Real hypersurfaces with parallel induced almost contact structures

by ZUZANNA SZANCER (Kraków)

Abstract. Real affine hypersurfaces of the complex space \mathbb{C}^{n+1} with a *J*-tangent transversal vector field and an induced almost contact structure (φ, ξ, η) are studied. Some properties of hypersurfaces with φ or η parallel relative to an induced connection are proved. Also a local characterization of these hypersurfaces is given.

1. Introduction. We study real affine hypersurfaces of the complex space \mathbb{C}^{n+1} with a *J*-tangent transversal vector field *C* and an induced almost contact structure (φ, ξ, η) . The main purpose of this paper is to investigate some properties of hypersurfaces with $\nabla \varphi = 0$ or $\nabla \eta = 0$, where ∇ is an affine connection induced by a transversal vector field *C*.

In Section 2 we briefly recall basic formulas of affine differential geometry, we introduce the notion of a *J*-tangent transversal vector field and give a lemma relating to differential equations required in the next sections.

In Section 3 we recall some results obtained in [SS] for an induced almost contact structure and show how induced almost contact structures are related to each other in case the *J*-tangent transversal vector field changes.

Section 4 contains the main results of this paper. In particular, we prove some properties of induced objects under the condition $\nabla \varphi = 0$ as well as $\nabla \eta = 0$. Moreover, we prove that the existence of a *J*-tangent transversal vector field φ with $\nabla \varphi = 0$ is equivalent to the existence of a *J*-tangent transversal vector field η with $\nabla \eta = 0$. At the end we give a local characterization of such hypersurfaces.

Throughout the paper we write $\alpha \equiv 0$ if $\alpha(x) = 0$ for all $x \in M$, and $\alpha \neq 0$ if $\alpha(x) \neq 0$ for every $x \in M$ (i.e. α is a nowhere vanishing function on M).

²⁰¹⁰ Mathematics Subject Classification: 53A15, 53D15.

Key words and phrases: affine hypersurface, almost contact structure, parallel structure.

Z. Szancer

2. Preliminaries. We briefly recall the basic formulas of affine differential geometry. For more details, we refer to [NS]. Let $f: M \to \mathbb{R}^{n+1}$ be an orientable, connected differentiable *n*-dimensional hypersurface immersed in the affine space \mathbb{R}^{n+1} equipped with its usual flat connection D. Then for any transversal vector field C we have

(2.1)
$$D_X f_* Y = f_* (\nabla_X Y) + h(X, Y)C,$$

(2.2)
$$D_X C = -f_*(SX) + \tau(X)C,$$

where X, Y are vector fields tangent to M. For any transversal vector field, ∇ is a torsion-free connection, h is a symmetric bilinear form on M, called the *second fundamental form*, S is a tensor of type (1, 1), called the *shape operator*, and τ is a 1-form, called the *transversal connection form*.

We shall now consider the change of a transversal vector field for a given immersion f.

THEOREM 2.1 ([NS]). Suppose we change a transversal vector field C to $\bar{C} = \Phi C + f_*(Z),$

where Z is a tangent vector field on M and Φ is a nowhere vanishing function on M. Then the affine fundamental form, the induced connection, the transversal connection form, and the affine shape operator change as follows:

$$\bar{h} = \frac{1}{\Phi}h,$$

$$\bar{\nabla}_X Y = \nabla_X Y - \frac{1}{\Phi}h(X,Y)Z,$$

$$\bar{\tau} = \tau + \frac{1}{\Phi}h(Z,\cdot) + d\ln|\Phi|,$$

$$\bar{S} = \Phi S - \nabla Z + \bar{\tau}(\cdot)Z.$$

If h is non-degenerate, then we say that the hypersurface or the hypersurface immersion is *non-degenerate*. We have the following

THEOREM 2.2 ([NS, §II.2, Theorem 2.1]). For an arbitrary transversal vector field C the induced connection ∇ , the second fundamental form h, the shape operator S, and the 1-form τ satisfy the following equations:

(2.3)
$$R(X,Y)Z = h(Y,Z)SX - h(X,Z)SY,$$

(2.4)
$$(\nabla_X h)(Y,Z) + \tau(X)h(Y,Z) = (\nabla_Y h)(X,Z) + \tau(Y)h(X,Z),$$

(2.5)
$$(\nabla_X S)(Y) - \tau(X)SY = (\nabla_Y S)(X) - \tau(Y)SX,$$

(2.6)
$$h(X, SY) - h(SX, Y) = 2d\tau(X, Y).$$

Equations (2.3), (2.4), (2.5), and (2.6) are called, respectively, the equation of Gauss, Codazzi for h, Codazzi for S and Ricci.

For a hypersurface immersion $f: M \to \mathbb{R}^{n+1}$ a transversal vector field C is said to be *equiaffine* (resp. *locally equiaffine*) if $\tau = 0$ (resp. $d\tau = 0$).

Let dim M = 2n + 1 and $f: (M, g) \to (\mathbb{R}^{2n+2}, \tilde{g})$ be a non-degenerate (relative to the second fundamental form) isometric immersion, where \tilde{g} is the standard inner product on \mathbb{R}^{2n+2} . We assume that $\mathbb{R}^{2n+2} \simeq \mathbb{C}^{n+1}$ is endowed with the standard complex structure J,

$$J(x_1, \dots, x_{n+1}, y_1, \dots, y_{n+1}) = (-y_1, \dots, -y_{n+1}, x_1, \dots, x_{n+1})$$

Let C be a transversal vector field on M. We say that C is J-tangent if $JC_x \in f_*(T_xM)$ for every $x \in M$. We also define a distribution \mathcal{D} on M as the biggest J-invariant distribution on M, that is,

$$\mathcal{D}_x = f_*^{-1}(f_*(T_xM) \cap J(f_*(T_xM)))$$

for every $x \in M$. It is clear that $\dim \mathcal{D} = 2n$. A vector field X is called a \mathcal{D} -field if $X_x \in \mathcal{D}_x$ for every $x \in M$. We use the notation $X \in \mathcal{D}$ for vectors as well as for \mathcal{D} -fields. We say that the distribution \mathcal{D} is non-degenerate if h is non-degenerate on \mathcal{D} . To simplify the writing, we will omit f_* in front of vector fields in most cases.

We conclude this section with the following useful lemma relating to differential equations (we also give the proof for completeness):

LEMMA 2.3 ([S]). Let $F: I \to \mathbb{R}^{2n}$ be a smooth function on the interval Iand let $\alpha, \beta \in C^{\infty}(I, \mathbb{R})$ be such that $\alpha^2 + \beta^2 \neq 0$ on I. If F satisfies the differential equation

(2.7)
$$F'(y) = -\alpha(y)JF(y) + \beta(y)F(y),$$

then F is of the form

(2.8)
$$F(y) = Jve^{\hat{\beta}(y)}\cos(\hat{\alpha}(y)) + ve^{\hat{\beta}(y)}\sin(\hat{\alpha}(y)),$$

where $v \in \mathbb{R}^{2n}$ and $\hat{\alpha}$, $\hat{\beta}$ are any integrals of α and β on I, respectively.

Proof. It is easily seen that functions of the form (2.8) satisfy the differential equation (2.7). On the other hand, since (2.7) is a first order ordinary differential equation, the Picard–Lindelöf theorem implies that any solution of (2.7) must be of the form (2.8).

3. Almost contact structures. A (2n + 1)-dimensional manifold M is said to have an *almost contact structure* if there exist on M a tensor field φ of type (1, 1), a vector field ξ and a 1-form η which satisfy

$$\varphi^2(X) = -X + \eta(X)\xi, \quad \eta(\xi) = 1$$

for every $X \in TM$.

Let $f: M \to \mathbb{R}^{2n+2}$ be a hypersurface with a *J*-tangent transversal vector field *C*. Then we can define a vector field ξ , a 1-form η and a tensor field φ of type (1,1) as follows:

$$\xi := JC, \quad \eta|_{\mathcal{D}} = 0 \quad \text{and} \quad \eta(\xi) = 1, \quad \varphi|_{\mathcal{D}} = J|_{\mathcal{D}} \quad \text{and} \quad \varphi(\xi) = 0.$$

It is easy to see that (φ, ξ, η) is an almost contact structure on M; it is said to be *induced* by C.

For an induced almost contact structure we have the following theorem:

THEOREM 3.1 ([SS]). If (φ, ξ, η) is an induced almost contact structure on M then

(3.1)
$$\eta(\nabla_X Y) = -h(X, \varphi Y) + X(\eta(Y)) + \eta(Y)\tau(X),$$

(3.2)
$$\varphi(\nabla_X Y) = \nabla_X \varphi Y + \eta(Y) S X - h(X, Y) \xi,$$

(3.3)
$$\eta([X,Y]) = -h(X,\varphi Y) + h(Y,\varphi X) + X(\eta(Y)) - Y(\eta(X)) + \eta(Y)\tau(X) - \eta(X)\tau(Y),$$

(3.4)
$$\varphi([X,Y]) = \nabla_X \varphi Y - \nabla_Y \varphi X - \eta(X) SY + \eta(Y) SX$$

(3.5)
$$\eta(\nabla_X \xi) = \tau(X),$$

(3.6)
$$\eta(SX) = h(X,\xi),$$

for all $X, Y \in \mathcal{X}(M)$.

LEMMA 3.2. Let C be a J-tangent transversal vector field. Then any other J-tangent transversal vector field \overline{C} has the form

$$\bar{C} = \phi C + f_* Z,$$

where $\phi \neq 0$ and $Z \in \mathcal{D}$. Moreover, if (φ, ξ, η) is the almost contact structure induced by C, then \overline{C} induces the almost contact structure $(\overline{\varphi}, \overline{\xi}, \overline{\eta})$, where

$$\bar{\xi} = \phi \xi + \varphi Z, \quad \bar{\eta} = \frac{1}{\phi} \eta, \quad \bar{\varphi} = \varphi + \eta(\cdot) \frac{1}{\phi} Z.$$

Proof. Since $Z \in \mathcal{D}$ and $J = \varphi$ on \mathcal{D} , we have

$$\bar{\xi} = J\bar{C} = J(\phi C + f_*Z) = \phi JC + \varphi Z = \phi \xi + \varphi Z.$$

Directly from the definition of η and $\bar{\eta}$ we get $\eta = \bar{\eta}$ on \mathcal{D} and

$$\eta(\xi) = 1 = \bar{\eta}(\xi) = \bar{\eta}(\phi\xi + \varphi Z) = \phi\bar{\eta}(\xi),$$

thus

$$\bar{\eta}(\xi) = \frac{1}{\phi} \eta(\xi),$$

and finally $\bar{\eta} = \frac{1}{\phi} \eta$. To prove the last equality of the statement, note that

$$0 = \varphi(\xi) = \bar{\varphi}(\bar{\xi}) = \bar{\varphi}(\phi\xi + \varphi Z) = \phi\bar{\varphi}(\xi) + \bar{\varphi}\varphi(Z).$$

From the definition of φ and $\bar{\varphi}$ we have $\varphi = \bar{\varphi}$ on \mathcal{D} , which implies that

$$\bar{\varphi}(\xi) = \frac{1}{\phi}Z = \varphi(\xi) + \eta(\xi)\frac{1}{\phi}Z,$$

since $Z \in \mathcal{D}$. The last formula proves that

$$\bar{\varphi}(X) = \varphi(X) + \eta(X) \frac{1}{\phi} Z$$

is valid for $X = \xi$. Clearly, it is also valid for every $X \in \mathcal{D}$, and thus for every $X \in TM$.

4. Parallel induced almost contact structures. In this section we always assume that (φ, ξ, η) is an almost contact structure induced by a *J*-tangent transversal vector field *C*. It is important to note that we do not assume that the second fundamental form *h* is non-degenerate.

LEMMA 4.1. Let (φ, ξ, η) be an induced almost contact structure such that $\nabla \varphi = 0$. Then

- $(4.1) h|_{\mathcal{D}\times\mathcal{D}} = 0,$
- (4.2) $h(\xi, X) = h(X, \xi) = 0 \quad \text{for all } X \in \mathcal{D},$
- $(4.3) S|_{\mathcal{D}} = 0,$
- (4.4) $S\xi = h(\xi,\xi)\xi,$
- $(4.5) d\tau = 0.$

Proof. From formula (3.2) we have

$$(\nabla_X \varphi)(Y) = -\eta(Y)SX + h(X, Y)\xi$$

for all $X, Y \in \mathcal{X}(M)$. Since $\nabla \varphi = 0$ we get h(X, Y) = 0 and $h(\xi, Y) = 0$ for all $X, Y \in \mathcal{D}$. Now, taking $X \in \mathcal{D}$ and $Y = \xi$ we have SX = 0. Taking $X = Y = \xi$ we easily get $S\xi = h(\xi, \xi)\xi$. The last equation follows immediately from the Ricci equation (2.6).

The above lemma implies that if $\nabla \varphi = 0$, then *C* is a locally equiaffine transversal vector field, so locally we can find a nowhere vanishing function Φ such that $\bar{C} = \Phi C$ is an equiaffine *J*-tangent vector field. Now, using Theorem 2.1 and Lemma 3.2 we get the following corollary:

COROLLARY 4.2. Let C be a J-tangent transversal vector field such that $\nabla \varphi = 0$ and let Φ be a nowhere vanishing function on M. Denote by \overline{C} the transversal vector field ΦC . Then $\overline{\nabla} \overline{\varphi} = 0$. Thus, parallelism of φ relative to ∇ is the direction property. In particular, locally we can always choose C equiaffine.

We shall prove

LEMMA 4.3. Let (φ, ξ, η) be an induced almost contact structure such that $\nabla \eta = 0$. Then

- (4.6) $h|_{\mathcal{D}\times\mathcal{D}} = 0,$
- (4.7) $h(\xi, X) = h(X, \xi) = 0 \quad \text{for every } X \in \mathcal{D},$

- (4.9) $\nabla_X Y \in \mathcal{D}$ for all $X, Y \in \mathcal{D}$,
- (4.10) $\nabla_X \xi \in \mathcal{D}$ for every $X \in \mathcal{X}(M)$,
- (4.11) $\nabla_{\xi} X \in \mathcal{D}$ for every $X \in \mathcal{D}$,
- (4.12) $X(h(\xi,\xi)) = 0 \quad \text{for every } X \in \mathcal{D}.$

Proof. Since $\nabla \eta = 0$ we have

(4.13)
$$\eta(\nabla_X Y) = X(\eta(Y))$$

for all $X, Y \in \mathcal{X}(M)$. Now, using formula (3.1) we get

(4.14)
$$h(X,\varphi Y) = \eta(Y)\tau(X)$$

for all $X, Y \in \mathcal{X}(M)$. Hence, if $X, Y \in \mathcal{D}$, then $h(X, \varphi Y) = 0$, which proves (4.6). Taking $X = \xi$ and $Y \in \mathcal{D}$ in (4.14) we easily get (4.7). On the other hand, taking $Y = \xi$ we have $\tau(X) = 0$, that is, (4.8). Formulas (4.9)–(4.11) can be obtained directly from (4.13). To prove (4.12) note that from the Codazzi equation (2.4) for h (and using (4.8)) we have

$$(\nabla_X h)(\xi,\xi) = (\nabla_\xi h)(X,\xi) = \xi(h(X,\xi)) - h(\nabla_\xi X,\xi) - h(X,\nabla_\xi\xi).$$

Now, if we take $X \in \mathcal{D}$ then because of (4.6)–(4.7) we get $h(X,\xi) = 0$ and $h(X, \nabla_{\xi}\xi) = 0$, whereas (4.11) implies that also $h(\nabla_{\xi}X,\xi) = 0$. Thus, we obtain

$$0 = (\nabla_X h)(\xi, \xi) = X(h(\xi, \xi)) - 2h(\nabla_X \xi, \xi)$$

for every $X \in \mathcal{D}$. Now, using (4.10) in the above formula leads to

 $X(h(\xi,\xi)) = 0$

for every $X \in \mathcal{D}$. This finishes the proof of (4.12).

Denote by N the metric normal field for $f: M \to \mathbb{R}^{2n+2}$ (relative to the standard inner product on \mathbb{R}^{2n+2}). The metric normal field induces objects $\widehat{\nabla}$, \widehat{h} and \widehat{S} as the transversal vector field on M. Recall that the induced connection $\widehat{\nabla}$ is the Levi-Civita connection of the induced Riemannian metric g. It is clear that N is J-tangent, thus induces an almost contact structure $(\widehat{\varphi}, \widehat{N}, \widehat{\eta})$ on M.

THEOREM 4.4. Let $f: M \to \mathbb{R}^{2n+2}$ be an affine immersion. Then the following conditions are equivalent:

- (1) For every point on M there exist a neighborhood U and a J-tangent transversal vector field C defined on U such that $\nabla \varphi = 0$.
- (2) For every point on M there exist a neighborhood U and a J-tangent transversal vector field C defined on U such that $\nabla \eta = 0$.
- (3) An induced almost contact structure $(\widehat{\varphi}, \widehat{N}, \widehat{\eta})$ is $\widehat{\nabla}$ -parallel.

208

Proof. Let x be any point on M. Assume that in some neighborhood U of x there exists a J-tangent transversal vector field C such that $\nabla \varphi = 0$. Then, by virtue of Corollary 4.2 we can assume (possibly shrinking U) that C is equiaffine. Now, by Theorem 3.1 (formula (3.1)) we get

$$(\nabla_X \eta)(Y) = h(X, \varphi Y) - \eta(Y)\tau(X) = h(X, \varphi Y)$$

for all $X, Y \in \mathcal{X}(U)$. Using the first two formulas from Lemma 4.1 we get

$$\nabla \eta \equiv 0,$$

which proves the implication $(1) \Rightarrow (2)$.

To prove $(2) \Rightarrow (3)$ note that if (φ, ξ, η) is an almost contact structure induced by a *J*-tangent transversal vector field *C* defined on some neighborhood *U* of *x* and such that $\nabla \eta = 0$ then

$$\widehat{N}|_U = \Phi \xi + \varphi Z,$$

where $Z \in \mathcal{D}$ and $\Phi = \text{const.}$ Also note that the condition $\nabla \eta = 0$ is invariant under scaling the field C by a constant. Therefore, we can later assume that C is chosen in such a way that

$$\widehat{N}|_U = \xi + \varphi Z.$$

By Theorem 2.1 and Lemma 3.2 we obtain $\hat{h} = h$ and $\hat{\eta} = \eta$. Since N is the metric normal field we see that g, $\hat{h} = h$ and \hat{S} are related by the formula

$$h(X,Y) = g(\widehat{S}X,Y)$$

for all $X, Y \in \mathcal{X}(U)$. The above equality and Lemma 4.3 imply

$$\widehat{S}X = h(\widehat{N}, X)\widehat{N}$$

for every $X \in \mathcal{X}(U)$. Now, using (3.2) and (3.5) for the structure $(\widehat{\varphi}, \widehat{N}, \widehat{\eta})$ we easily get

$$\widehat{\varphi}(\widehat{\nabla}_X \widehat{N}) = \widehat{S}X - h(\widehat{N}, X)\widehat{N} = 0 \text{ and } \widehat{\eta}(\widehat{\nabla}_X \widehat{N}) = 0$$

for every $X \in \mathcal{X}(U)$, that is, $\widehat{\nabla}_X \widehat{N} = 0$ for every $X \in \mathcal{X}(U)$. Lemma 4.3 implies that

$$(\widehat{\nabla}_X \widehat{\varphi})(Y) = \widehat{h}(X, Y)\widehat{N} - \widehat{\eta}(Y)\widehat{S}X = h(X, Y)\widehat{N} - \eta(Y)h(\widehat{N}, X)\widehat{N}$$
$$= (h(X, Y) - \eta(Y)h(\xi, X))\widehat{N} = 0$$

for all $X, Y \in \mathcal{X}(U)$. Arbitrariness of $x \in M$ gives $\widehat{\nabla}\widehat{N} = 0$ and $\widehat{\nabla}\widehat{\varphi} = 0$ on the whole M. The condition $\widehat{\nabla}\widehat{\eta} = 0$ can easily be obtained from the equality $\widehat{\nabla}\widehat{\varphi} = 0$, the fact that N is equiaffine and the proof of $(1) \Rightarrow (2)$.

To prove $(3) \Rightarrow (1)$ it is sufficient to take C := N.

From the proof of Theorem 4.4 it follows that if there exists an equiaffine J-tangent transversal vector field C with $\nabla \varphi = 0$, then we also have $\nabla \eta = 0$ for C. Moreover, condition (3) in the above theorem is equivalent to the global versions of conditions (1) and (2), that is,

- (1') There exists a *J*-tangent transversal vector field *C* on *M* such that $\nabla \varphi = 0$.
- (2') There exists a J-tangent transversal vector field C on M such that $\nabla \eta = 0.$

It follows from Lemmas 4.1 and 4.3 that rank $f \leq 1$. However, the converse is not true in general since we have the following

EXAMPLE 4.5. Let us consider an affine immersion defined as follows:

$$f \colon \mathbb{R}^3 \ni (x, y, z) \mapsto \begin{bmatrix} x \\ y \\ z \\ e^z \end{bmatrix} \in \mathbb{R}^4.$$

Of course rank f = 1. Let $\{\partial_1, \partial_2, \partial_3\}$ be the canonical basis on \mathbb{R}^3 generated by the coordinate system (x, y, z) on \mathbb{R}^3 . It is not difficult to see that

$$N \colon \mathbb{R}^3 \ni (x, y, z) \mapsto \begin{bmatrix} 0 \\ 0 \\ -\frac{e^z}{\sqrt{e^{2z} + 1}} \\ \frac{1}{\sqrt{e^{2z} + 1}} \end{bmatrix} \in \mathbb{R}^4$$

is the metric normal field for f. Now,

$$\widehat{N} = \begin{bmatrix} \frac{e^z}{\sqrt{e^{2z} + 1}} \\ -\frac{1}{\sqrt{e^{2z} + 1}} \\ 0 \\ 0 \end{bmatrix}.$$

The above implies that

$$f_*(\partial_3) = f_z = \begin{bmatrix} 0\\0\\1\\e^z \end{bmatrix}$$

is orthogonal to \widehat{N} , thus it belongs to the distribution \mathcal{D} . We will show that $(\widehat{\nabla}_{\partial_3}\widehat{\varphi})(\partial_3) \neq 0$. By straightforward computations we get

$$\widehat{\nabla}_{\partial_3}\partial_3 = \frac{e^{2z}}{e^{2z}+1}\partial_3 \text{ and } \widehat{\varphi}(\partial_3) = -\partial_1 - e^z\partial_2$$

Now

$$\begin{aligned} (\widehat{\nabla}_{\partial_3}\widehat{\varphi})(\partial_3) &= \widehat{\nabla}_{\partial_3}(\widehat{\varphi}(\partial_3)) - \widehat{\varphi}(\widehat{\nabla}_{\partial_3}\partial_3) \\ &= \widehat{\nabla}_{\partial_3}(-\partial_1 - e^z\partial_2) - \widehat{\varphi}\left(\frac{e^{2z}}{e^{2z}+1}\partial_3\right) \\ &= -\widehat{\nabla}_{\partial_3}\partial_1 - e^z\widehat{\nabla}_{\partial_3}\partial_2 - \partial_3(e^z)\partial_2 + \frac{e^{2z}}{e^{2z}+1}\partial_1 + \frac{e^{3z}}{e^{2z}+1}\partial_2 \\ &= \frac{e^{2z}}{e^{2z}+1}\partial_1 + \left(\frac{e^{3z}}{e^{2z}+1} - e^z\right)\partial_2 \neq 0, \end{aligned}$$

since $\widehat{\nabla}_{\partial_3}\partial_1 = \widehat{\nabla}_{\partial_3}\partial_2 = 0$ and ∂_1, ∂_2 are linearly independent.

In later parts of this paper we will give a local characterization of affine hypersurfaces satisfying any (thus all) of the conditions from Theorem 4.4. We need the following lemma:

LEMMA 4.6. Let $f: M \to \mathbb{R}^{2n+2}$ be a hypersurface with a metric normal field N. Assume that an almost contact structure $(\widehat{\varphi}, \widehat{N}, \widehat{\eta})$ induced by N is $\widehat{\nabla}$ -parallel. Then, for every point x of M and for any nowhere vanishing smooth function α defined in some neighborhood of x and constant in the direction of \mathcal{D} (i.e. $X(\alpha) = 0$ for every $X \in \mathcal{D}$), there exist a neighborhood of x and a map $\psi(y, x_1, \ldots, x_{2n})$ defined on this neighborhood such that the vector fields $\partial/\partial y, \partial/\partial x_1, \ldots, \partial/\partial x_{2n}$ satisfy

$$\frac{\partial}{\partial y} = \alpha \widehat{N} \quad and \quad \frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_{2n}} \in \mathcal{D}.$$

Proof. Since $(\widehat{\varphi}, \widehat{N}, \widehat{\eta})$ is $\widehat{\nabla}$ -parallel, in particular (by (4.9)) the distribution \mathcal{D} is involutive. Let x be any point on M and let α be a nowhere vanishing smooth function defined in some neighborhood of x and constant in the direction of \mathcal{D} . The Frobenius theorem implies that for xthere exist an open neighborhood $U \subset M$ and linearly independent vector fields $X_1, \ldots, X_{2n}, X_{2n+1} = \alpha \widehat{N} \in \mathcal{X}(U)$ such that $[X_i, X_j] = 0$ for $i, j = 1, \ldots, 2n + 1$. For every $i = 1, \ldots, 2n$ we have

$$X_i = D_i + \alpha_i N,$$

where $D_i \in \mathcal{D}$ and $\alpha_i \in C^{\infty}(U)$. Thus

(4.15)
$$0 = [X_i, X_{2n+1}] = [D_i, X_{2n+1}] - X_{2n+1}(\alpha_i)\hat{N}.$$

From (4.10) and (4.11) it is clear that $[D_i, \widehat{N}] \in \mathcal{D}$. Since $D_i(\alpha) = 0$ we also

have

$$D_i, X_{2n+1}] = \alpha[D_i, \widehat{N}] + D_i(\alpha)\widehat{N} = \alpha[D_i, \widehat{N}] \in \mathcal{D}.$$

Now (4.15) implies that $[D_i, X_{2n+1}] = 0$ and $X_{2n+1}(\alpha_i) = 0$ for $i = 1, \ldots, 2n$. Moreover, for all $i, j = 1, \ldots, 2n$ we have

$$[D_i, D_j] = [X_i, X_j] - [\alpha_i \widehat{N}, X_j] - [X_i, \alpha_j \widehat{N}] + [\alpha_i \widehat{N}, \alpha_j \widehat{N}].$$

Since $[X_i, X_j] = 0$, \mathcal{D} is involutive and the last three terms in the above equality are proportional to \widehat{N} , we obtain

$$[D_i, D_j] = 0$$

for all i, j = 1, ..., 2n. Of course the vector fields $D_1, ..., D_{2n}, X_{2n+1}$ are linearly independent over $C^{\infty}(U)$, so we can find a map $\psi(y, x_1, ..., x_{2n})$ on U such that $\partial/\partial y = X_{2n+1}$ and $\partial/\partial x_i = D_i$ for i = 1, ..., 2n.

In the next two theorems we give a local characterization of hypersurfaces for which there exists a *J*-tangent transversal vector field inducing an almost contact structure (φ, ξ, η) such that $\nabla \varphi = 0$ or $\nabla \eta = 0$.

THEOREM 4.7. Let $f: M \to \mathbb{R}^{2n+2}$ be a hypersurface such that the almost contact structure $(\widehat{\varphi}, \widehat{N}, \widehat{\eta})$ is $\widehat{\nabla}$ -parallel. Let U be a non-empty open subset of M. If rank f = 0 on U then f(U) is a piece of a hyperplane.

Proof. Since rank $\hat{h} = 0$ and $\hat{\nabla}\hat{\varphi} = 0$ on U, Lemma 4.1 implies

$$D_X N = -\widehat{S}X = 0$$

for every $X \in \mathcal{X}(U)$. It follows that a metric normal field N is constant on U, thus f(U) is a hyperplane in \mathbb{R}^{2n+2} .

THEOREM 4.8. Let $f: M \to \mathbb{R}^{2n+2}$ be a hypersurface such that the almost contact structure $(\widehat{\varphi}, \widehat{N}, \widehat{\eta})$ is $\widehat{\nabla}$ -parallel. Let x be a point on M such that rank f = 1 at x. Then there exists an open neighborhood U of x such that f can be expressed on U in the form

(4.16)
$$f(x_1, \dots, x_{2n}, y) = x_1 b_1 + \dots + x_{2n} b_{2n} - v \int \alpha(y) \cos y \, dy + J v \int \alpha(y) \sin y \, dy,$$

where $v \in \mathbb{R}^{2n+2}$, ||v|| = 1, α is some nowhere vanishing smooth function on U and $b_1, \ldots, b_{2n} \in \mathbb{R}^{2n+2}$ are linearly independent vectors from $\{v, Jv\}^{\perp}$. Moreover, every hypersurface (4.16) has a $\widehat{\nabla}$ -parallel almost contact structure $(\widehat{\varphi}, \widehat{N}, \widehat{\eta})$.

Proof. First, note that since rank $\hat{h}_x = 1$, we have $\hat{h}_x(\hat{N}_x, \hat{N}_x) \neq 0$. Since $\hat{h}(\hat{N}, \hat{N})$ is smooth we can find a neighborhood U of x such that $\hat{h}(\hat{N}, \hat{N}) \neq 0$ on U, thus rank $\hat{h} = 1$ on U. Moreover, by (4.12) the function $\hat{h}(\hat{N}, \hat{N})$ is constant in a direction of the distribution \mathcal{D} .

212

Let us define a new function on U,

$$\alpha := \frac{1}{\widehat{h}(\widehat{N}, \widehat{N})}.$$

It is clear that $\alpha \neq 0$ and α is constant in a direction of \mathcal{D} . Using Lemma 4.6 and possibly shrinking U we deduce that there exists a map ψ on U such that

$$\frac{\partial}{\partial y} = \alpha \widehat{N} \quad \text{and} \quad \frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_{2n}} \in \mathcal{D}$$

By the Weingarten formula (2.2) and formulas (4.3), (4.4) we get

$$D_{\partial/\partial x_i}N = -\widehat{S}\left(\frac{\partial}{\partial x_i}\right) = 0$$

for $i = 1, \ldots, 2n$ and

$$D_{\partial/\partial y}N = -\widehat{S}\left(\frac{\partial}{\partial y}\right) = -\alpha\widehat{S}(\widehat{N}) = -\alpha\widehat{h}(\widehat{N},\widehat{N})\widehat{N} = -\widehat{N} = -JN,$$

thus $N_{x_i} = 0$ for i = 1, ..., 2n and $N_y = -JN$. Now, Lemma 2.3 implies that

$$N = Jv\cos y + v\sin y,$$

where $v \in \mathbb{R}^{2n+2}$. Since N is a metric normal field, we see that

$$1 = ||N|| = ||Jv\cos y + v\sin y|| = ||v||.$$

Let b_1, \ldots, b_{2n} be any linearly independent vectors from \mathbb{R}^{2n+2} such that $b_i \in \{v, Jv\}^{\perp}$. We have

$$N \cdot b_i = 0$$
 and $\hat{N} \cdot b_i = 0$,

for every $i = 1, \ldots, 2n$, therefore the vectors b_1, \ldots, b_{2n} span $f_*(\mathcal{D})$. Let $\partial_1, \ldots, \partial_{2n}$ be vector fields on U such that $f_*(\partial_i) = b_i$ for $i = 1, \ldots, 2n$. Of course $\partial_1, \ldots, \partial_{2n}$ are linearly independent and span the distribution \mathcal{D} . For every $X \in TU$ and for every $i = 1, \ldots, 2n$ we have

$$D_X f_* \partial_i = D_X b_i = 0.$$

On the other hand by the Gauss formula (2.1) and due to the fact that $\hat{h}|_{\mathcal{D}\times\mathcal{D}} = 0$ we obtain

$$D_X f_* \partial_i = f_* (\nabla_X \partial_i),$$

thus

$$\widehat{\nabla}_X \partial_i = 0$$

for every $X \in TU$. In particular, we have

$$\widehat{\nabla}_{\partial_i}\partial_j = 0$$

for all $i, j \in \{1, \ldots, 2n\}$ and

$$\widehat{\nabla}_{\partial/\partial y}\partial_i = 0$$

for $i = 1, \ldots, 2n$. Moreover

$$\widehat{\nabla}_{\partial_i}\frac{\partial}{\partial y} = \widehat{\nabla}_{\partial_i}(\alpha \widehat{N}) = \partial_i(\alpha)\widehat{N} + \alpha \widehat{\nabla}_{\partial_i}\widehat{N} = 0.$$

since α is constant in a direction of \mathcal{D} and $\widehat{\nabla}\widehat{N} = 0$. To sum up, the vector fields

$$\partial_1, \ldots, \partial_{2n}, \frac{\partial}{\partial y}$$

are associated with some map $\tilde{\psi}$. Denoting again $\partial_1, \ldots, \partial_{2n}$ by $\partial/\partial x_1, \ldots$ $\ldots, \partial/\partial x_{2n}$ we see that the immersion f satisfies the differential equations

$$f_{x_i} = b_i$$

for $i = 1, \ldots, 2n$ and

$$f_y = \alpha(y)\hat{N} = \alpha(y)(-v\cos y + Jv\sin y).$$

Solving the above we get a local form of f as follows:

$$f(x_1, \dots, x_{2n}, y)$$

= $x_1b_1 + \dots + x_{2n}b_{2n} - v\int \alpha(y)\cos y \, dy + Jv\int \alpha(y)\sin y \, dy.$

To prove the second part of the theorem note that the function described by (4.16) is an immersion, since b_1, \ldots, b_{2n} and $-v\alpha(y)\cos y + Jv\alpha(y)\sin y$ are linearly independent. Now, it is enough to show that $\widehat{\nabla}\widehat{\eta} = 0$. It is not difficult to see that $N = Jv\cos y + v\sin y$, thus

$$\widehat{N} = -v\cos y + Jv\sin y;$$

moreover $\partial/\partial x_i \in \mathcal{D}$ and $\widehat{\nabla}_X(\partial/\partial x_i) = 0$ for $i = 1, \ldots, 2n$, which imply $(\widehat{\nabla}_X \widehat{\eta})(Y) = 0$ for all $X \in TM$ and $Y \in \mathcal{D}$. To complete the proof note that

$$(\widehat{\nabla}_X\widehat{\eta})(\widehat{N}) = X(\widehat{\eta}(\widehat{N})) - \widehat{\eta}(\widehat{\nabla}_X\widehat{N}) = -\widehat{\eta}(\widehat{\nabla}_X\widehat{N})$$

for every $X \in TM$. If $X \in \mathcal{D}$ then $\widehat{\nabla}_X \widehat{N} = 0$, because

$$D_X N = D_X (-v\cos y + Jv\sin y) = 0$$

for every $X \in \mathcal{D}$. If $X = \partial/\partial y$ then

$$D_{\partial/\partial y}N = Jv\cos y + v\sin y = N,$$

thus $\widehat{\nabla}_{\partial/\partial y}\widehat{N} = 0$. Summarizing, we have shown that $\widehat{\nabla}\widehat{\eta} = 0$, which completes the proof.

References

- [B] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, 2nd ed., Progr. Math. 203, Birkhäuser Boston, 2010.
- [C] V. Cruceanu, Real hypersurfaces in complex centro-affine spaces, Results Math. 13 (1988), 224–234.

214

- [NS] K. Nomizu and T. Sasaki, Affine Differential Geometry, Cambridge Univ. Press, 1994.
- [SS] M. Szancer and Z. Szancer, Real hypersurfaces with an induced almost contact structure, Colloq. Math. 114 (2009), 41–51.
- [S] Z. Szancer, *Real hypersurfaces with a special transversal vector field*, submitted.

Zuzanna Szancer Department of Applied Mathematics University of Agriculture in Kraków 253c Balicka St. 30-198 Kraków, Poland E-mail: Zuzanna.Szancer@ur.krakow.pl

> Received 29.8.2011 and in final form 2.11.2011

(2529)