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Real hypersurfaces with
parallel induced almost contact structures

by Zuzanna Szancer (Kraków)

Abstract. Real affine hypersurfaces of the complex space Cn+1 with a J-tangent
transversal vector field and an induced almost contact structure (ϕ, ξ, η) are studied.
Some properties of hypersurfaces with ϕ or η parallel relative to an induced connection
are proved. Also a local characterization of these hypersurfaces is given.

1. Introduction. We study real affine hypersurfaces of the complex
space Cn+1 with a J-tangent transversal vector field C and an induced
almost contact structure (ϕ, ξ, η). The main purpose of this paper is to
investigate some properties of hypersurfaces with ∇ϕ = 0 or ∇η = 0, where
∇ is an affine connection induced by a transversal vector field C.

In Section 2 we briefly recall basic formulas of affine differential geometry,
we introduce the notion of a J-tangent transversal vector field and give a
lemma relating to differential equations required in the next sections.

In Section 3 we recall some results obtained in [SS] for an induced al-
most contact structure and show how induced almost contact structures are
related to each other in case the J-tangent transversal vector field changes.

Section 4 contains the main results of this paper. In particular, we prove
some properties of induced objects under the condition ∇ϕ = 0 as well as
∇η = 0. Moreover, we prove that the existence of a J-tangent transversal
vector field ϕ with ∇ϕ = 0 is equivalent to the existence of a J-tangent
transversal vector field η with ∇η = 0. At the end we give a local charac-
terization of such hypersurfaces.

Throughout the paper we write α ≡ 0 if α(x) = 0 for all x ∈ M , and
α 6= 0 if α(x) 6= 0 for every x ∈ M (i.e. α is a nowhere vanishing function
on M).
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2. Preliminaries. We briefly recall the basic formulas of affine differ-
ential geometry. For more details, we refer to [NS]. Let f : M → Rn+1 be an
orientable, connected differentiable n-dimensional hypersurface immersed in
the affine space Rn+1 equipped with its usual flat connection D. Then for
any transversal vector field C we have

DX f∗Y = f∗(∇XY ) + h(X,Y )C,(2.1)
DX C = −f∗(SX) + τ(X)C,(2.2)

where X,Y are vector fields tangent to M . For any transversal vector field,
∇ is a torsion-free connection, h is a symmetric bilinear form on M , called
the second fundamental form, S is a tensor of type (1, 1), called the shape
operator, and τ is a 1-form, called the transversal connection form.

We shall now consider the change of a transversal vector field for a given
immersion f .

Theorem 2.1 ([NS]). Suppose we change a transversal vector field C to

C̄ = ΦC + f∗(Z),

where Z is a tangent vector field on M and Φ is a nowhere vanishing func-
tion on M . Then the affine fundamental form, the induced connection, the
transversal connection form, and the affine shape operator change as follows:

h̄ =
1
Φ
h,

∇̄XY = ∇XY −
1
Φ
h(X,Y )Z,

τ̄ = τ +
1
Φ
h(Z, ·) + d ln |Φ|,

S̄ = ΦS −∇·Z + τ̄(·)Z.
If h is non-degenerate, then we say that the hypersurface or the hyper-

surface immersion is non-degenerate. We have the following

Theorem 2.2 ([NS, §II.2, Theorem 2.1]). For an arbitrary transversal
vector field C the induced connection ∇, the second fundamental form h, the
shape operator S, and the 1-form τ satisfy the following equations:

R(X,Y )Z = h(Y,Z)SX − h(X,Z)SY,(2.3)
(∇Xh)(Y,Z) + τ(X)h(Y, Z) = (∇Y h)(X,Z) + τ(Y )h(X,Z),(2.4)
(∇XS)(Y )− τ(X)SY = (∇Y S)(X)− τ(Y )SX,(2.5)
h(X,SY )− h(SX, Y ) = 2dτ(X,Y ).(2.6)

Equations (2.3), (2.4), (2.5), and (2.6) are called, respectively, the equa-
tion of Gauss, Codazzi for h, Codazzi for S and Ricci.

For a hypersurface immersion f : M → Rn+1 a transversal vector field C
is said to be equiaffine (resp. locally equiaffine) if τ = 0 (resp. dτ = 0).
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Let dimM = 2n + 1 and f : (M, g) → (R2n+2, g̃) be a non-degenerate
(relative to the second fundamental form) isometric immersion, where g̃ is
the standard inner product on R2n+2. We assume that R2n+2 ' Cn+1 is
endowed with the standard complex structure J ,

J(x1, . . . , xn+1, y1, . . . , yn+1) = (−y1, . . . ,−yn+1, x1, . . . , xn+1).

Let C be a transversal vector field on M . We say that C is J-tangent if
JCx ∈ f∗(TxM) for every x ∈ M . We also define a distribution D on M as
the biggest J-invariant distribution on M , that is,

Dx = f−1
∗ (f∗(TxM) ∩ J(f∗(TxM)))

for every x ∈ M . It is clear that dimD = 2n. A vector field X is called a
D-field if Xx ∈ Dx for every x ∈M . We use the notation X ∈ D for vectors
as well as for D-fields. We say that the distribution D is non-degenerate if
h is non-degenerate on D. To simplify the writing, we will omit f∗ in front
of vector fields in most cases.

We conclude this section with the following useful lemma relating to
differential equations (we also give the proof for completeness):

Lemma 2.3 ([S]). Let F : I → R2n be a smooth function on the interval I
and let α, β ∈ C∞(I,R) be such that α2 + β2 6= 0 on I. If F satisfies the
differential equation

(2.7) F ′(y) = −α(y)JF (y) + β(y)F (y),

then F is of the form

(2.8) F (y) = Jveβ̂(y) cos(α̂(y)) + veβ̂(y) sin(α̂(y)),

where v ∈ R2n and α̂, β̂ are any integrals of α and β on I, respectively.

Proof. It is easily seen that functions of the form (2.8) satisfy the differ-
ential equation (2.7). On the other hand, since (2.7) is a first order ordinary
differential equation, the Picard–Lindelöf theorem implies that any solution
of (2.7) must be of the form (2.8).

3. Almost contact structures. A (2n + 1)-dimensional manifold M
is said to have an almost contact structure if there exist on M a tensor field
ϕ of type (1, 1), a vector field ξ and a 1-form η which satisfy

ϕ2(X) = −X + η(X)ξ, η(ξ) = 1

for every X ∈ TM .
Let f : M → R2n+2 be a hypersurface with a J-tangent transversal vector

field C. Then we can define a vector field ξ, a 1-form η and a tensor field ϕ
of type (1, 1) as follows:

ξ := JC, η|D = 0 and η(ξ) = 1, ϕ|D = J |D and ϕ(ξ) = 0.
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It is easy to see that (ϕ, ξ, η) is an almost contact structure on M ; it is said
to be induced by C.

For an induced almost contact structure we have the following theorem:

Theorem 3.1 ([SS]). If (ϕ, ξ, η) is an induced almost contact structure
on M then

η(∇XY ) = −h(X,ϕY ) +X(η(Y )) + η(Y )τ(X),(3.1)
ϕ(∇XY ) = ∇XϕY + η(Y )SX − h(X,Y )ξ,(3.2)
η([X,Y ]) = −h(X,ϕY ) + h(Y, ϕX) +X(η(Y ))− Y (η(X))(3.3)

+ η(Y )τ(X)− η(X)τ(Y ),
ϕ([X,Y ]) = ∇XϕY −∇Y ϕX − η(X)SY + η(Y )SX,(3.4)
η(∇Xξ) = τ(X),(3.5)
η(SX) = h(X, ξ),(3.6)

for all X,Y ∈ X (M).

Lemma 3.2. Let C be a J-tangent transversal vector field. Then any
other J-tangent transversal vector field C̄ has the form

C̄ = φC + f∗Z,

where φ 6= 0 and Z ∈ D. Moreover, if (ϕ, ξ, η) is the almost contact structure
induced by C, then C̄ induces the almost contact structure (ϕ̄, ξ̄, η̄), where

ξ̄ = φξ + ϕZ, η̄ =
1
φ
η, ϕ̄ = ϕ+ η(·) 1

φ
Z.

Proof. Since Z ∈ D and J = ϕ on D, we have

ξ̄ = JC̄ = J(φC + f∗Z) = φJC + ϕZ = φξ + ϕZ.

Directly from the definition of η and η̄ we get η = η̄ on D and

η(ξ) = 1 = η̄(ξ̄) = η̄(φξ + ϕZ) = φη̄(ξ),

thus
η̄(ξ) =

1
φ
η(ξ),

and finally η̄ = 1
φη. To prove the last equality of the statement, note that

0 = ϕ(ξ) = ϕ̄(ξ̄) = ϕ̄(φξ + ϕZ) = φϕ̄(ξ) + ϕ̄ϕ(Z).

From the definition of ϕ and ϕ̄ we have ϕ = ϕ̄ on D, which implies that

ϕ̄(ξ) =
1
φ
Z = ϕ(ξ) + η(ξ)

1
φ
Z,

since Z ∈ D. The last formula proves that

ϕ̄(X) = ϕ(X) + η(X)
1
φ
Z



Real hypersurfaces 207

is valid for X = ξ. Clearly, it is also valid for every X ∈ D, and thus for
every X ∈ TM .

4. Parallel induced almost contact structures. In this section we
always assume that (ϕ, ξ, η) is an almost contact structure induced by a
J-tangent transversal vector field C. It is important to note that we do not
assume that the second fundamental form h is non-degenerate.

Lemma 4.1. Let (ϕ, ξ, η) be an induced almost contact structure such
that ∇ϕ = 0. Then

h|D×D = 0,(4.1)
h(ξ,X) = h(X, ξ) = 0 for all X ∈ D,(4.2)

S|D = 0,(4.3)
Sξ = h(ξ, ξ)ξ,(4.4)
dτ = 0.(4.5)

Proof. From formula (3.2) we have

(∇Xϕ)(Y ) = −η(Y )SX + h(X,Y )ξ

for all X,Y ∈ X (M). Since ∇ϕ = 0 we get h(X,Y ) = 0 and h(ξ, Y ) = 0 for
all X,Y ∈ D. Now, taking X ∈ D and Y = ξ we have SX = 0. Taking X =
Y = ξ we easily get Sξ = h(ξ, ξ)ξ. The last equation follows immediately
from the Ricci equation (2.6).

The above lemma implies that if ∇ϕ = 0, then C is a locally equiaffine
transversal vector field, so locally we can find a nowhere vanishing function
Φ such that C̄ = ΦC is an equiaffine J-tangent vector field. Now, using
Theorem 2.1 and Lemma 3.2 we get the following corollary:

Corollary 4.2. Let C be a J-tangent transversal vector field such that
∇ϕ = 0 and let Φ be a nowhere vanishing function on M . Denote by C̄ the
transversal vector field ΦC. Then ∇̄ϕ̄ = 0. Thus, parallelism of ϕ relative
to ∇ is the direction property. In particular, locally we can always choose C
equiaffine.

We shall prove

Lemma 4.3. Let (ϕ, ξ, η) be an induced almost contact structure such
that ∇η = 0. Then

h|D×D = 0,(4.6)
h(ξ,X) = h(X, ξ) = 0 for every X ∈ D,(4.7)
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τ = 0,(4.8)
∇XY ∈ D for all X,Y ∈ D,(4.9)
∇Xξ ∈ D for every X ∈ X (M),(4.10)
∇ξX ∈ D for every X ∈ D,(4.11)
X(h(ξ, ξ)) = 0 for every X ∈ D.(4.12)

Proof. Since ∇η = 0 we have

(4.13) η(∇XY ) = X(η(Y ))

for all X,Y ∈ X (M). Now, using formula (3.1) we get

(4.14) h(X,ϕY ) = η(Y )τ(X)

for all X,Y ∈ X (M). Hence, if X,Y ∈ D, then h(X,ϕY ) = 0, which proves
(4.6). Taking X = ξ and Y ∈ D in (4.14) we easily get (4.7). On the other
hand, taking Y = ξ we have τ(X) = 0, that is, (4.8). Formulas (4.9)–(4.11)
can be obtained directly from (4.13). To prove (4.12) note that from the
Codazzi equation (2.4) for h (and using (4.8)) we have

(∇Xh)(ξ, ξ) = (∇ξh)(X, ξ) = ξ(h(X, ξ))− h(∇ξX, ξ)− h(X,∇ξξ).

Now, if we take X ∈ D then because of (4.6)–(4.7) we get h(X, ξ) = 0 and
h(X,∇ξξ) = 0, whereas (4.11) implies that also h(∇ξX, ξ) = 0. Thus, we
obtain

0 = (∇Xh)(ξ, ξ) = X(h(ξ, ξ))− 2h(∇Xξ, ξ)

for every X ∈ D. Now, using (4.10) in the above formula leads to

X(h(ξ, ξ)) = 0

for every X ∈ D. This finishes the proof of (4.12).

Denote by N the metric normal field for f : M → R2n+2 (relative to the
standard inner product on R2n+2). The metric normal field induces objects
∇̂, ĥ and Ŝ as the transversal vector field on M . Recall that the induced
connection ∇̂ is the Levi-Civita connection of the induced Riemannian met-
ric g. It is clear that N is J-tangent, thus induces an almost contact structure
(ϕ̂, N̂ , η̂) on M .

Theorem 4.4. Let f : M → R2n+2 be an affine immersion. Then the
following conditions are equivalent:

(1) For every point on M there exist a neighborhood U and a J-tangent
transversal vector field C defined on U such that ∇ϕ = 0.

(2) For every point on M there exist a neighborhood U and a J-tangent
transversal vector field C defined on U such that ∇η = 0.

(3) An induced almost contact structure (ϕ̂, N̂ , η̂) is ∇̂-parallel.
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Proof. Let x be any point on M . Assume that in some neighborhood U
of x there exists a J-tangent transversal vector field C such that ∇ϕ = 0.
Then, by virtue of Corollary 4.2 we can assume (possibly shrinking U) that
C is equiaffine. Now, by Theorem 3.1 (formula (3.1)) we get

(∇Xη)(Y ) = h(X,ϕY )− η(Y )τ(X) = h(X,ϕY )

for all X,Y ∈ X (U). Using the first two formulas from Lemma 4.1 we get

∇η ≡ 0,

which proves the implication (1)⇒(2).
To prove (2)⇒(3) note that if (ϕ, ξ, η) is an almost contact structure

induced by a J-tangent transversal vector field C defined on some neighbor-
hood U of x and such that ∇η = 0 then

N̂ |U = Φξ + ϕZ,

where Z ∈ D and Φ = const. Also note that the condition ∇η = 0 is
invariant under scaling the field C by a constant. Therefore, we can later
assume that C is chosen in such a way that

N̂ |U = ξ + ϕZ.

By Theorem 2.1 and Lemma 3.2 we obtain ĥ = h and η̂ = η. Since N is the
metric normal field we see that g, ĥ = h and Ŝ are related by the formula

h(X,Y ) = g(ŜX, Y )

for all X,Y ∈ X (U). The above equality and Lemma 4.3 imply

ŜX = h(N̂ ,X)N̂

for every X ∈ X (U). Now, using (3.2) and (3.5) for the structure (ϕ̂, N̂ , η̂)
we easily get

ϕ̂(∇̂XN̂) = ŜX − h(N̂ ,X)N̂ = 0 and η̂(∇̂XN̂) = 0

for every X ∈ X (U), that is, ∇̂XN̂ = 0 for every X ∈ X (U). Lemma 4.3
implies that

(∇̂X ϕ̂)(Y ) = ĥ(X,Y )N̂ − η̂(Y )ŜX = h(X,Y )N̂ − η(Y )h(N̂ ,X)N̂

= (h(X,Y )− η(Y )h(ξ,X))N̂ = 0

for all X,Y ∈ X (U). Arbitrariness of x ∈ M gives ∇̂N̂ = 0 and ∇̂ϕ̂ = 0
on the whole M . The condition ∇̂η̂ = 0 can easily be obtained from the
equality ∇̂ϕ̂ = 0, the fact that N is equiaffine and the proof of (1)⇒(2).

To prove (3)⇒(1) it is sufficient to take C := N .
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From the proof of Theorem 4.4 it follows that if there exists an equiaffine
J-tangent transversal vector field C with ∇ϕ = 0, then we also have ∇η = 0
for C. Moreover, condition (3) in the above theorem is equivalent to the
global versions of conditions (1) and (2), that is,

(1′) There exists a J-tangent transversal vector field C on M such that
∇ϕ = 0.

(2′) There exists a J-tangent transversal vector field C on M such that
∇η = 0.

It follows from Lemmas 4.1 and 4.3 that rank f ≤ 1. However, the con-
verse is not true in general since we have the following

Example 4.5. Let us consider an affine immersion defined as follows:

f : R3 3 (x, y, z) 7→


x

y

z

ez

 ∈ R4.

Of course rank f = 1. Let {∂1, ∂2, ∂3} be the canonical basis on R3 generated
by the coordinate system (x, y, z) on R3. It is not difficult to see that

N : R3 3 (x, y, z) 7→



0
0

− ez√
e2z + 1
1√

e2z + 1


∈ R4

is the metric normal field for f . Now,

N̂ =



ez√
e2z + 1

− 1√
e2z + 1
0
0


.

The above implies that

f∗(∂3) = fz =


0
0
1
ez
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is orthogonal to N̂ , thus it belongs to the distribution D. We will show that
(∇̂∂3ϕ̂)(∂3) 6= 0. By straightforward computations we get

∇̂∂3∂3 =
e2z

e2z + 1
∂3 and ϕ̂(∂3) = −∂1 − ez∂2.

Now

(∇̂∂3ϕ̂)(∂3) = ∇̂∂3(ϕ̂(∂3))− ϕ̂(∇̂∂3∂3)

= ∇̂∂3(−∂1 − ez∂2)− ϕ̂
(

e2z

e2z + 1
∂3

)
= −∇̂∂3∂1 − ez∇̂∂3∂2 − ∂3(ez)∂2 +

e2z

e2z + 1
∂1 +

e3z

e2z + 1
∂2

=
e2z

e2z + 1
∂1 +

(
e3z

e2z + 1
− ez

)
∂2 6= 0,

since ∇̂∂3∂1 = ∇̂∂3∂2 = 0 and ∂1, ∂2 are linearly independent.

In later parts of this paper we will give a local characterization of affine
hypersurfaces satisfying any (thus all) of the conditions from Theorem 4.4.
We need the following lemma:

Lemma 4.6. Let f : M → R2n+2 be a hypersurface with a metric normal
field N . Assume that an almost contact structure (ϕ̂, N̂ , η̂) induced by N

is ∇̂-parallel. Then, for every point x of M and for any nowhere vanishing
smooth function α defined in some neighborhood of x and constant in the
direction of D (i.e. X(α) = 0 for every X ∈ D), there exist a neighborhood
of x and a map ψ(y, x1, . . . , x2n) defined on this neighborhood such that the
vector fields ∂/∂y, ∂/∂x1, . . . , ∂/∂x2n satisfy

∂

∂y
= αN̂ and

∂

∂x1
, . . . ,

∂

∂x2n
∈ D.

Proof. Since (ϕ̂, N̂ , η̂) is ∇̂-parallel, in particular (by (4.9)) the distribu-
tion D is involutive. Let x be any point on M and let α be a nowhere
vanishing smooth function defined in some neighborhood of x and con-
stant in the direction of D. The Frobenius theorem implies that for x
there exist an open neighborhood U ⊂ M and linearly independent vec-
tor fields X1, . . . , X2n, X2n+1 = αN̂ ∈ X (U) such that [Xi, Xj ] = 0 for
i, j = 1, . . . , 2n+ 1. For every i = 1, . . . , 2n we have

Xi = Di + αiN̂ ,

where Di ∈ D and αi ∈ C∞(U). Thus

(4.15) 0 = [Xi, X2n+1] = [Di, X2n+1]−X2n+1(αi)N̂ .

From (4.10) and (4.11) it is clear that [Di, N̂ ] ∈ D. Since Di(α) = 0 we also
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have
[Di, X2n+1] = α[Di, N̂ ] +Di(α)N̂ = α[Di, N̂ ] ∈ D.

Now (4.15) implies that [Di, X2n+1] = 0 and X2n+1(αi) = 0 for i = 1, . . . , 2n.
Moreover, for all i, j = 1, . . . , 2n we have

[Di, Dj ] = [Xi, Xj ]− [αiN̂ ,Xj ]− [Xi, αjN̂ ] + [αiN̂ , αjN̂ ].

Since [Xi, Xj ] = 0, D is involutive and the last three terms in the above
equality are proportional to N̂ , we obtain

[Di, Dj ] = 0

for all i, j = 1, . . . , 2n. Of course the vector fields D1, . . . , D2n, X2n+1 are
linearly independent over C∞(U), so we can find a map ψ(y, x1, . . . , x2n)
on U such that ∂/∂y = X2n+1 and ∂/∂xi = Di for i = 1, . . . , 2n.

In the next two theorems we give a local characterization of hypersurfaces
for which there exists a J-tangent transversal vector field inducing an almost
contact structure (ϕ, ξ, η) such that ∇ϕ = 0 or ∇η = 0.

Theorem 4.7. Let f : M → R2n+2 be a hypersurface such that the al-
most contact structure (ϕ̂, N̂ , η̂) is ∇̂-parallel. Let U be a non-empty open
subset of M . If rank f = 0 on U then f(U) is a piece of a hyperplane.

Proof. Since rank ĥ = 0 and ∇̂ϕ̂ = 0 on U , Lemma 4.1 implies

DXN = −ŜX = 0

for every X ∈ X (U). It follows that a metric normal field N is constant
on U , thus f(U) is a hyperplane in R2n+2.

Theorem 4.8. Let f : M → R2n+2 be a hypersurface such that the al-
most contact structure (ϕ̂, N̂ , η̂) is ∇̂-parallel. Let x be a point on M such
that rank f = 1 at x. Then there exists an open neighborhood U of x such
that f can be expressed on U in the form

f(x1, . . . , x2n, y) = x1b1 + · · ·+ x2nb2n − v
�
α(y) cos y dy(4.16)

+ Jv
�
α(y) sin y dy,

where v ∈ R2n+2, ‖v‖ = 1, α is some nowhere vanishing smooth func-
tion on U and b1, . . . , b2n ∈ R2n+2 are linearly independent vectors from
{v, Jv}⊥. Moreover, every hypersurface (4.16) has a ∇̂-parallel almost con-
tact structure (ϕ̂, N̂ , η̂).

Proof. First, note that since rank ĥx = 1, we have ĥx(N̂x, N̂x) 6= 0. Since
ĥ(N̂ , N̂) is smooth we can find a neighborhood U of x such that ĥ(N̂ , N̂) 6= 0
on U , thus rank ĥ = 1 on U . Moreover, by (4.12) the function ĥ(N̂ , N̂) is
constant in a direction of the distribution D.
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Let us define a new function on U ,

α :=
1

ĥ(N̂ , N̂)
.

It is clear that α 6= 0 and α is constant in a direction of D. Using Lemma
4.6 and possibly shrinking U we deduce that there exists a map ψ on U such
that

∂

∂y
= αN̂ and

∂

∂x1
, . . . ,

∂

∂x2n
∈ D.

By the Weingarten formula (2.2) and formulas (4.3), (4.4) we get

D∂/∂xi
N = −Ŝ

(
∂

∂xi

)
= 0

for i = 1, . . . , 2n and

D∂/∂yN = −Ŝ
(
∂

∂y

)
= −αŜ(N̂) = −αĥ(N̂ , N̂)N̂ = −N̂ = −JN,

thus Nxi = 0 for i = 1, . . . , 2n and Ny = −JN . Now, Lemma 2.3 implies
that

N = Jv cos y + v sin y,

where v ∈ R2n+2. Since N is a metric normal field, we see that

1 = ‖N‖ = ‖Jv cos y + v sin y‖ = ‖v‖.
Let b1, . . . , b2n be any linearly independent vectors from R2n+2 such that
bi ∈ {v, Jv}⊥. We have

N · bi = 0 and N̂ · bi = 0,

for every i = 1, . . . , 2n, therefore the vectors b1, . . . , b2n span f∗(D). Let
∂1, . . . , ∂2n be vector fields on U such that f∗(∂i) = bi for i = 1, . . . , 2n. Of
course ∂1, . . . , ∂2n are linearly independent and span the distribution D. For
every X ∈ TU and for every i = 1, . . . , 2n we have

DXf∗∂i = DXbi = 0.

On the other hand by the Gauss formula (2.1) and due to the fact that
ĥ|D×D = 0 we obtain

DXf∗∂i = f∗(∇̂X∂i),
thus

∇̂X∂i = 0

for every X ∈ TU . In particular, we have

∇̂∂i
∂j = 0

for all i, j ∈ {1, . . . , 2n} and

∇̂∂/∂y∂i = 0
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for i = 1, . . . , 2n. Moreover

∇̂∂i

∂

∂y
= ∇̂∂i

(αN̂) = ∂i(α)N̂ + α∇̂∂i
N̂ = 0,

since α is constant in a direction of D and ∇̂N̂ = 0. To sum up, the vector
fields

∂1, . . . , ∂2n,
∂

∂y

are associated with some map ψ̃. Denoting again ∂1, . . . , ∂2n by ∂/∂x1, . . .
. . . , ∂/∂x2n we see that the immersion f satisfies the differential equations

fxi = bi

for i = 1, . . . , 2n and

fy = α(y)N̂ = α(y)(−v cos y + Jv sin y).

Solving the above we get a local form of f as follows:

f(x1, . . . , x2n, y)

= x1b1 + · · ·+ x2nb2n − v
�
α(y) cos y dy + Jv

�
α(y) sin y dy.

To prove the second part of the theorem note that the function described
by (4.16) is an immersion, since b1, . . . , b2n and −vα(y) cos y + Jvα(y) sin y
are linearly independent. Now, it is enough to show that ∇̂η̂ = 0. It is not
difficult to see that N = Jv cos y + v sin y, thus

N̂ = −v cos y + Jv sin y;

moreover ∂/∂xi ∈ D and ∇̂X(∂/∂xi) = 0 for i = 1, . . . , 2n, which imply
(∇̂X η̂)(Y ) = 0 for all X ∈ TM and Y ∈ D. To complete the proof note that

(∇̂X η̂)(N̂) = X(η̂(N̂))− η̂(∇̂XN̂) = −η̂(∇̂XN̂)

for every X ∈ TM . If X ∈ D then ∇̂XN̂ = 0, because

DXN̂ = DX(−v cos y + Jv sin y) = 0

for every X ∈ D. If X = ∂/∂y then

D∂/∂yN̂ = Jv cos y + v sin y = N,

thus ∇̂∂/∂yN̂ = 0. Summarizing, we have shown that ∇̂η̂ = 0, which com-
pletes the proof.
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