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Existence and uniqueness of solutions of nonlinear infinite
systems of parabolic differential-functional equations

by Stanisław Brzychczy (Kraków)

Abstract. We consider the Fourier first initial-boundary value problem for an infinite
system of weakly coupled nonlinear differential-functional equations of parabolic type. The
right-hand sides of the system are functionals of unknown functions. The existence and
uniqueness of the solution are proved by the Banach fixed point theorem.

1. Introduction. We consider an infinite system of weakly coupled
nonlinear differential-functional equations of the form

(1) F i[zi](t, x) = f i(t, x, z), i ∈ S,
where

F i :=
∂

∂t
−Ai, Ai :=

m∑

j,k=1

aijk(t, x)
∂2

∂xj∂xk
,

x = (x1, . . . , xm), (t, x) ∈ (0, T ]× G := D, T < ∞, G ⊂ Rm, G is an open
bounded domain with boundary ∂G ∈ C2+α ∩ C2−0 (0 < α ≤ 1). S is a set
of indices (finite or infinite) and z stands for the mapping

z : S ×D 3 (i, t, x) 7→ zi(t, x) ∈ R,
composed of the unknown functions zi.

Let B(S) be the Banach space of mappings

v : S 3 i 7→ vi ∈ R,
with the finite norm

‖v‖B(S) := sup{|vi| : i ∈ S}.
The case of finite systems (B(S) = Rr) was treated in [1]. For S infinite
countable we have B(S) = l∞ and we now focus on such infinite systems.

2000 Mathematics Subject Classification: 35R10, 35K55, 35K57.
Key words and phrases: infinite systems, parabolic differential-functional equations,

Banach fixed point theorem.
Part of this work is supported by local Grant No. 11.420.04.

[1]



2 S. Brzychczy

According to what has just been stated,

‖v‖B(S) = ‖v‖l∞ .

Denote by CS(D) the Banach space of mappings

w : D 3 (t, x) 7→ (w(t, x) : S 3 i 7→ wi(t, x) ∈ R) ∈ l∞,
where the functions wi are continuous in D, with the finite norm

‖w‖0 := sup{|wi(t, x)| : (t, x) ∈ D, i ∈ S}.
A mapping z will be called regular in D if the functions zi (i ∈ S) are

continuous in D and have continuous derivatives ∂zi/∂t, ∂2zi/∂xj∂xk in D
for j, k = 1, . . . ,m.

For system (1) we consider the Fourier first initial-boundary value prob-
lem:

Find a regular solution (or briefly: solution) z of system (1) in D satis-
fying the initial-boundary value condition

(2) z(t, x) = g(t, x) for (t, x) ∈ Γ,
where g = (g1, g2, . . .).

We define σ = (0, T ] × ∂G, D0 = {(t, x) : t = 0, x ∈ G}, Γ = D0 ∪ σ,
D = D ∪ Γ . For any τ ∈ (0, T ] we set Dτ = (0, τ ] × G, στ = (0, τ ] × ∂G,
Γ τ = D0 ∪ στ , Dτ = Dτ ∪ Γ τ . Obviously DT = D.

In [2], to solve the above problem, we used the monotone iterative method
(sometimes also called the method of lower and upper functions). However,
this method requires assuming the monotonicity of the right-hand side func-
tions f i with respect to the function argument (cf. [1]). This is not a typical
assumption in existence and uniqueness theorems. Yet an unquestionable
advantage of the monotone method is the possibility of constructing se-
quences of successive approximations which tend monotonically—one from
above and the other from below—to the desired exact solution. Moreover,
the speed of the convergence is at least exponential.

In the present paper, to prove the existence and uniqueness of solution,
we apply the Banach fixed point theorem. Considering mainly Banach spaces
of bounded continuous functions, we give some natural sufficient conditions
for the existence and uniqueness. We notice that finite systems were studied
by H. Ugowski [5] and H. Leszczyński [4].

2. Notations, definitions and assumptions. The Hölder space
Cl+α(D) := C(l+α)/2,l+α(D) (l = 0, 1, 2, . . . ; 0 < α < 1) is the space of con-
tinuous functions h in D whose derivatives ∂r+sh/∂tr∂xs := Dr

tD
s
xh(t, x)

(0 ≤ 2r + s ≤ l) all exist and are Hölder continuous with exponent α (0 <
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α < 1) in D, with the finite norm

|h|l+α := sup
P∈D

0≤2r+s≤l

|Dr
tD

s
xh(P )|+ sup

P,P ′∈D
2r+s=l
P 6=P ′

|Dr
tD

s
xh(P )−Dr

tD
s
xh(P ′)|

[d(P,P ′)]α
,

where d(P,P ′) is the parabolic distance of points P = (t, x), P ′ = (t′, x′) ∈
Rm+1,

d(P,P ′) = (|t− t′|+ |x− x′|2)1/2,

and |x| = (
∑m
j=1 x

2
j)

1/2.
In particular we have the following norms

|h|0 = sup
P∈D
|h(P )|, |h|0+α = |h|0 + sup

P,P ′∈D
P 6=P ′

|h(P )− h(P ′)|
[d(P,P ′)]α

,

|h|1+α = |h|0+α +
m∑

j=1

|Dxjh|0+α,

|h|2+α = |h|0+α +
m∑

j=1

|Dxjh|0+α +
m∑

j,k=1

|D2
xjxk

h|0+α + |Dth|0+α.

By Cl+αS (D) we denote the Banach space of mappings w such that wi ∈
Cl+α(D) for all i ∈ S with the finite norm

‖w‖l+α := sup{|wi|l+α : i ∈ S}.
The boundary norm ‖ · ‖Γl+α for a function φ ∈ C l+αS (Γ ) is defined as

‖φ‖Γl+α := inf
Φ
‖Φ‖l+α,

where the infimum is taken over all extensions Φ of φ onto D.
Finally, by | · |Dτl+α and ‖ ·‖Dτl+α we denote the relevant norms in the spaces

Cl+α(Dτ ) and Cl+αS (Dτ ), respectively.
We denote by Ck−0(D) (k = 1, 2) the space all functions h for which the

following norms are finite (see [3], p. 190):

|h|1−0 = |h|0 + sup
P,P ′∈D
P 6=P ′

|h(P )− h(P ′)|
|t− t′|+ |x− x′| , |h|2−0 = |h|1−0 +

m∑

j=1

|Dxjh|1−0.

We assume that the functions

f i : D × CS(D) 3 (t, x, s) 7→ f i(t, x, s) ∈ R, i ∈ S,
are continuous and satisfy the following assumptions:

(Hf ) The functions f i (i ∈ S) are uniformly Hölder continuous (with
exponent α) with respect to t and x in D, i.e., f(·, ·, s) ∈ C0+α

S (D).
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(L) f i (i ∈ S) satisfy the uniform Lipschitz condition with respect to s,
i.e., for all s, s̃ ∈ CS(D) we have

|f i(t, x, s)− f i(t, x, s̃)| ≤ L‖s− s̃‖0 for (t, x) ∈ D,
where L > 0 is a constant.

(V ) The fi satisfy the Volterra condition: for all (t, x) ∈ D and s, s̃ ∈
CS(D), if sj(t, x) = s̃j(t, x) for 0 ≤ t ≤ t, j ∈ S, then f i(t, x, s) =
f i(t, x, s̃) (i ∈ S).

(Ha) The coefficients aijk = aijk(t, x), aijk = aikj (j, k = 1, . . . ,m, i ∈ S)
in (1) are uniformly Hölder continuous (with exponent α) in D, i.e.,
aijk = aijk(·, ·) ∈ C0+α(D) and aijk belong to C1−0(σ).

This implies the existence of constants K1,K2 > 0 such that
m∑

j,k=1

|aijk|0+α ≤ K1,
m∑

j,k=1

|aijk|Γ1−0 ≤ K2, i ∈ S.

Moreover, we assume that

(Hg) g ∈ C2+α
S (Γ ) ∩ C1+β

S (Γ ), where 0 < α < β < 1.

We also assume that the operators F i (i ∈ S) are uniformly parabolic in
D (the operators Ai are uniformly elliptic in D), i.e., there exists a constant
µ > 0 such that

m∑

j,k=1

aijk(t, x)ξjξk ≥ µ
m∑

j=1

ξ2
j

for all ξ = (ξ1, . . . , ξm) ∈ Rm, (t, x) ∈ D, i ∈ S.

Remark 1. If the function f i (i ∈ S) satisfies the Lipschitz (L) and the
Volterra (V ) conditions then f i satisfies the following condition:

(L∗) for all s, s̃ ∈ CS(D) we have

|f i(t, x, s)− f i(t, x, s̃)| ≤ L‖s− s̃‖Dt0 for (t, x) ∈ Dt, i ∈ S,
where L > 0 is a constant,

and vice versa.
The fact that in condition (L∗) we have ‖s− s̃‖Dt0 means that for func-

tions s, s̃ ∈ CS(D) such that si(t̃, x̃) = s̃i(t̃, x̃) for (t̃, x̃) ∈ Dt, the func-
tion f as a functional of s takes the same values. Therefore f satisfies the
Volterra condition (V ). Moreover, if f satisfies (L∗), then (L) holds because
‖s− s̃‖Dt0 ≤ ‖s− s̃‖0. The reverse implication is obvious.

Remark 2. We remark that if g ∈ C2+α
S (Γ ) and ∂G ∈ C2+α then,

without loss of generality, we can consider the homogeneous initial-boundary
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condition

(3) z(t, x) = 0 for (t, x) ∈ Γ.
Accordingly, in what follows we confine ourselves to considering the homo-
geneous problem (1), (3) in D.

3. Existence and uniqueness theorems

Theorem 1. Under the above assumptions, τ ∗ ∈ (0, T ] be sufficiently
small. Then there exists a unique solution z of the problem (1), (3) in the
domain Dτ , where 0 < τ < τ∗ ≤ T , and z ∈ C2+α

S (Dτ ) ∩ C1+β
S (Dτ ),

0 < α < β < 1.

Before going into the proof we introduce the Nemytskĭı operator and
prove some lemmas.

Let η ∈ CS(D). We define the Nemytskĭı operator F = (F1,F2, . . .) by
setting

Fi[η](t, x) := f i(t, x, η) = f i(t, x, η1(·, ·), η2(·, ·), . . .), i ∈ S.
Lemma 1. If the function f = (f1, f2, . . .) generating the Nemytskĭı op-

erator F satisfies conditions (Hf ) and (L), then

(a) F : C0+α
S (D)→ C0+α

S (D);
(b) F maps every bounded subset of C0+α

S (D) into a bounded set of
C0+α
S (D).

Proof. (a) is obvious. If now η ∈ C0+α
S (D) and ‖η‖0+α ≤M then

|Fi[η](t, x)| ≤ |Fi[η](t, x)− Fi[0](t, x)|+ |Fi[0](t, x)|
= |f i(t, x, η)− f i(t, x, 0)|+ |f i(t, x, 0)|
≤ L‖η‖0 + |f i(t, x, 0)| ≤ L‖η‖0+α + |f i(t, x, 0)|

and therefore
‖Fi[η]‖0 ≤ L‖η‖0+α +M0,

where M0 := ‖F[0]‖0.
From (Hf ) we have

|Fi[η](t, x)− Fi[η](t′, x′)| = |f i(t, x, η)− f i(t′, x′, η)|
≤ H(|t− t′|+ |x− x′|2)α/2,

where H = const > 0 is the Hölder coefficient of f i (i ∈ S).
By the definition of the norm in C0+α

S (D) we obtain

‖F[η]‖0+α ≤ LM +M0 +H.
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We consider the linear initial-boundary value problem

(4)
{
F i[γi](t, x) = δi(t, x) in D, i ∈ S,
γ(t, x) = g(t, x) on Γ,

where γ = (γ1, γ2, . . .) and δ = (δ1, δ2, . . .).

Lemma 2. If δ ∈ C0+α
S (D), the assumptions (Ha), (Hg) hold and

F i[gi](t, x) = δi(t, x) on ∂G ∈ C2+α (i ∈ S) then problem (4) has a
unique solution γ, and furthermore, γ ∈ C2+α

S (D). Moreover , the follow-
ing Schauder type (2 + α)-estimate holds:

(5) ‖γ‖2+α ≤ c(‖δ‖0+α + ‖g‖Γ2+α),

where c > 0 is a constant depending only on the constants µ, K1, α and the
geometry of the domain D.

Proof. Observe that (4) has the following property: the ith equation
depends on the ith unknown function only. Therefore, the theorem on the
existence and uniqueness of solution of the Fourier first initial-boundary
value problem for linear parabolic equations ([3], Theorems 6 and 7, p. 65)
and the definition of the norm in Ck+α

S (D) yield the statement of the lemma
immediately.

Now we consider the linear homogeneous initial-boundary value problem

(6)
{
F i[γi](t, x) = δi(t, x) in D, i ∈ S,
γ(t, x) = 0 on Γ .

Using the same arguments as previously, from A. Friedman’s theorem on
the a priori estimates of the (1 + β)-type for solutions of linear parabolic
equations ([3], Theorem 4 and its proof, pp. 191–201) we directly get the
following lemma.

Lemma 3. Assume that δ ∈ CS(D), ∂G ∈ C2+α∩C2−0 and (Ha) holds.
Let δ(t, x) vanish on ∂G and let γ be a solution of problem (6). Then, for
any 0 < β < 1, there exists a constant K > 0, depending only on β, µ, K1,
K2 and the geometry of the domain D, such that

(7) ‖γ‖1+β ≤ K‖δ‖0.
Moreover , there exists a constant K > 0 depending on the same parameters
as K such that

(8) ‖γ‖Dτ1+β ≤ Kτ (1−β)/2‖δ‖Dτ0

for 0 < τ ≤ T .

Proof of Theorem 1. Define

A = {u ∈ C1+α
S (Dτ ) : u(t, x) = 0 on Γ τ , 0 < τ ≤ T, 0 < α < 1}.

The set A is closed in C1+α
S (Dτ ).
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For u ∈ A we define a mapping T setting z = T[u], where z is the
(supposedly unique) solution of the linear initial-boundary value problem

(9)
{
F i[zi](t, x) = Fi[u](t, x) in Dτ , i ∈ S,
z(t, x) = 0 on Γ τ .

For u ∈ A by Lemma 1(a) we have F[u] ∈ C0+α
S (Dτ ). From Lemma 2

it follows that problem (9) has a unique solution z and z ∈ C2+α
S (Dτ ).

Moreover, by Lemma 3, z ∈ C1+β
S (Dτ ) for any β, 0 < β < 1. Therefore T

maps the set A into itself.
We now prove that T is a contraction in C1+β

S (Dτ ) for every β, 0 < α <
β < 1.

Let u, ũ ∈ A and z = T[u], z̃ = T[ũ]. According to the definition of T
we have

(10)
{
F i[zi − z̃i](t, x) = Fi[u](t, x)− Fi[ũ](t, x) in Dτ , i ∈ S,
z(t, x)− z̃(t, x) = 0 on Γ τ .

Applying Lemma 3 and condition (L) to the solution z − z̃ of problem
(10) we obtain

‖z − z̃‖Dτ1+β ≤ Kτ (1−β)/2‖F[u]− F[ũ]‖Dτ0

= Kτ (1−β)/2 sup
(t,x)∈Dτ
i∈S

|f i(t, x, u)− f i(t, x, ũ)|

≤ Kτ (1−β)/2L‖u− ũ‖Dτ0 ≤ KLτ (1−β)/2‖u− ũ‖Dτ1+β .

If we now assume that

θ := KLτ (1−β)/2 < 1,

or

(11) 0 < τ < τ∗ := min{(KL)2/(β−1), T},
then we get

‖z − z̃‖Dτ1+β ≤ θ‖u− ũ‖D
τ

1+β .

Hence the mapping T is a contraction in C1+β
S (Dτ ), where 0 < τ < τ∗ and

τ∗ defined by (11) is sufficiently small. Therefore by the Banach fixed point
theorem the mapping T has a unique fixed point z ∈ A. It is obvious that
z ∈ C1+β

S (Dτ ) ∩C2+α
S (Dτ ) and z is the unique solution of problem (1), (3)

in Dτ .

Remark 3. Applying (7) to the solution z − z̃ of (10) in D we obtain
the following inequality in the whole set D:

‖z − z̃‖1+β ≤ K‖F[u]− F[ũ]‖0 ≤ KL‖u− ũ‖0 ≤ KL‖u− ũ‖1+β .

Hence the mapping T is a contraction in C1+β
S (D) if KL < 1.
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Corollary 1. The solution of problem (1), (3) can be obtained by the
method of successive approximations.

Proof. Set

z0 = Φ, zn+1 = T[zn], n = 1, 2, . . . ,

where Φ ∈ C2+α
S (D) is an extension of g = 0 from Γ onto D.

It is easily seen that zn ∈ C2+α
S (Dτ ) ∩ C1+β

S (Dτ ) for n = 1, 2, . . .
From the Banach theorem the sequence {zn} is convergent in C1+β

S (Dτ )
to the fixed point z of the mapping T. Therefore

lim
n→∞

zin(t, x) = zi(t, x),

lim
n→∞

∂zin(t, x)
∂xj

=
∂zi(t, x)
∂xj

, j = 1, . . . ,m, i ∈ S,

uniformly in Dτ .

By Lemmas 2 and 1(b) the sequence {‖zn‖D
τ

2+α} is bounded. In fact, if
‖zn‖D

τ

2+α ≤M (where the constant M > 0 will be specified later), then

‖zn+1‖D
τ

2+α ≤ c‖F[zn]‖Dτ0+α ≤ c(LM +M0 +H).

If we now choose
M ≥ c(M0 +H)(1− cL)−1

and if cL < 1, we obtain
‖zn+1‖D

τ

2+α ≤M.

Therefore, if we additionally assume that

(12) cL < 1

then the sequence {zn} is bounded in C2+α
S (Dτ ).

Hence, in view of the Ascoli–Arzelà theorem, there is a subsequence {zn′}
such that

lim
n′→∞

∂2zin′(t, x)
∂xj∂xk

=
∂2zi(t, x)
∂xj∂xk

,

lim
n′→∞

∂zin′(t, x)
∂t

=
∂zi(t, x)

∂t
, j, k = 1, . . . ,m, i ∈ S,

uniformly in Dτ . It follows that z = z(t, x) is the desired solution of problem
(1), (3) in Dτ .

We remark that the constant c (from the estimate (5)) depends on the
geometry of the domain D. Therefore, due to assumptions (11) and (12),
the “height” of D, i.e., τ ∗, has to be an appropriately chosen, sufficiently
small number.
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Reçu par la Rédaction le 13.12.1999
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