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Łojasiewicz exponent of the gradient near the fiber

by Ha Huy Vui and Nguyen Hong Duc (Hanoi)

Abstract. It is well-known that if r is a rational number from [−1, 0), then there is
no polynomial f in two complex variables and a fiber f−1(t0) such that r is the Łojasiewicz
exponent of grad(f) near the fiber f−1(t0). We show that this does not remain true if we
consider polynomials in real variables. More exactly, we give examples showing that any
rational number can be the Łojasiewicz exponent near the fiber of the gradient of some
polynomial in real variables. The second main result of the paper is the formula computing
the Łojasiewicz exponent of the gradient near a fiber of a polynomial in two real variables.
In particular, this gives, in the case of two real variables, a way to tell whether a given
value is an asymptotic critical value or not.

1. Introduction. Let g : Kn → Kp be a polynomial mapping, K = C
or R. For an unbounded set S ⊂ Kn, put

L∞(g|S) := sup{ν ∈ R : ∃C,R > 0, ∀x ∈ S (‖x‖ ≥ R⇒ ‖g(x)‖ ≥ C‖x‖ν)}.

Let f : Kn → K be a polynomial function and Dδ = {t : |t − t0| ≤ δ}. Ha
Huy Vui [H1] defined

L∞(f, t0) = lim
δ→0
L∞(grad f |f−1(Dδ)),

or equivalently ([C-K], [Sk])

L̃∞(f, t0) = inf
Φ

deg grad f ◦ Φ
degΦ

,

where Φ runs over the set of meromorphic functions in a neighborhood of
infinity such that degΦ > 0, deg(f − t0) ◦ Φ < 0. Following [R-S], we call
them the Łojasiewicz exponent of the gradient of f near the fiber f−1(t0).

This exponent plays an important role in the study of polynomial map-
pings. According to a fundamental result of R. Thom [Th], there is a finite
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subset B(f) of K, called the bifurcation set, such that the mapping

f : Kn \ f−1(B(f))→ K \B(f)

defines a C∞ locally trivial fiber bundle. It is known that the set Σ(f) of
critical values of f is a subset of B(f) and in general it is not equal to B(f).
The points of B∞(f) = B(f) \ Σ(f) are usually called critical values of
singularities at infinity of f . It is important to be able to decide whether
a given value in K belongs to B∞(f). Although this problem has attracted
attention of many specialists in singularity theory and algebraic geometry
during the last twenty years [C-K], [H1], [H-L], [P], it is still open. We know
the answer only for a number of particular cases.

It is easy to see that for any n, for K = C or K = R, L∞(f, t0) < 0 is
always a necessary condition for t0 to be in B∞(f).

Assume K = C. If n = 2, then a value t0 belongs to B∞(f) if and
only if L∞(f, t0) is negative. Moreover, if L∞(f, t0) < 0 for some t0 then
L∞(f, t0) < −1 ([H1], [C-K]). The same holds for n ≥ 3 if we assume that
the polynomial f has only isolated singularities at infinity [P].

In the general case, the above results are no longer true:

• There is a polynomial f in three complex variables such that L∞(f, t0)
< −1 but t0 is not a critical value of singularities at infinity for f [P-Z].
• For n ≥ 3, there is a polynomial f of n variables such that the set

of all t with L∞(f, t) < 0 is the whole K, while the set of t where
L∞(f, t) < −1 is always finite.

These facts lead to the following question which seems to be still open:
Is the set

K∞(f) := {t ∈ R : L∞(f, t) < −1}
equal to

K̃∞(f) := {t ∈ R : L∞(f, t) < 0}
for any polynomial in two real variables?

We will show that for every rational number α there is a polynomial f
in n ≥ 2 variables such that α = L∞(f, t) for some t (Theorem 2.1).

In particular, when K = R, the set K∞(f) can be strictly included in
K̃∞(f), although, for n = 2, both are finite.

Any point ofK∞(f) is called an asymptotic critical value of f . This notion
appears in many problems of mathematics [K-M-P]. For example, the fact
that K∞(f) is finite plays an important role in the proof of the gradient
conjecture [K-M-P].

We are interested in finding a simple way to decide whether a given value
belongs to the set of asymptotic critical values or not. For polynomials in
several complex variables, Jelonek and Kurdyka [J-K] gave an algorithm to
compute this set. It turns out that this can also be done for polynomials in



Łojasiewicz exponent of the gradient 199

two variables, by using the Puiseux expansions at infinity (in the complex
case) or their real approximations (in the real case) for the polar curve
(Theorems 3.4 and 3.7).

2. The Łojasiewicz exponent of the gradient near the fiber in
the real case

Theorem 2.1. For every rational α, there exists f ∈ R[x1, . . . , xn] for
which L∞(f, 0) = α.

Proof. We consider first the case n = 2. It will be shown that L∞(f, 0) =
−2q/p+ 2m for the polynomial

f(x, y) =
1

2p+ 2m+ 1
x2p+2m+1y2q − 2

p+ 2m+ 1
xp+2m+1yq

+
1

2m+ 1
x2m+1 +

1
2m+ 3

x2m+3

+
1

2p+ 1
x2p+1y2q+2m − 2

p+ 1
xp+1yq+2m + xy2m +

1
3
x3y2m,

where p ≥ q > 0 and m ≥ 0 are integers. We see that

fx(x, y) =
∂f

∂x
(x, y) = [(xpyq − 1)2 + x2](x2m + y2m),

fy(x, y) =
2q

2p+ 2m+ 1
x2p+2m+1y2q−1 − 2q

p+ 2m+ 1
xp+2m+1yq−1

+
2q + 2m
2p+ 1

x2p+1y2q+2m−1 − 2(q + 2m)
p+ 1

xp+1yq+2m−1

+ 2mxy2m−1 +
2m
3
x3y2m−1.

For the series x = ϕ(y) = y−q/p, we have

fx(ϕ(y), y) ∼ y−2q/p+2m and fy(ϕ(y), y) ∼ yβ

with β ≤ −2q/p+ 2m. Thus

L∞(f, 0) ≤ −2q/p+ 2m.(2.1)

For every (x, y) ∈ R2, x2 +y2 = r2 →∞. If xpyq−1 9 0 or x 9 0 as r →∞
then

|fx(x, y)| ≥ Cr2m ≥ Cr−2q/p+2m.

Assume now that

xpyq − 1 = ε(r)→ 0 and x→ 0 as r →∞.
We have

|y|q =
1 + ε(r)
|x|p

≤ rq.
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Therefore
x2 ≥ Cr−2q/p.

Thus
|fx(x, y)| ≥ Cr−2q/p+2m.

Hence

L∞(f, 0) ≥ −2q/p+ 2m.(2.2)

From (2.1) and (2.2), we get

L∞(f, 0) = −2q/p+ 2m ∀p ≥ q > 0, m ≥ 0.(2.3)

Thus, for every rational α ≥ −2, there is an f(x, y) ∈ R[x, y] satisfying
L∞(f, 0) = α.

Consider now the polynomial

f(x, y) = xpyq − x,

where p > 1, q > 0 are integers L∞(f, 0) = −p+q−1
p−1 . We have

fx(x, y) = pxp−1yq − 1 and fy(x, y) = qxpyq−1.

Clearly

L∞(f, 0) = −p+ q − 1
p− 1

, ∀p > 1, q > 0.(2.4)

From (2.3) and (2.4), for every rational α, there is an f(x, y) ∈ R[x, y]
satisfying L∞(f, 0) = α.

Now we consider the general case. For every rational α, we put

F (x1, x2, . . . , xn) = f(x1, x2) + xk3 + · · ·+ xkn,

where k > 0 is integer, k ≥ α + 1 and f ∈ R[x, y] satisfies L∞(f, 0) = α. It
is clear that L∞(F, 0) = α.

Remark 2.2. A similar result (for the Łojasiewicz exponent at infinity)
was given by E. A. Gorin (see [G]).

Let f ∈ R[x1, . . . xn] and let g : Rn → Rm be a polynomial mapping. Let
t0 ∈ R. The authors of [R-S] define

L∞,f→t0(g) = sup{L∞(g|f−1(U)) : U ⊂ Rn is a neighborhood of t0}.

Analogously to Theorem 2.1 we can show

Remark 2.3. For every α ∈ Q there exist f ∈ R[x1, . . . , xn] and a
polynomial mapping g : Rn → Rm such that L∞,f→0(g) = α.
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3. The Łojasiewicz exponent of the gradient near the fiber in
the two variables case. We begin by recalling the definition of the Newton
polygon relative to an arc and the process of sliding which were introduced
by Kuo and Parusiński in [K-P].

If ϕ(τ) is a series of the form

ϕ(τ) = a0τ
α + terms of lower degree with a0 6= 0,

then the number α is denoted by degϕ.
Let f : C2 → C be a polynomial. For a series

x = ϕ(y) = c1y
n1/N + c2y

n2/N + · · · , ci ∈ C2, c1 6= 0,

we put
M(X,Y ) = f(X + ϕ(1/Y ), 1/Y ) =

∑
i,j

cijX
iY j/N .

For each cij 6= 0, let us plot a dot at (i, j/N), called a Newton dot. The
set of Newton dots is called the Newton diagram. They generate a convex
hull, whose boundary is called the Newton polygon of f relative to ϕ, to be
denoted by P(f, ϕ) or P(M).

Assume that x = ϕ(y) is not a Puiseux root at infinity of f = 0. Then
the Y -axis contains at least one dot of M . Let (0, hM ) be the lowest Newton
dot. We see that hM = −deg f(ϕ(y), y).

By the highest Newton edge HM of M we mean the edge of P(M) with
one of extremities at (0, hM ) and such that all Newton dots of M lie on
or above the line containing HM . Let θM = tan ν, where ν is the angle
between HM and the X-axis. Note that if (i, j/N) is a Newton dot of M
then θM i+ j/N ≥ hM , and (i, j/N) ∈ HM if and only if θM i+ j/N = hM .
If x = ϕ(y) is a Puiseux root at infinity of f = 0, we set hM = +∞ and
θM = +∞.

We associate to HM the polynomial εM (x) := ε(x, 1), where

ε(X,Y ) =
∑

cijX
iY j/N with (i, j/N) ∈ HM .

Lemma 3.1 ([H-D, Lemma 2.1]). Let M̃(X,Y ) = M(X + cY θ, Y ).

(a) If θ > θM , then hfM = hM and θfM = θM .
(b) If θ = θM and c is a non-zero root of εM (x), then hfM > hM and

θfM > θM .
(c) If θ = θM and εM (c) 6= 0, then hfM = hM and θfM = θM .

If c is a non-zero root of εM (x), the series ϕ1(y) = ϕ(y) + cy−θM will
be called the sliding of ϕ(y) along f . A recursive sliding ϕ → ϕ1 → · · ·
produces a limit, ϕ∞, where ϕ∞(y) = ϕi(y) if f(ϕi(y), y) = 0. The series
ϕ∞ is a Puiseux root at infinity of f = 0 (see [W]) and will be called a final
result of sliding ϕ along f .
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Lemma 3.2 ([H-D, Lemma 2.2]). Let f, g : C2 → C be two polynomials.
For a series x = ϕ(y), we put

M(X,Y ) = f(X + ϕ(1/Y ), 1/Y ),
N(X,Y ) = g(X + ϕ(1/Y ), 1/Y ).

We have

(a) if θM > θN , then deg g(ϕ∞(y), y) = deg g(ϕ(y), y);
(b) if θM = θN , then deg g(ϕ∞(y), y) ≤ deg g(ϕ(y), y),

where x = ϕ∞(y) is a final result of sliding ϕ along f .

Let us consider a series x = λ(y) of the form

x = λ(y) = a1y
α1 + a2y

α2 + · · ·+ as−1y
αs−1 + asy

αs + · · ·

where α1 > α2 > · · · .
If a1, . . . , as−1 ∈ R and as 6∈ R, following Kuo [K] we put

λR(y) := a1y
α1 + a2y

α2 + · · ·+ as−1y
αs−1 + cyαs ,

where c is a generic real number. We call λR(y) the real approximation
of λ(y).

Lemma 3.3 ([H-D, Lemma 2.3]). Let f, g : R2 → R be polynomials. For
a series x = ϕ(y), we put

M(X,Y ) = f(X + ϕ(1/Y ), 1/Y ),
N(X,Y ) = g(X + ϕ(1/Y ), 1/Y ).

Let x = ϕ∞(y) be a final result of sliding ϕ along f and ϕR
∞(y) be the real

approximation of ϕ∞(y). We have

(a) if θM > θN , then deg g(ϕR
∞(y), y) = deg g(ϕ(y), y);

(b) if θM = θN , then deg g(ϕR
∞(y), y) ≤ deg g(ϕ(y), y).

In particular for g = f , we have deg f(ϕR
∞(y), y) ≤ deg f(ϕ(y), y).

Theorem 3.4. Let f be a polynomial in two complex variables (x, y).
Assume that f is monic in x, and t0 ∈ C. Let x = xi(y), i = 1, . . . , d− 1, be
the Puiseux expansions at infinity of fx(x, y) = 0. Put

V (f, t0) = {xi(y) : deg(f(xi(y), y)− t0) < 0}.

If L∞,f→t0(grad f) < 0, then V (f, t0) 6= ∅ and

L∞,f→t0(grad f) = min
i
{deg(f(xi(y), y)− t0)− 1: xi(y) ∈ V (f, t0)}.

Proof. Let x = ϕ(y) be any series satisfying

deg(f(ϕ(y), y)− t0) < 0, deg grad f(ϕ(y), y) < 0.
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We put

M(X,Y ) = f(X + ϕ(1/Y ), 1/Y )− t0 =
∑
i,j

cijX
iY j/N ,

P (X,Y ) = fx(X + ϕ(1/Y ), 1/Y ),
Q(X,Y ) = fx(X + ϕ(1/Y ), 1/Y ) + cfy(X + ϕ(1/Y ), 1/Y ),
R(X,Y ) = fx(X + ϕ(1/Y ), 1/Y ) + c(f(X + ϕ(1/Y ), 1/Y )− t0),

where c is a generic number. Then

P (X,Y ) =
∂M

∂X
(X,Y ),

Q(X,Y ) =
∂M

∂X
(X,Y )− c

(
ϕ′
(

1
Y

)
∂M

∂X
(X,Y ) + Y 2∂M

∂Y
(X,Y )

)
,

R(X,Y ) =
∂M

∂X
(X,Y )− cM(X,Y ).

Claim. θP > 0, θP ≥ θQ and θP ≥ θR.

Note that if (i, j/N) is a Newton dot of P then θP i + j/N ≥ hP . Since
the point (d− 1, 0) is a Newton dot of P , θP (d− 1)+0 ≥ hP . Hence θP > 0.

Let (α, β) be the second extremity of HQ. We will show that θPα + β
≥ hP . In fact:

• If (α, β) is a Newton dot of P , then θPα+ β ≥ hP .
• If (α, β) is a Newton dot of ϕ′(1/Y )∂M∂X (X,Y ), then (α, β− s) is a dot

of P , where s ≥ 0 since degϕ ≤ 1. Therefore

θPα+ (β − s) ≥ hP .

Thus
θPα+ β ≥ hP .

• If (α, β) is a Newton dot of Y 2 ∂M
∂Y (X,Y ), then (α− 1, β − 1) is a dot

of P . Therefore
θP (α− 1) + (β − 1) ≥ hP .

Thus θPα+ β ≥ hP since θP > 0.

Since the point (0, hP ) is a Newton dot of Q, hP ≥ hQ. Therefore

θPα+ β ≥ hP ≥ hQ = θQα+ β.

Hence θP ≥ θQ.
Analogously, we can show that θP ≥ θR.
Now, using the claim and Lemma 3.2, we get

deg(fx(ϕ∞(y), y) + cfy(ϕ∞(y), y)) ≤ deg(fx(ϕ(y), y) + cfy(ϕ(y), y))
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and

deg(fx(ϕ∞(y), y) + c(f(ϕ∞(y), y)− t0))
≤ deg(fx(ϕ(y), y) + c(f(ϕ(y), y)− t0)),

where ϕ∞(y) is a final result of sliding ϕ(y) along fx. Therefore

deg(f(ϕ∞(y), y)− t0)− 1 = deg
df(ϕ∞(y), y)

dy
= deg fy(ϕ∞(y), y)

≤ deg(grad f(ϕ(y), y))

and

deg(f(ϕ∞(y), y)− t0) ≤ deg(fx(ϕ(y), y) + cf(ϕ(y), y)) < 0.

Thus V (f, t0) 6= ∅ and
L∞,f→t0(grad f) ≥ min

i
{deg(f(xi(y), y)− t0)− 1: xi(y) ∈ V (f, t0)}.

On the other hand, the inequality

L∞,f→t0(grad f) ≤ min
i
{deg(f(xi(y), y)− t0)− 1: xi(y) ∈ V (f, t0)}

is always satisfied. Hence

L∞,f→t0(grad f) = min
i
{deg(f(xi(y), y)− t0)− 1: xi(y) ∈ V (f, t0)}.

Remark 3.5. This result is implicitly contained in [K-P] (see also [H2]
for a different proof).

Corollary 3.6 ([G-S, Theorem 3.1]). Let f(x, y) be a polynomial in
two complex variables and d = deg f > 2. If L∞,f→t0(gradf) < 0, then

L∞,f→t0(gradf) ≤ −1− 1
d− 2

.

Proof. The proof goes along the same lines as in [G-S]. Let x = xi(y),
i = 1, . . . , d−1, be the Puiseux expansions at infinity of fx(x, y) = 0. Assume
that L∞,f→t0(grad f) < 0. By Theorem 3.4 there exists i0 ∈ {1, . . . , d − 1}
such that

L∞,f→t0(grad f) = deg(f(xi0(y), y)− t0)− 1

and

deg(f(xi0(y), y)− t0) < 0.(3.1)

Let Q ∈ C[τ, y] be the resultant Q(τ, y) = Resx(f − τ, fx). Denote by P
the Newton polygon of Q(τ, y). Then

P ⊂ conv{(0, 0); (d− 1, 0); (0, d(d− 1))}(3.2)

and

Q(τ, y) =
d−1∏
i=1

(f(xi(y), y)− τ).
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From (3.1), analogously to [G-S, Lemma 3.3] we obtain

deg f(xi0(y), y) = −j2 − j1
i2 − i1

,

where the segment [(i1, j1), (i1, j2)] ⊂ P is such that i1, i2, j1, j2 ∈ Z, 0 ≤
i1 < i2, 0 ≤ j1 < j2. By (3.2) we see i2 − i1 ≤ d− 2. Therefore

deg f(xi0(y), y) ≤ −
1

d− 2
.

Thus
L∞,f→t0(gradf) ≤ −1− 1

d− 2
.

Theorem 3.7. Let f : R2 → R be a monic polynomial in x. Let t0 ∈ R.
Let x = xi(y), i = 1, . . . , d − 1, be the Puiseux expansions at infinity of
fx(x, y) = 0 and xR

i (y) be the real approximation of xi(y). Put

VR(f, t0) = {xi(y) : deg(f(xR
i (y), y)− t0) < 0}.

If L∞,f→t0(gradf) < 0, then VR(f, t0) 6= ∅ and
L∞,f→t0(gradf) = min

i
{deg gradf(xR

i (y), y) : xi(y) ∈ VR(f, t0)}.

Proof. Let x = ϕ(y) be any real series satisfying

deg(f(ϕ(y), y)− t0) < 0, deg grad f(ϕ(y), y) < 0.

We put

M(X,Y ) = f(X + ϕ(1/Y ), 1/Y )− t0 =
∑
i,j

cijX
iY j/N ,

P (X,Y ) = fx(X + ϕ(1/Y ), 1/Y ),
Q(X,Y ) = fx(X + ϕ(1/Y ), 1/Y ) + cfy(X + ϕ(1/Y ), 1/Y ),
R(X,Y ) = fx(X + ϕ(1/Y ), 1/Y ) + c(f(X + ϕ(1/Y ), 1/Y )− t0),

where c is a generic number.
Using the Claim in the proof of Theorem 3.4, we get θP ≥θQ and θP ≥θR.
Now, the proof repeats that of Theorem 3.4 with the only exception that

instead of Lemma 3.2 we use Lemma 3.3.

Remark 3.8. The following conditions on the behavior at infinity of the
gradient of maps appear in many problems. Let f : Kn → K be a polynomial
and t0 ∈ K.

(1) We say that t0 satisfies the Fedoryuk condition (F) if L∞,f→t0(grad f)
≥ 0, i.e. for every sequence {zm} ⊂ Kn with zm →∞ and f(zm)→ t0
we have grad f(zm) 9 0.

(2) We say t0 satisfies the Malgrange condition (M) if L∞,f→t0(grad f)
≥ −1, i.e. for every sequence {zm} ⊂ Kn with zm →∞ and f(zm)→
t0 we have ‖zm‖ ‖grad f(zm)‖9 0.
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(3) We say that t0 is an asymptotic critical value if it does not satisfy
the Malgrange condition.

Theorem 3.7 gives us a simple way to check whether a given value t0 ∈ R
satisfies (F) or (M) or not. In fact, with the notation of Theorem 3.7, it is
enough to compute

min
i
{deg grad f(xR

i (y), y) : xi(y) ∈ VR(f, t0)},

and to compare it with 0 or −1.
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