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The rigidity theorem for Landsberg hypersurfaces
of a Minkowski space

by JIN TANG L1 (Xiamen)

Abstract. Let M™ be a compact Landsberg hypersurface of a Minkowski space
(V" F) with constant mean curvature H. Using the Gauss formula for the Chern con-
nection of Finsler submanifolds, we prove that if M is convex, then M is Riemannian with
constant curvature.

1. Introduction. Let M be an n-dimensional smooth manifold and
7w : TM — M be the natural projection from the tangent bundle. Let (x,Y)
be a point of TM with 2 € M, Y € T,M and let (z,Y?) be the local
coordinates on TM with Y = Y?0/0z"'. A Finsler metric on M is a function
F :TM — [0,00) with the following properties:

(i) Regularity: F'(z,Y) is smooth in TM \ 0.

(ii) Positive homogeneity: F(z,\Y) = AF(z,Y") for A > 0.

(iii) Strong convexity: The fundamental quadratic form g = g;;(x, Y )dz"

® da? is positive definite, where g;; = £9%(F?)/0Y*0Y7.

Then (M, F) is called a Finsler manifold. The simplest class of Finsler man-
ifolds is the Minkowski spaces. Let V' be an n-dimensional real vector space.
A Minkowski norm on V is a function F' : V' — [0,00) with the following
properties:

(i) Regularity: F' is smooth in V' \ {0}.
(ii) Positive homogeneity: F(AY) = AF(Y) for A\>0and Y € V.
(iii) Strong convexity: For any Y € V'\ {0}, the symmetric bilinear form

gy is positive definite, where gy (u,v) =3 a‘zgt [F2(Y +su+tv)]|

s=t=0"
Then (V, F) is called a Minkowski space. Let {e;} be an arbitrary basis for V.
From the above definition we find that

1 92
9ij(Y) = gy (ei,e5) = §W[F2(Y)]-

2010 Mathematics Subject Classification: Primary 53C60; Secondary 53C40.
Key words and phrases: Finsler manifold, Minkowski space, Landsberg hypersurfaces.

DOI: 10.4064/ap104-2-3 [153] © Instytut Matematyczny PAN, 2012



154 J. T. Li

We see that for any Finsler manifold (M, F), Fy(Y) := F(z,Y) is a Min-
kowski norm on T,M for every point x € M. On the other hand, for a
Minkowski space (V, F'), the Finsler metric F(z,Y) := F(Y): TV — [0,000)
is a function of Y € V only.

Riemannian submanifolds are important in modern differential geome-
try and extensively studied. For a compact hypersurface M of the Euclidean
space with constant mean curvature, Nomizu and Smyth [NS| proved that
if M is convex, then M is a Riemannian sphere. There has been remark-
able progress in recent studies on Finsler manifolds. For example, in [BRS],
D. Bao, C. Robles and Z. Shen have completely classified strongly convex
Randers metrics with constant flag curvature, and the geometry of Ingarden
spaces has been described by R. Miron [M].

In this paper, by using the Gauss formula for the Chern connection,
we study the Landsberg hypersurfaces of a Minkowski space (V**1 F) and
obtain the following

MAIN THEOREM 1.1. Let M™ be a compact Landsberg hypersurface of a
Minkowski space (V"1 F) with constant mean curvature H. If M is convex,
then M is Riemannian with constant curvature.

REMARK. The Main Theorem generalizes the result of Nomizu and
Smyth [NS| from the Riemannian to the Finsler case.

2. Preliminaries. Let (M™, F') be an n-dimensional Finsler manifold.
F inherits the Hilbert form, the fundamental tensor and the Cartan tensor
as follows:

oF | . A A
= -dz’ = g;i(x,Y)dz" 7
w ayzdx . gy = gij(2,Y)da' @ da?,
. ) FOg;;
) k 7
Ay = Aijkdx & dx? ® dx s Aijk = 28}/; .

It is well known that there exists a unique Chern connection V on 7*T' M
with V 8% = w] % and w] = ['Z.Jkdznk satisfying
d(dz®) — dz? A w;- = —da/ A w;- =0,
sy'k
F b
where 6Y? = dY* + N;dxj,N} = V;kYk — %A;kyﬁtYsYt and ’yji.k are the
formal Christoffel symbols of the second kind for g;;.
The curvature 2-forms of the Chern connection V are

dgij — gikwf - gjkwf = 2A;jk

k k l k !

where R;kl and P]?kl are the components of the hh-curvature tensor and the
hv-curvature tensor of the Chern connection, respectively.
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Let ¢ : (M™, F) — (Mner,F) be an isometric immersion from a Finsler
manifold to a Finsler manifold. We have [S]

F(Y) - F(@*(Y))v gy(U, V) - ggo*(Y)((P*(U)v (p*(V)),

Ay (U, VW) = Ay, (v (x(U); 04(V), 0 (W),

where Y,U,V,W € TM, and g and A are the fundamental tensor and the
Cartan tensor of M, respectively.

It can be seen from (2.1) that ¢*(w) = w, where @ is the Hilbert form
of M.

In the following we simplify Ay and gy to A and g, respectively.

When M is a Minkowski space, the formal Christoffel symbols 7%, of the

(2.1)

second kind for g,, must vanish and so N = WZC?C - %chﬁflf?d?f = 0;

then the horizontal part (¢.e;)" of p.e; = uz @3-4%% can be written as
; ) - 0 =B O » 0
NH _ . j, A _ .3, A _ . J A — .
(pee” =l s = e g = N 0 ) = el = s
which, together with A(-,-,Y) =0 and ¢,Y =Y, implies that
(2.2) Z(’ E Ve#’*f) = Z(, '7ﬁ90*6iz) =0,

where / = Y/F and { =Y /F.
In the following any vector U € T'M will be identified with the corre-
sponding vector ¢, (U) € TM and we will use the following convention:

1<ij,...<nm; n+1<a,B,...<n+p;
1<Au,...<n—-1; 1<a,b,...<n+p.

=N

Let ¢ : (M", F) — (M +p,F) be an isometric immersion. Take a g-
orthonormal frame {e,} for each fibre of 7*TM and let {w®} be its local
dual coframe such that {e;} is a frame field for each fibre of 7*T'M and w"
is the Hilbert form, where 7 : TM — M denotes the natural projection. Let
7 and w§ denote the Chern connection 1-forms of F' and F, respectively,

ie., Ve, = 9261, and Ve; = wfej, where V and V are the Chern connections
of M and M, respectively. We find that A(e;,ej,e,) = A(eq,€p,€n) = 0,
where e, = %% is the natural dual of the Hilbert form w”. Formula (2.2)
implies

LEMMA 2.1. Let ¢ : (M™, F) — (Mnﬂ),?) be an isometric immersion
from a Finsler manifold to a Minkowski space. Then A(-,-,V¢,en) = 0.

From w® = 0 and the structure equations of M, we have GJO»‘ Awl =0,
which implies that 67 = h%wi, h{; = h$;. We obtain [L1]

(2.3) w] = 0] — Wt
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where
(2.4) Wik = W% Aie — W3 Ajia — 13, A

- h Alk:SAS]a + h‘nnAZ]SASk‘Oc + h AgksAsm-
In particular,

(2.5) W' = O — he, Apiaw”.

7

Using the almost g-compatibility, we have
(2.6) 09, = (=h$ — 2k Ajag + 202, Appading)w’ — 24 0w
In particular, 0% = —h%w"

We quote the following propositions:

PROPOSITION 2.2 (Gauss equations, [L1, Theorem 3.1]). Lety : (M™, F)
— (Mn+p,f) be an isometric immersion from a Finsler manifold to a

Finsler manifold. Then
Pl = pj;@ + Wik — QWsucAjsA — 2h Ajras
Rl =Rl — hhS + hs ikl — Ytk
Jr!llsik!? — VairWisr — 2h3 h A]ag + 2R hnk;AJaﬁ
+ 2h% hB A]saAlsﬁ — 2h§hE Ao Arss — D AP
+ 1S A Phy + 1Pl — hoy P

lay

where “” and “|” denote the vertical and the horizontal covariant differen-

tials with respect to the Chern connection V respectively.

PrROPOSITION 2.3 (Codazzi equations, [L1, Theorem 3.2]). Let ¢ :
(M™ F) — (Wﬂ),F) be an isometric immersion from a Finsler manifold

to a Finsler manifold. Then
hijn = = Pij,
=104 =% =%
hiie — hiwy = — Rijre + hgjpikﬁ - hgkpijﬁ
h le] + hljwlzk: hgnzljﬁpz?;cl + hgnzlkﬁﬁz‘l
PrOPOSITION 2.4 ([L2, Theorem 4.4]). An isometric immersion ¢ :
(M, F) — (M, F) is minimal if and only if
| (V.H)aVsar =0
SM
for any vector V€ I'(TM)*, where
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(2.7) M= {Blei,ei) + Y 12C(ear e, Blei, Fen))

+ (vFeﬁé)(ei? €4, ea) + Qé(ﬁFegeiy €i, €a)]€a},

C=AJF, ef{ and denotes the horizontal part of e;.

DEFINITION 2.5. M™ is called of constant mean curvature if H = |H| =
constant.

PRrROPOSITION 2.6 ([L2, Theorem 5.2]). Let M™ be a hypersurface of a
Minkowski space AR (VL F). If M is Landsberg, then hgjlzjlnﬂ =0
and gpijk =0.

It follows from Lemma 2.1 that
(28) Z(a ) 6])“}%(62) + Z(a ) e>\)£l7>\m~ + Z(a ) 6n+1)hz;'kl = 0.
Combining (2.8) and Proposition 2.5 immediately yields

PropoOSITION 2.7. Let M” be a Landsberg hypersurface of a Minkowsk:
space (V"L F). Then B A ni1ne1 = B Apinsinga = 0.

ProposiTIiON 2.8. If M" is a L(mdsberg hypersurface of a Minkowsk:

hn+1

—n+1 .
space V with constant mean curvature, then ), = constant.

Proof. 1t follows from Propositions 2.5 and 2.6 and the first formula of
Proposition 2.3 that

117 j 15 A 15 1
hzn‘jAz’n—i-ln—‘,—lW] + R A w4 bt Am+1n+1;n+1hz;-F w! =0,

which gives
(2.9) hpt M A tna1a = 0.
It follows from (2.9) and Agpe;q = Aapae that
(2.10) (ﬁFega)(ei, €i,Entl)
= Ciint1A0n(Fefl) + Ciinpinabn (Feyl) = 0.
From Propositions 2.6 and 2.7 we can deduce that 6(?1761161, €iyentl)

= 0. Therefore by (2.10) and (2.7), we have H = B(e;,e;) = >, h;ﬁlenﬂ.
Since we are assuming that H is constant, it follows that ), h”Jr = con-
stant. =

. . +1
PROPOSITION 2.9. If a hypersurface M™ of a Minkowski space V' is
a Landsberg manifold, then
n+l _ 1n+l
I R Y NI N
n+1 n+1 n+1 n+1
hiites = i — Py Pikn — hig Pjpa + hmlk Ant1n41as

n+1 n+1 n+1
W = W+ T R 4 BT RS
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Proof. For a hypersurface (M", F) of a Minkowski space (V"1 F), we
have

(211) SRR+ R wn = dhit = ol — RO+ R

Differentiating (2.11), we obtain

(2.12) {hZJlrklll o 7hn+1Rzkz %h?jlpbskl - ’hZJrAankl

hﬂﬁrlhnﬂhnﬂAan il — 2h%+1hn+1hn+1Astn+1Atln+1}wk Aol
+1 1 pp +1 17
+ {5 — B A|k+hZuan+h” Po + B3 X — il Antintia
1pntlg 1
+ 2h”+ A A i a WP Awp + hZJ“)\ uwn Awh = 0.

We obtain the conclusion immediately from (2.12), Propositions 2.5 and 2.6,
and the first formula of Proposition 2.3. =

3. Landsberg hypersurfaces of a Minkowski space. Let M™ be a
Landsberg hypersurface with constant mean curvature of a Minkowski space

[74aas By Proposition 2.7, we have
(3.1) Z hitlw? + Z hpluy =2 Z R Agawy.
It follows from (3.1) that
(3.2) Z h%l =0 and Z hihh =2 Z A A
Differentiating the first formula of (3.2) we obtaln
Z h:;;ikw + Z hZT;lA n =2 Z h?lelAlkAwnv
ik
which implies that
(3.3) > R =0.
i

DEFINITION 3.1. M is called convex if the second fundamental form
h?* L of M is positive semi-definite.

Define §Y? =dY* + N ;dacj . The pull-back of the Sasaki metric gijdxi ®

dz? +g;;6Y ' ®3Y7 from TM \ {0} to the sphere bundle SM is a Riemannian
metric

G = gijdr’ @ dr? + Spwl @ Wl
We now quote two lemmas:
LEMMA 3.2 ([Mol Lemma 2.2]). For X =3, z,w' € I'(7*T*M), div; X
=22 Tiji + 2\ Tl
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LeEMMA 3.3 ([N, Theorem 1]). All Landsberg spaces of nonzero constant
flag curvature are Riemannian.

Proof of Main Theorem. According to Propositions 2.2, 2.3, and 2.6-2.8,

(3-4) i = RO

(3.5) hihl =0,

(36) hijie = hil

(3.7) h:?'r]j'l h:ﬁrlllk + h;l;rlR R 5

Let w =dS = Sjw’ '+ S,w!. Then w is a global section on 7*T*M. By (3.5),
ie., S; =0, and Lemma 3.1, we have

: _ +1)2 +17n+1
(3.8) divgw =2 ( (R +2) he
0,4,k 1,5,k
It can be seen from (3.3)—(3.8) that
(3.9) divsw
o) Lt 1 1
@7, k 1,5,k
= QZ thJJ'rkl +92 Z {hn+1hn+1hn+1hn+1 (h%Jrthrl)Z}‘
1,5,k 1,5,k,l

Let A; be the eigenvalues of the second fundamental tensor h?jﬂ of M.
It is easy to see from (3.9) that

(3.10) %div§w => hih? + 5 Z (i —\))
3,9,k
Since M is convex, i.e., \;A; > 0 for all 4, j, the right hand side of (3.10)
is nonnegative. Because of the compactness of M, we infer that A% is
constant and h?fl = 0 for all i # j on M. Differentiating h"! = 0 yields

Rl = prtl for all a = 1,...,n — 1, i.e., A% = H for all i. It is easy to
see from (3.4) that
(3.11) Rl = H(0udj — dixdj1).-

On the other hand, let x = Z?9/9x* be the position vector field of
the Minkowski space V™! with respect to the origin. By a simple direct
computation, we get Vyzr = Z for all Z = 2“8/85" on V" which, to-
gether with Lemma 2.1, implies that V. 2?2 = 2(e;,x) and V,{e;,x) =
9](ez)<e], x) + h”+1<en+1, x) + 1. As M is compact, there exists a point
P € M such that h™(P) > 0 for all i, so H > 0. Thus by (3.11), M is
a Landsberg space with nonzero constant flag curvature H, which together
with Lemma 3.2 finishes the proof of Main Theorem.
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