp(Rn), ‖dg − df‖ < ε and

‖d2g − d2f‖ < ε, then for each x ∈ S ∈ S,

mg,S(x) = ‖dg(x)|TxS‖ + |det d2g(x)|TxS |
d(x, ∂S)

1 + d(x, ∂S)

> mf,S(x) − 2εX(x) ≥ ε(x).

So, by Lemma 2, g is a Morse function on X.

Moreover, since f has only a finite number of critical points and takes
distinct values at them, we can reduce ε so that if g ∈ Dp(Rn), |g − f | < ε,
‖dg−df‖ < ε, and ‖d2g−d2f‖ < ε, then g is Morse on X, the set of critical
points of g|X is close to that of f , and g still has distinct critical values.
We have constructed a neighborhood of f in Dp(Rn) containing only Morse
functions on X with distinct critical values.

To apply Morse theory to definable sets, one needs the following corol-
lary:

Corollary 3. There exists a definable Cp Morse function on X which

is proper and has distinct critical values.

Proof. By Corollary 1, there exists a definable Cp Morse function f on
X which is proper. An approximation of f which has distinct critical values
is constructed in the proof of Theorem 3.

Using the same arguments as in [P, Th. 2] one obtains:

Corollary 4. If f ∈ Dp(Rn) (p ≥ 3) is a Morse function on X which is

proper and has distinct critical values, then f is stable in the sense that there

exists an open neighborhood U of f in Dp(Rn) such that for each g ∈ U , one

can find homeomorphisms h : X → X and λ : R → R such that g ◦h = λ◦f .

Remark 4. For the density of Morse functions to be true, X is not
required to be closed. However, for the openness to be true, X must be
closed and the stratification must satisfy Whitney’s condition A (see an
example in [P], see also [T]).

Remark 5. Our proof of Theorem 3 can be generalized to obtain Thom’s
transversality theorem in the o-minimal context. We also refer the reader to
[S] for a version of transversality theorem.
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