The Bergman projection in spaces of entire functions

by Jocelyn Gonessa (Bangui) and El Hassan Youssfi (Marseille)

Abstract

We establish L^{p}-estimates for the weighted Bergman projection on a nonsingular cone. We apply these results to the weighted Fock space with respect to the minimal norm in \mathbb{C}^{n}.

1. Introduction and main results. Let $n \geq 2$ and consider the nonsingular cone

$$
\mathbb{H}:=\left\{z \in \mathbb{C}^{n+1}: z_{1}^{2}+\cdots+z_{n+1}^{2}=0, z \neq 0\right\}
$$

This is the orbit of the vector $(1, i, 0, \ldots, 0)$ under the $S O(n+1, \mathbb{C})$-action on \mathbb{C}^{n+1}. It is well-known that \mathbb{H} can be identified with the cotangent bundle of the unit sphere \mathbb{S}^{n} in the n-dimensional sphere in \mathbb{R}^{n+1} minus its zero section. It was proved in [OPY that there is a unique (up to a multiplicative constant) $S O(n+1, \mathbb{C})$-invariant holomorphic form α on \mathbb{H}. The restriction of this form to $\mathbb{H} \cap(\mathbb{C} \backslash\{0\})^{n+1}$ is given by

$$
\alpha(z)=\sum_{j=1}^{n+1} \frac{(-1)^{j-1}}{z_{j}} d z_{1} \wedge \cdots \wedge \widehat{d z_{j}} \wedge \cdots \wedge d z_{n+1}
$$

For any $t>0$ we consider the Gaussian volume form ω_{t} defined on \mathbb{H} by

$$
\omega_{t}(z)=\frac{2 t^{n-1}}{(n-2)!m_{n}} e^{-t|z|^{2}} \alpha(z) \wedge \bar{\alpha}(z), \quad z \in \mathbb{H}
$$

where

$$
m_{n}:=2(n-1) \int_{\{z \in \mathbb{H}:|z|<1\}} \alpha(z) \wedge \bar{\alpha}(z) .
$$

For each $s>0$ and $1 \leq p<\infty$, let $L^{p}\left(\mathbb{H}, \omega_{s}\right)$ denote the Banach space of all functions on \mathbb{H} which are L^{p}-integrable with respect to the volume form

[^0]ω_{s} equipped with the norm
$$
\|f\|_{L^{p}\left(\mathbb{H}, \omega_{s}\right)}=\left(\int_{\mathbb{H}}|f(z)|^{p} \omega_{s}(z)\right)^{1 / p}, \quad f \in L^{p}\left(\mathbb{H}, \omega_{s}\right)
$$

The weighted Bergman space $\mathcal{A}_{s}^{p}(\mathbb{H})$ is the closed subspace of $L^{p}\left(\mathbb{H}, \omega_{s}\right)$ consisting of holomorphic functions. When $p=2$, the orthogonal projection P_{s} from $L^{2}\left(\mathbb{H}, \omega_{s}\right)$ onto $\mathcal{A}_{s}^{2}(\mathbb{H})$ is called the weighted Bergman projection. It is well-known that P_{s} is the integral operator on $L^{2}\left(\mathbb{H}, \omega_{s}\right)$ given by the formula

$$
P_{s} f(z)=\int_{\mathbb{H}} K_{s}(z, w) f(w) \omega_{s}(w)
$$

where $K_{s}(\cdot, \cdot)$ is the reproducing kernel on $\mathcal{A}_{s}^{2}(\mathbb{H})$. This is the weighted Bergman kernel. In the following we denote by T_{s} the integral operator defined by

$$
T_{s} f(z)=\int_{\mathbb{H}}\left|K_{s}(z, w)\right| f(w) \omega_{s}(w)
$$

Next, let $\mathcal{F}_{p, s}(\mathbb{H})$ denote the linear span of the functions

$$
f_{k, a}(z):=z_{n+1}^{2 k+1} e^{-a|z|^{2}}, \quad k \in \mathbb{N}, a>0
$$

equipped with the norm $\|\cdot\|_{L^{p}\left(\mathbb{H}, \omega_{s}\right)}$.
Our first main result in this paper is the following:
Theorem A. Suppose that $t, s>0$ and $p \geq 1$. Then the following conditions are equivalent:
(a) T_{t} is bounded on $L^{p}\left(\mathbb{H}, \omega_{s}\right)$.
(b) P_{t} is bounded on $L^{p}\left(\mathbb{H}, \omega_{s}\right)$.
(c) P_{t} is bounded on $\mathcal{F}_{p, s}(\mathbb{H})$.
(d) $p t=2 s$.

To give some applications, we recall that the minimal norm in \mathbb{C}^{n} is given by

$$
N_{*}(z)=\sqrt{|z|^{2}+|z \bullet z|},
$$

where $z \bullet w=z_{1} w_{1}+\cdots+z_{n} w_{n}$ for $z=\left(z_{1}, \ldots, z_{n}\right), w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{C}^{n}$. This norm was shown to be of interest in the study of several problems related to proper holomorphic mappings and the Bergman kernel; see [HP], [OY], OPY, MY and [M].

For each $s>0$, let $d V_{s}$ denote the measure on \mathbb{C}^{n} with density $e^{-s N_{*}^{2}}$ with respect to the Lebesgue measure. Precisely,

$$
d V_{s}(z):=e^{-s\left(|z|^{2}+|z \bullet z|\right)} d V(z)
$$

where $d V(z)$ denotes the Lebesgue measure on \mathbb{C}^{n} normalized so that the volume of the unit ball is equal to one. For any $1 \leq p<\infty$, the Fock
space $\mathcal{A}_{s}^{p}\left(\mathbb{C}^{n}\right)$ with respect to the minimal norm in \mathbb{C}^{n} consists of all entire functions f with the following property:

$$
\begin{equation*}
\|f\|_{p, s}^{p}:=\int_{\mathbb{C}^{n}}|f(z)|^{p}|z \bullet z|^{(p-2) / 2} d V_{s}(z)<\infty \tag{1.1}
\end{equation*}
$$

We let $L_{s}^{p}\left(\mathbb{C}^{n}\right)$ denote the space of all measurable functions f in \mathbb{C}^{n} satisfying (1.1). Using the technique developed in the proof of part (1) of Lemma 4.1 in [MY], it can be seen that the Fock space $\mathcal{A}_{s}^{p}\left(\mathbb{C}^{n}\right)$ is a closed subspace of $L_{s}^{p}\left(\mathbb{C}^{n}\right)$. In addition, the arguments used in the proof of part (2) of the latter lemma show that the linear operator U_{0} defined from $L_{s}^{p}\left(\mathbb{C}^{n}\right)$ into $L^{p}\left(\mathbb{H}, \omega_{s}\right)$ by

$$
U_{0}(f)(z):=z_{n+1} f\left(z_{1}, \ldots, z_{n}\right), \quad\left(z_{1}, \ldots, z_{n+1}\right) \in \mathbb{H}
$$

is an isometry. More precisely, we have

$$
\int_{\mathbb{H}}\left|U_{0} f(z)\right|^{p} \omega_{s}(z)=\frac{4(n+1)^{2} s^{n-1}}{(n-2)!m_{n}} \int_{\mathbb{C}^{n}}|f(z)|^{p}|w \bullet w|^{(p-2) / 2} d V_{s}(z)
$$

In addition, the image $\mathcal{E}_{s}^{p}(\mathbb{H})$ of $\mathcal{A}_{s}^{p}\left(\mathbb{C}^{n}\right)$ under U_{0} is a closed proper subspace of $\mathcal{A}_{s}^{p}(\mathbb{H})$, and $\left(\frac{(n-2)!m_{n}}{4(n+1)^{2} s^{n-1}}\right)^{1 / p} U_{0}$ is a unitary operator from $\mathcal{A}_{s}^{p}\left(\mathbb{C}^{n}\right)$ onto $\mathcal{E}_{s}^{p}(\mathbb{H})$. In particular, $\mathcal{A}_{s}^{p}\left(\mathbb{C}^{n}\right)$ is a Banach space.

When $p=2$, the natural inner product turns $\mathcal{A}_{s}^{2}\left(\mathbb{C}^{n}\right)$ into a Hilbert space which has a reproducing kernel $\widetilde{K}_{s}(z, w)$. We denote by \widetilde{P}_{s} the corresponding Bergman projection. We also let \widetilde{T}_{s} be the integral operator on $L_{s}^{p}\left(\mathbb{C}^{n}\right)$ associated to the kernel $\left|\widetilde{K}_{s}(z, w)\right|$.

We also consider the vector space $\widetilde{\mathcal{F}}_{p, s}\left(\mathbb{C}^{n}\right)$ spanned by the functions

$$
\widetilde{f}_{k, a}(z):=(z \bullet z)^{k} e^{-a\left(|z|^{2}+|z \bullet z|\right)}, \quad k \in \mathbb{N}, a>0
$$

and equipped with the norm $\|\cdot\|_{p, s}$.
Our second main result is the following:
Theorem B. Suppose that $t, s>0$ and $p \geq 1$. Then the following are equivalent:
(a) \widetilde{T}_{t} is bounded on $L_{s}^{p}\left(\mathbb{C}^{n}\right)$.
(b) \widetilde{P}_{t} is bounded on $L_{s}^{p}\left(\mathbb{C}^{n}\right)$.
(c) \widetilde{P}_{t} is bounded on $\widetilde{\mathcal{F}}_{p, s}\left(\mathbb{C}^{n}\right)$.
(d) $p t=2 s$.

In that case the operators P_{t} and \widetilde{P}_{t} have the same norm given by

$$
\left\|\widetilde{P}_{t}\right\|_{p}=\left\|P_{t}\right\|_{p}=2^{n-1} \sqrt{2 e(n-1)!(n-1)} \quad \text { when } p t=2 s
$$

2. Preparatory results. The orthogonal group $O(n+1, \mathbb{R})$ acts transitively on the boundary \mathbb{X} of the unit ball in \mathbb{H}. Thus there is a unique
$O(n+1, \mathbb{R})$-invariant probability measure μ on \mathbb{X}. This measure is induced by the Haar probability measure of $O(n+1, \mathbb{R})$. We will need the following lemma which was established in MY, Lemma 2.1, p. 506].

Lemma 2.1. For any C^{∞}-function f on \mathbb{H}, we have

$$
\int_{\mathbb{H}} f(z) \alpha(z) \wedge \bar{\alpha}(z)=m_{n} \int_{0}^{\infty} r^{2 n-3} \int_{\mathbb{X}} f(r \xi) d \mu(\xi) d r
$$

provided that the integrals make sense.
We also need the following proposition.
Proposition 2.2. The Bergman kernel of the weighted Bergman space $\mathcal{A}_{s}^{2}(\mathbb{H})$ is given by the formula

$$
K_{s}(z, w)=\left(1+\frac{2 s}{n-1} z \bullet \bar{w}\right) e^{s z \bullet \bar{w}}
$$

for all z and w in \mathbb{H}.
Proof. We only need to prove that the operator P_{s} induced by K_{s} reproduces the functions of $\mathcal{A}_{s}^{2}(\mathbb{H})$. Let $f \in \mathcal{A}_{s}^{2}(\mathbb{H})$. Then it follows from the proof of Theorem 3.2 in $M Y$ that any function $f \in \mathcal{A}_{s}^{2}(\mathbb{H})$ can be written in the form $f=\sum_{k=0}^{n} p_{k}$ where p_{k} is a member of the space \mathcal{P}_{k} of homogeneous polynomials of degree k on \mathbb{H}. If we denote by $\langle\cdot, \cdot\rangle_{\mathbb{H}}$ the scalar product of $L^{p}\left(\mathbb{H}, \omega_{s}\right)$ then by binomial series expansion and Lemma 2.1 it follows that, for all $z \in \mathbb{H}$,

$$
\begin{aligned}
\left\langle f, K_{s}(\cdot, z)\right\rangle_{\mathbb{H}} & =\int_{\mathbb{H}} f(w)\left(1+\frac{2 s}{n-1} z \bullet \bar{w}\right) e^{s z \bullet \bar{w}} \omega_{s}(w) \\
& =\sum_{k, l=0}^{\infty} \frac{(2 l+n-1) s^{l}}{l!(n-1)} \int_{\mathbb{H}} p_{k}(w)(z \bullet \bar{w})^{l} \omega_{s}(w) \\
& =\sum_{k, l=0}^{\infty} a_{k, l}(s) \int_{0}^{\infty} r^{k+l+2 n-3} e^{-s r^{2}} d r \int_{\mathbb{X}} p_{k}(\xi)(z \bullet \bar{\xi})^{l} d \mu(\xi)
\end{aligned}
$$

where

$$
a_{k, l}(s)=\frac{2(2 l+n-1) s^{l+n-1}}{l!(n-2)!(n-1)}
$$

On the other hand, by (2.5) in [MY] we see that

$$
\int_{\mathbb{X}} p_{k}(\xi)(z \bullet \bar{\xi})^{l} d \mu(\xi)= \begin{cases}\frac{k!(n-1)!}{(k+n-2)!(2 k+n-1)} p_{k}(z) & \text { if } l=k \\ 0 & \text { else }\end{cases}
$$

Finally, an easy computation shows that

$$
\begin{aligned}
\left\langle f, K_{s}(\cdot, z)\right\rangle_{\mathbb{H}} & =\sum_{k=0}^{\infty} \frac{2 s^{k+n-1} p_{k}(z)}{(k+n-2)!} \int_{0}^{\infty} r^{2(k+n-2)} e^{-s r^{2}} r d r \\
& =\sum_{k=0}^{\infty} \frac{p_{k}(z)}{(k+n-2)!} \int_{0}^{\infty} u^{k+n-2} e^{-u} d u=\sum_{k=0}^{\infty} p_{k}(z)=f(z)
\end{aligned}
$$

Lemma 2.3. Suppose that $\beta \geq 0$. Then

$$
\int_{\mathbb{H}}\left|z_{n+1}\right|^{2 \beta} e^{-\gamma|z|^{2}} \alpha(z) \wedge \bar{\alpha}(z)=\frac{m_{n} \pi^{(n+1) / 2} \Gamma(\beta+n-1) \Gamma(\beta+1)}{2^{\beta} \gamma^{\beta+n-1} \Gamma(\beta+(n+1) / 2)}
$$

for all $\gamma>0$.
Proof. We observe by Lemma 2.1 that

$$
\begin{aligned}
\int_{\mathbb{H}}\left|z_{n+1}\right|^{2 \beta} e^{-\gamma|z|^{2}} \alpha(z) \wedge \bar{\alpha}(z) & =m_{n} \int_{0}^{\infty} r^{2 \beta+2 n-3} e^{-\gamma r^{2}} d r \int_{\mathbb{X}}\left|\xi_{n+1}\right|^{2 \beta} d \mu(\xi) \\
& =m_{n} \frac{\Gamma(\beta+n-1)}{2 \gamma^{\beta+n-1}} \int_{\mathbb{X}}\left|\xi_{n+1}\right|^{2 \beta} d \mu(\xi)
\end{aligned}
$$

Let $\sigma=\sigma_{n}$ denote the rotation invariant measure on \mathbb{S}^{n}. For each $\eta \in \mathbb{S}^{n}$, there exists a rotation $U \in O(n+1, \mathbb{R})$ such that $U(\eta)=(0, \ldots, 0,1)$. Therefore,

$$
\xi_{n+1}=(0, \ldots, 0,1) \bullet \xi=\xi \bullet U(\eta)
$$

so that by the $O(n+1)$-invariance on \mathbb{X}, we obtain

$$
\begin{aligned}
\int_{\mathbb{X}}\left|\xi_{n+1}\right|^{2 \beta} d \mu(\xi) & =\int_{\mathbb{X}}|\xi \bullet U(\eta)|^{2 \beta} d \mu(\xi)=\int_{\mathbb{X}}\left|U^{-1}(\xi) \bullet \eta\right|^{2 \beta} d \mu(\xi) \\
& =\int_{\mathbb{X}}|\xi \bullet \eta|^{2 \beta} d \mu(\xi)
\end{aligned}
$$

Integrating over \mathbb{S}^{n} with respect to the variable η and the measure σ yields

$$
\begin{aligned}
\int_{\mathbb{X}}\left|\xi_{n+1}\right|^{2 \beta} d \mu(\xi) & =\int_{\mathbb{S}^{n}} \int_{\mathbb{X}}|\xi \bullet \eta|^{2 \beta} d \mu(\xi) d \sigma(\eta)=\int_{\mathbb{X}} \int_{\mathbb{S}^{n}}|\xi \bullet \eta|^{2 \beta} d \sigma(\eta) d \mu(\xi) \\
& =2^{-\beta} \int_{\mathbb{S}^{n}}\left(\eta_{n+1}^{2}+\eta_{n}^{2}\right)^{\beta} d \sigma(\eta),
\end{aligned}
$$

where the last equality holds due to the rotation invariance of σ because each $\xi \in \mathbb{X}$ has a unique decomposition $\xi=x+i y$ with $x, y \in \mathbb{R}^{n+1}$, $x \bullet x=y \bullet y=1 / 2$ and $x \bullet y=0$. It is also clear that if β is a nonnegative integer, then

$$
\int_{\mathbb{S}^{n}}\left(\eta_{n+1}^{2}+\eta_{n}^{2}\right)^{\beta} d \sigma(\eta)=\frac{2 \pi^{(n+1) / 2} \Gamma(\beta+1)}{\Gamma(\beta+(n+1) / 2)}
$$

The latter formula holds for all $\beta \geq 0$ due to the uniqueness theorem for bounded analytic functions on the half-plane $\operatorname{Re} \beta>0$. Therefore,

$$
\int_{\mathbb{X}}\left|\xi_{n+1}\right|^{2 \beta} d \mu(\xi)=2^{-\beta} \int_{\mathbb{S}^{n}}\left(\eta_{n+1}^{2}+\eta_{n}^{2}\right)^{\beta} d \sigma(\eta)=\frac{\pi^{(n+1) / 2} \Gamma(\beta+1)}{2^{\beta-1} \Gamma(\beta+(n+1) / 2)} .
$$

Finally

$$
\int_{\mathbb{H}}\left|z_{n+1}\right|^{2 \beta} e^{-\gamma|z|^{2}} \alpha(z) \wedge \bar{\alpha}(z)=\frac{m_{n} \pi^{(n+1) / 2} \Gamma(\beta+n-1) \Gamma(\beta+1)}{2^{\beta} \gamma^{\beta+n-1} \Gamma(\beta+(n+1) / 2)}
$$

for all real numbers $\beta \geq 0$.
Now, we study necessary conditions for the boundedness of P_{t} and T_{t} on $L^{p}\left(\mathbb{H}, \omega_{s}\right)$. We first observe that P_{t} is the integral operator

$$
P_{t} f(z)=\int_{\mathbb{H}} H_{t, s}(z, \xi) f(\xi) \omega_{s}(\xi)
$$

where $H_{t, s}(z, \xi)$ is the hermitian kernel given by

$$
H_{t, s}(z, \xi)=(t / s)^{n-1} e^{(s-t)|z|^{2}} K_{t}(z, \xi) .
$$

The operator T_{t} is also an integral operator with kernel $\left|H_{s, t}(z, \xi)\right|$.
Lemma 2.4. Assume that $p \geq 1$. If P_{t} is bounded on $L^{p}\left(\mathbb{H}, \omega_{s}\right)$, then $p t \leq 2 s$.

Proof. Let $a>0$ be a real number and k be a positive integer. Consider the function

$$
f_{k, a}(z)=z_{n+1}^{2 k+1} e^{-a|z|^{2}}, \quad z \in \mathbb{H} .
$$

Then Lemma 2.3 implies that

$$
\int_{\mathbb{H}}\left|f_{k, a}(z)\right|^{p} \omega_{s}(z)=C_{k, p} \frac{s^{n-1}}{(a p+s)^{k p+p / 2+n-1}}
$$

where

$$
\begin{equation*}
C_{k, p}:=\frac{2 \pi^{(n+1) / 2} \Gamma(k p+p / 2+n-1) \Gamma(\beta+1)}{2^{k p+p / 2}(n-2)!\Gamma(\beta+(n+1) / 2)} . \tag{2.2}
\end{equation*}
$$

Hence $f_{k, a} \in L^{p}\left(\mathbb{H}, \omega_{s}\right)$. By the reproducing formula we see that

$$
\begin{aligned}
P_{t} f_{k, a}(z) & =\frac{t^{n-1}}{(t+a)^{n-1}} \int_{\mathbb{H}} K_{t+a}\left(\frac{t}{t+a} z, w\right) \xi_{n+1}^{2 k+1} \omega_{t+a}(\xi) \\
& =\left(\frac{t}{t+a}\right)^{2 k+n} z_{n+1}^{2 k+1} .
\end{aligned}
$$

It follows again from Lemma 2.3 that

$$
\int_{\mathbb{H}}\left|P_{t} f_{k, a}(z)\right|^{p} \omega_{s}(z)=C_{k, p} \frac{1}{s^{k p+p / 2}}\left(\frac{t}{t+a}\right)^{2 k p+p n} .
$$

Now, the assumption that P_{t} is bounded on $L^{p}\left(\mathbb{H}, \omega_{s}\right)$ implies that there exists a positive constant C, not depending on a or k, such that

$$
\int_{\mathbb{H}}\left|P_{t}\left(f_{k, a}\right)(z)\right|^{p} \omega_{s}(z) \leq C \int_{\mathbb{H}}\left|f_{k, a}(z)\right|^{p} \omega_{s}(z) .
$$

This leads to

$$
\left(\frac{t}{t+a}\right)^{p(2 k+n)} \leq C\left(\frac{s}{s+a p}\right)^{k p+p / 2+n-1}
$$

from which it follows that

$$
\left(\frac{t}{t+a}\right)^{2 p+n p / k} \leq C^{1 / k}\left(\frac{s}{s+a p}\right)^{p+p / 2 k+(n-1) / k}
$$

Taking the limit as $k \rightarrow \infty$ we see that

$$
\left(\frac{t}{t+a}\right)^{2} \leq \frac{s}{s+a p}
$$

which in turn implies that $p t^{2} \leq 2 s t+s a$. Letting $a \rightarrow 0$ yields $p t \leq 2 s$.
In the following we need explicit formulas for the adjoint operators of P_{t} and T_{t} with respect to the integral pairing

$$
\langle f, g\rangle_{s}=\int_{\mathbb{H}} f(z) \overline{g(z)} \omega_{s}(z) .
$$

Throughout the rest of this section, if $1 \leq p \leq \infty$ we let $q=p /(p-1)$ with the understanding that $q=\infty$ when $p=1$ and $q=1$ when $p=\infty$. Indeed, we have the following.

LEmma 2.5. Suppose T_{t} is bounded on $L^{p}\left(\mathbb{H}, \omega_{s}\right)$. Then the adjoint operators of P_{t} and T_{t} with respect to the pairing $\langle\cdot, \cdot\rangle_{s}$ are given by

$$
\begin{aligned}
P_{t}^{*} f(z) & =\left(\frac{t}{s}\right)^{n-1} e^{(s-t)|z|^{2}} \int_{\mathbb{H}} K_{t}(z, w) f(w) \omega_{s}(w), \\
T_{t}^{*} f(z) & =\left(\frac{t}{s}\right)^{n-1} e^{(s-t)|z|^{2}} \int_{\mathbb{H}}\left|K_{t}(z, w)\right| f(w) \omega_{s}(w) .
\end{aligned}
$$

Furthermore, both T_{t}^{*} and P_{t}^{*} are bounded on $L^{q}\left(\mathbb{H}, \omega_{s}\right)$, where $1 / p+1 / q=1$.
The proof of the above lemma follows from classical functional analysis arguments (see [HS]).

Lemma 2.6. Suppose $1<p<\infty$ and P_{t} is bounded on $L^{p}\left(\mathbb{H}, \omega_{s}\right)$. Then $p t>s$.

Proof. Suppose that $p>1$ and P_{t} is bounded on $L^{p}\left(\mathbb{H}, \omega_{s}\right)$. Then P_{t}^{*} is bounded on $L^{q}\left(\mathbb{H}, \omega_{s}\right)$ where $q=p /(p-1)$. Note that the constant function $f=z_{n+1}$ belongs to $L^{q}\left(\mathbb{H}, \omega_{s}\right)$, and

$$
P_{t}^{*} f(z)=(t / s)^{n} e^{(s-t)|z|^{2}} z_{n+1}
$$

is in $L^{q}\left(\mathbb{H}, \omega_{s}\right)$. By Lemma 2.1 it easily follows that

$$
q(s-t)<s .
$$

Thus $p t>s$.
Lemma 2.7. Suppose that $1<p<2$ and P_{t} is bounded on $L^{p}\left(\mathbb{H}, \omega_{s}\right)$. Then $p t=2 s$.

Proof. Once again, consider the function

$$
f_{k, a}(z)=z_{n+1}^{2 k+1} e^{-a|z|^{2}}, \quad z \in \mathbb{H}
$$

where $a>0$ and k is a positive integer. Then from Lemma 2.5 and the reproducing formula it follows that

$$
P_{t}^{*} f_{k, a}(z)=\left(\frac{t}{s+a}\right)^{2 k+n} e^{(s-t)|z|^{2}} z_{n+1}^{2 k+1} .
$$

On other hand, by Lemma 2.4 and (2.2), we have seen that

$$
\int_{\mathbb{H}}\left|f_{k, a}(z)\right|^{q} \omega_{s}(z)=C_{k, q} \frac{s^{n-1}}{(a q+s)^{k q+q / 2+n-1}}
$$

and

$$
\int_{\mathbb{H}}\left|P_{t}^{*} f_{k, a}(z)\right|^{q} \omega_{s}(z)=C_{k, q} \frac{s^{n-1}}{(s-q(s-t))^{k q+q / 2+n-1}}\left(\frac{t}{s+a}\right)^{q(2 k+n)} .
$$

If P_{t} is bounded on $L^{p}\left(\mathbb{H}, \omega_{s}\right)$, then P_{t}^{*} is bounded on $L^{q}\left(\mathbb{H}, \omega_{s}\right)$. So, there exists a positive constant C, not depending on a and k, such that

$$
\int_{\mathbb{H}}\left|P_{t}^{*} f_{k, a}(z)\right|^{q} \omega_{s}(z) \leq C \int_{\mathbb{H}}\left|f_{k, a}(z)\right|^{q} \omega_{s}(z) .
$$

It follows that

$$
\left(\frac{t}{s+a}\right)^{q(2 k+n)} \leq C\left(\frac{s-q(s-t)}{s+a q}\right)^{k q+q / 2+n-1}
$$

Now arguing as in the proof of Lemma 2.4, and in the proof of Lemma 9 in (DZ], we see that Lemma 2.7 follows.

Lemma 2.8. Suppose that $2<p<\infty$ and P_{t} is bounded on $L^{p}\left(\mathbb{H}, \omega_{s}\right)$. Then $p t=2 s$.

Proof. From Lemma 2.6 we have $s-q(s-t)>0$. For each $f \in L^{q}\left(\mathbb{H}, \omega_{s}\right)$, let

$$
f(z)=g(z) e^{(s-t)|z|^{2}}
$$

with $g \in L^{q}\left(\mathbb{H}, \omega_{s-q(s-t)}\right)$. By assumption, there exists a positive constant C such that

$$
\int_{\mathbb{H}}\left|P_{t}^{*} g(z)\right|^{q} \omega_{s-q(s-t)}(z) \leq C \int_{\mathbb{H}}|g(z)|^{q} \omega_{s-q(s-t)}(z)
$$

for all $g \in L^{q}\left(\mathbb{H}, \omega_{s-q(s-t)}\right)$. Since $1<q<2$, Lemma 2.7 yields

$$
q t=2(s-q(s-t))
$$

showing that $p t=2 s$.
Lemma 2.9. Suppose $s>0$. Then there exist three positive constants C, C^{\prime} and $C^{\prime \prime}$ such that

$$
C \frac{e^{s|z|^{2} / 4}}{1+s|z|^{2}}-C^{\prime} \leq \int_{\mathbb{H}}\left|K_{s}(z, w)\right| \omega_{s}(w) \leq C^{\prime \prime} e^{s|z|^{2} / 4}
$$

for all $z \in \mathbb{H}$.
Proof. Let

$$
\begin{aligned}
I_{s}(z) & :=\int_{\mathbb{H}}\left|\left(1+\frac{2 s}{n-1} z \bullet \bar{w}\right)^{2} e^{s z \bullet \bar{w}}\right| \omega_{s}(w), \\
J_{s}(z) & :=\int_{\mathbb{H}}\left|e^{s z \bullet \bar{w}}\right| \omega_{s}(w)
\end{aligned}
$$

A little computing shows that

$$
\begin{aligned}
J_{s}(z) & =\int_{\mathbb{H}}\left|e^{\frac{s}{2} z \bullet \bar{w}}\right|^{2} \omega_{s}(w)=\int_{\mathbb{H}}\left|\sum_{k=0}^{\infty} \frac{s^{k}}{2^{k} k!}(z \bullet \bar{w})^{k}\right|^{2} \omega_{s}(w) \\
& =\sum_{k=0}^{\infty} \frac{s^{2 k+n-1}}{\left(2^{k} k!\right)^{2}} \int_{0}^{\infty} r^{2 k+2 n-3} e^{-s r^{2}} d r \int_{\mathbb{X}}|z \bullet \bar{\xi}|^{2 k} d \mu(\xi) \\
& =\frac{1}{2} \sum_{k=0}^{\infty} \frac{s^{k}}{\left(2^{k} k!\right)^{2}}(k+n-2)!\int_{\mathbb{X}}|z \bullet \bar{\xi}|^{2 k} d \mu(\xi) \\
& =\frac{(n-1)!}{2} \sum_{k=0}^{\infty} \frac{1}{k!(2 k+n-1)}\left(\frac{s|z|^{2}}{4}\right)^{k} \simeq \frac{e^{s|z|^{2} / 4}}{1+s|z|^{2}} .
\end{aligned}
$$

More precisely, by easy estimates we have

$$
\frac{(n-1)!}{2(n+1)} \frac{e^{s|z|^{2} / 4}}{1+s|z|^{2}}-\frac{1}{2}(n-2)!e^{n-1} \leq J_{s}(z) \leq 2 e(n-1)!\frac{e^{s|z|^{2} / 4}}{1+s|z|^{2}}
$$

On the other hand,

$$
\begin{aligned}
I_{s}(z)= & \int_{\mathbb{H}}\left|\left(1+\frac{2 s}{n-1} z \bullet \bar{w}\right) e^{\frac{s}{2} z \bullet \bar{w}}\right|^{2} \omega_{s}(w) \\
= & \frac{1}{(n-1)^{2}} \int_{\mathbb{H}}\left|\sum_{k=0}^{\infty} \frac{n-1+2 k}{k!}\left(\frac{s}{2} z \bullet \bar{w}\right)^{k}\right|^{2} \omega_{s}(w) \\
= & \frac{1}{(n-1)^{2}} \sum_{k=0}^{\infty} \frac{(2 k+n-1)^{2} s^{2 k+n-1}}{\left(2^{k} k!\right)^{2}} \\
& \times \int_{0}^{\infty} r^{2 k+2 n-3} e^{-s r^{2}} d r \int_{\mathbb{X}}|z \bullet \bar{\xi}|^{2 k} d \mu(\xi) \\
= & \frac{1}{2(n-1)^{2}} \sum_{k=0}^{\infty} \frac{(2 k+n-1)^{2} s^{k}}{\left(2^{k} k!\right)^{2}}(k+n-2)!\int_{\mathbb{X}}|z \bullet \bar{\xi}|^{2 k} d \mu(\xi) \\
= & \frac{1}{2(n-1)^{2}} \sum_{k=0}^{\infty} \frac{2 k+n-1}{k!}\left(\frac{s|z|^{2}}{4}\right)^{k} \simeq\left(1+s|z|^{2}\right) e^{s|z|^{2} / 4}
\end{aligned}
$$

Also, it is clear that

$$
\frac{1}{4}\left(1+s|z|^{2}\right) e^{s|z|^{2} / 4} \leq I_{s}(z) \leq(n-1)\left(1+s|z|^{2}\right) e^{s|z|^{2} / 4}
$$

Now by Hölder's inequality and the above estimates we see that

$$
\int_{\mathbb{H}}\left|K_{s}(z, w)\right| \omega_{s}(w) \leq \sqrt{I_{s}(z) J_{s}(z)} \leq \sqrt{2 e(n-1)!(n-1)} e^{s|z|^{2} / 4}
$$

Let $\mathbb{E}:=\left\{w \in \mathbb{H}:\left|1+\frac{2 s}{n-1} z \bullet \bar{w}\right| \geq 1\right\}$. It is clear that

$$
\int_{\mathbb{H} \backslash \mathbb{E}}\left|K_{s}(z, w)\right| \omega_{s}(w) \leq \frac{1}{2}(n-2)!e^{n-1}
$$

Thus

$$
\begin{aligned}
\int_{\mathbb{H}}\left|K_{s}(z, w)\right| \omega_{s}(w) & \geq \int_{\mathbb{E}}\left|K_{s}(z, w)\right| \omega_{s}(w)=J_{s}(z)-\int_{\mathbb{H} \backslash \mathbb{E}}\left|K_{s}(z, w)\right| \omega_{s}(w) \\
& \geq J_{s}(z)-\frac{1}{2}(n-2)!e^{n-1} \\
& \geq \frac{(n-1)!}{2(n+1)} \frac{e^{s|z|^{2} / 4}}{1+s|z|^{2}}-\frac{1}{2}(n-2)!e^{n-1} .
\end{aligned}
$$

We set

$$
F_{s}(z):=\int_{\mathbb{H}}\left|K_{s}(z, w)\right| \omega_{s}(w)
$$

Lemma 2.10. If P_{t} is bounded on $L^{1}\left(\mathbb{H}, \omega_{s}\right)$, then $t=2 s$.

Proof. The hypothesis of the lemma implies that P_{t}^{*} is bounded on $L^{\infty}\left(\mathbb{H}, \omega_{s}\right)$. Fix $w_{0} \in \mathbb{H}$ and consider the function

$$
f_{w_{0}}(z)=\frac{K_{t}\left(z, w_{0}\right)}{\left|K_{t}\left(z, w_{0}\right)\right|}, \quad z \in \mathbb{H} .
$$

Then

$$
P_{t}^{*} f_{w_{0}}\left(w_{0}\right)=\left(\frac{t}{s}\right)^{n-1} e^{(s-t)\left|w_{0}\right|^{2}} F_{s}\left(\frac{t}{s} w_{0}\right) \quad \text { and } \quad\left\|f_{w_{0}}\right\|_{\infty}=1
$$

By Lemma 2.9 and the boundedness of P_{t}^{*} on $L^{\infty}\left(\mathbb{H}, \omega_{s}\right)$, there exists a positive constant C such that

$$
(t / s)^{n-1} e^{(s-t)\left|w_{0}\right|^{2}} e^{\frac{s}{4}\left|\frac{t}{s} w_{0}\right|^{2}} \leq C
$$

for all $w_{0} \in \mathbb{H}$. The above inequality is possible only if

$$
s-t+\frac{t^{2}}{4 s} \leq 0
$$

which is equivalent to $(2 s-t)^{2} \leq 0$ and hence $t=2 s$.
To study the boundedness of the operator T_{t} on $L^{p}\left(\mathbb{H}, \omega_{s}\right), 1<p<\infty$, we need the following well-known Schur lemma.

Lemma 2.11. Suppose $H(z, w)$ is a positive kernel and

$$
T f(z)=\int_{\Omega} H(z, w) f(w) d \nu(w)
$$

is the associated integral operator. Let $1<p<\infty$ with $1 / p+1 / q=1$. If there exists a positive function $h(z)$ and positive constants C_{1} and C_{2} such that

$$
\begin{aligned}
& \int_{\Omega} H(z, w)(h(w))^{q} d \nu(w) \leq C_{1}(h(z))^{q}, \quad z \in \Omega \\
& \int_{\Omega} H(z, w)(h(z))^{p} d \nu(z) \leq C_{2}(h(w))^{p}, \quad w \in \Omega
\end{aligned}
$$

then the operator T is bounded on $L^{p}(\Omega, d \nu)$. Moreover, the norm of T on $L^{p}(\Omega, d \nu)$ does not exceed $C_{1}^{1 / q} C_{2}^{1 / p}$.

Proof. See [R], for example.
Lemma 2.12. Suppose $1<p<\infty$. If $p t=2 s$, then T_{t} is bounded on $L^{p}\left(\mathbb{H}, \omega_{s}\right)$.

Proof. Consider the positive function

$$
h(z)=e^{\lambda|z|^{2}}, \quad z \in \mathbb{H},
$$

where λ is a constant to be specified later. To evaluate

$$
\int_{\mathbb{H}}\left|K_{t}(z, w)\right| h^{q}(w) \omega_{s}(w),
$$

write

$$
T_{t} f(z)=\int_{\mathbb{H}} H(z, w) f(w) \omega_{s}(w)
$$

where

$$
H(z, w)=(t / s)^{n-1}\left|K_{t}(z, w) e^{(s-t)|w|^{2}}\right|
$$

If

$$
\begin{equation*}
t-q \lambda>0 \tag{2.3}
\end{equation*}
$$

then

$$
\int_{\mathbb{H}} H(z, w) h^{q}(w) \omega_{s}(w)=\left(\frac{t}{t-q \lambda}\right)^{n-1} F_{t-q \lambda}\left(\frac{t}{t-q \lambda} z\right) .
$$

So, it follows from Lemma 2.9 that

$$
\begin{equation*}
\int_{\mathbb{H}} H(z, w) h^{q}(w) \omega_{s}(w) \leq C\left(\frac{t}{t-q \lambda}\right)^{n-1} e^{\frac{t^{2}}{4(t-q \lambda)}|z|^{2}} . \tag{2.4}
\end{equation*}
$$

If we choose λ such that

$$
\begin{equation*}
\frac{t^{2}}{4(t-q \lambda)}=q \lambda \tag{2.5}
\end{equation*}
$$

then

$$
\begin{equation*}
\int_{\mathbb{H}} H(z, w) h^{q}(w) \omega_{s}(w) \leq C\left(\frac{t}{t-q \lambda}\right)^{n-1} h^{q}(z) \tag{2.6}
\end{equation*}
$$

On the other hand, if

$$
\begin{equation*}
s-p \lambda>0 \tag{2.7}
\end{equation*}
$$

write

$$
\int_{\mathbb{H}} H(z, w) h^{p}(z) \omega_{s}(z)=\left(\frac{t}{s-p \lambda}\right)^{n-1} e^{(s-t)|w|^{2}} F_{s-p \lambda}\left(\frac{t}{s-p \lambda} w\right) .
$$

Then from Lemma 2.9 we have

$$
\int_{\mathbb{H}} H(z, w) h^{p}(z) \omega_{s}(z) \leq C\left(\frac{t}{s-p \lambda}\right)^{n-1} e^{\left[s-t+\frac{t^{2}}{4(s-p \lambda)}\right]|w|^{2}}
$$

Once again, if we choose λ so that

$$
\begin{equation*}
s-t+\frac{t^{2}}{4(s-p \lambda)}=p \lambda \tag{2.8}
\end{equation*}
$$

then

$$
\begin{equation*}
\int_{\mathbb{H}} H(z, w) h^{p}(z) \omega_{s}(z) \leq C\left(\frac{t}{s-p \lambda}\right)^{n-1} h^{p}(w) \tag{2.9}
\end{equation*}
$$

The conclusion now follows from Lemma 2.11. -
3. Sharpness of the norm and proof of the results. In this section we compute the operator norm and prove Theorems A and B. We consider the operator U_{0} defined in the introduction and let $U:=C U_{0}$ be the operator defined on functions \widetilde{f} on \mathbb{C}^{n} by

$$
U \widetilde{f}(z):=C z_{n+1} \widetilde{f}\left(z_{1}, \ldots, z_{n}\right)
$$

for $z=\left(z_{1}, \ldots, z_{n}, z_{n+1}\right) \in \mathbb{H}$, where

$$
C=\left(\frac{(n-2)!m_{n}}{4(n+1)^{2} s^{n-1}}\right)^{1 / p}
$$

The operator U will play a key role in our proof. Indeed, we need the following:

Lemma 3.1. For each $p \geq 1$ and $s>0$, the linear operator U is a unitary isometry from $\widetilde{\mathcal{F}}_{p, s}\left(\mathbb{C}^{n}\right)$ onto $\mathcal{F}_{p, s}(\mathbb{H})$. Moreover, $U \widetilde{P}_{s}=P_{s} U$ on $\mathcal{F}_{p, s}(\mathbb{H})$.

Proof. From Lemma 4.1 in MY], we only need to prove that U is onto. To this end, it suffices to observe that

$$
U\left(\tilde{f}_{k, a}\right)=C(-1)^{k} f_{k, a} \quad \text { for all } k \text { and } a
$$

As a consequence of the above result we have the following.
Lemma 3.2. Suppose that $t, s>0$ and $p \geq 1$. Then P_{t} is bounded on $\mathcal{F}_{p, s}(\mathbb{H})$ if only if \widetilde{P}_{t} is bounded on $\widetilde{\mathcal{F}}_{p, s}\left(\mathbb{C}^{n}\right)$.

Lemma 3.3. Suppose $1 \leq p<\infty$ and $p t=2 s$. Then the linear operators $P_{t}: L^{p}\left(\mathbb{H}, \omega_{s}\right) \rightarrow \mathcal{A}_{s}^{p}(\mathbb{H})$ and $\widetilde{P}_{t}: L_{s}^{p}\left(\mathbb{C}^{n}\right) \rightarrow \mathcal{A}_{s}^{p}\left(\mathbb{C}^{n}\right)$ have the same norm

$$
\left\|\widetilde{P}_{t}\right\|_{p}=\left\|P_{t}\right\|_{p}=2^{n-1} \sqrt{2 e(n-1)!(n-1)}
$$

Proof. From the proof of Lemma 2.9 combined with an appropriate choice of λ, the constants in 2.6) and 2.9 both reduce to $2^{n-1} \sqrt{2 e(n-1)!(n-1)}$. Therefore, by Lemma 2.11,

$$
\left\|P_{t}\right\|_{p} \leq 2^{n-1} \sqrt{2 e(n-1)!(n-1)}
$$

as long as $1<p<\infty$. The case $p=1$ follows from Fubini's theorem and Lemma 2.9. Conversely, from the inequality

$$
\frac{\left\|P_{t} f_{0, x t}\right\|_{p, s}}{\left\|f_{0, x t}\right\|_{p, s}} \leq\left\|P_{t}\right\|_{p}
$$

where x is a large enough positive constant, we deduce by Lemma 2.3 that

$$
\left\|P_{t}\right\|_{p} \geq 2^{n-1} \sqrt{2 e(n-1)!(n-1)}
$$

By the estimates

$$
\frac{\left\|P_{t} f_{0, x t}\right\|_{p, s}}{\left\|f_{0, x t}\right\|_{p, s}} \leq\left\|\widetilde{P}_{t}\right\|_{p} \leq\left\|P_{t}\right\|_{p}
$$

arising from the isometry U, we also have

$$
\left\|\widetilde{P}_{t}\right\|_{p}=2^{n-1} \sqrt{2 e(n-1)!(n-1)}
$$

Proof of Theorem A. Suppose $p=1$. That (a) implies (b) and (b) implies (c) is obvious. That (c) implies (d) follows from Lemma 2.4 and that (d) implies (a) can be seen from Fubini's theorem and Lemma 2.9. Now consider $1<p<\infty$. That (a) implies (b) and (b) implies (c) is still obvious. That (c) implies (d) follows from Lemma 2.4 , and that (d) implies (a) follows from Lemma 2.12. To complete the proof we appeal to Lemma 3.3 ,

Proof of Theorem B. This follows from Theorem A and Lemmas 3.2 and 3.3 .

Acknowledgments. The first author was partially supported by Agence Universitaire de la Francophonie. The second author is partially supported by the French ANR DYNOP, Blanc 07-198398.

References

[DZ] M. Dostanić and K. Zhu, Integral operators induced by the Fock kernel, Integral Equations Operator Theory 60 (2008), 217-236.
[HP] K. T. Hahn and P. Pflug, On a minimal complex norm that extends the real Euclidean norm, Monatsh. Math. 105 (1988), 107-112.
[HS] P. R. Halmos and V. S. Sunder, Bounded Integral Operators on L^{2} Spaces, Springer, Berlin, 1978.
[M] G. Mengotti, The Bloch space for the minimal ball, Studia Math. 148 (2001), 131-142.
[MY] G. Mengotti and E. H. Youssfi, The weighted Bergman projection and related theory on the minimal ball, Bull. Sci. Math. 123 (1999), 501-525.
[OPY] K. Oeljeklaus, P. Pflug and E. H. Youssfi, The Bergman kernel of the minimal ball and applications, Ann. Inst. Fourier (Grenoble) 47 (1997), 915-928.
[OY] K. Oeljeklaus and E. H. Youssfi, Proper holomorphic mappings and related automorphism groups, J. Geom. Anal. 7 (1997), 623-636.
[R] W. Rudin, Function Theory in the Unit Ball of \mathbb{C}^{n}, Springer, New York, 1980.

Jocelyn Gonessa
Département de Mathématiques et Informatique Université de Bangui
B.P. 908 Bangui, République Centrafricaine

E-mail: gonessa.jocelyn@gmail.com

El Hassan Youssfi
LATP, U.M.R. CNRS 6632
CMI, Université de Provence
39 Rue F. Joliot-Curie 13453 Marseille Cedex 13, France E-mail: youssfi@gyptis.univ-mrs.fr

[^0]: 2010 Mathematics Subject Classification: Primary 47B35, 32A36, 32A37.
 Key words and phrases: Bergman projection, Fock space, Bergman kernel.

