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Existence and uniqueness of positive periodic solutions
for a class of integral equations with parameters

by Shu-Gui Kang (Datong), Bao Shi (Yantai) and
Sui Sun Cheng (Hsinchu)

Abstract. Existence of periodic solutions of functional differential equations with
parameters such as Nicholson’s blowflies model call for the investigation of integral equa-
tions with parameters defined over spaces with periodic structures. In this paper, we study
one such equation

φ(x) = λ
�

[x,x+ω]∩Ω

K(x, y)h(y)f(y, φ(y − τ(y))) dy, x ∈ Ω,

by means of the proper value theory of operators in Banach spaces with cones. Existence,
uniqueness and continuous dependence of proper solutions are established.

1. Introduction. Existence of solutions of differential equations is often
established by means of fixed point theorems for integral equations. Such
an approach naturally calls for the investigation of integral equations and
operator equations. Recent investigations (see e.g. [1, 5–8] and the references
cited in [7]) of the existence of periodic solutions of functional differential
equations such as

(1) φ′(x) = −a(x)φ(x) + f(φ(x)), x ∈ R,

where a = a(x) is a positive continuous 2π-periodic function defined on R,
show that fixed points techniques applied to integral equations of the form

(2) φ(x) =
x+2π�

x

K(x, y)f(φ(y)) dy, x ∈ R,

where

K(x, y) =
exp

	y
x a(t) dt

exp
	2π
0 a(t) dt− 1

, x, y ∈ R,
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can also lead to existence criteria for (1). These studies prompted us to
investigate in [6] integral equations of the form

φ(x) =
�

Ω(x)

K(x, y)f(y, φ(y − τ(y))) dy

where Ω(x) is a closed subset of RN which depends on x and has positive
Lebesgue measure µ(Ω(x)), and derive the existence of periodic solutions
by means of fixed point index theory.

Yet there are also functional differential equations in which “eigenval-
ues” are involved. For instance, we have Nicholson’s well known blowflies
model

η′(t) = −δη(t) + λη(t− τ)e−aη(t−τ), t ≥ 0,

where δ, a, τ > 0 and λ is a positive parameter (see e.g. [4]). Therefore, in
this paper, we will study integral equations in which a parameter is also in-
volved. By means of several existence theorems in monotone operator theory,
we will establish some abstract existence, uniqueness and continuous depen-
dence theorems for the corresponding periodic solutions. In the last section,
we will return to Nicholson’s blowflies model to see some applications of our
results.

To be more precise, let us first recall some terminology from [6]. Let
RN be the N -dimensional Euclidean space endowed with componentwise
ordering ≤. For any u, v ∈ RN , the “interval” [u, v] is the set {x ∈ RN | u
≤ x ≤ v}. Let ω = (ω1, . . . , ωN ) ∈ RN with positive components and let
e(1) = (1, 0, . . . , 0), . . . , e(N) = (0, . . . , 0, 1) be the standard orthonormal
vectors in RN . Let Ω be a closed subset of RN which has the following
“periodic” structure: for each x ∈ Ω,

x+ ωie
(i) ∈ Ω,

and for each pair y, z ∈ Ω,

µ([y, y + ω] ∩Ω) = µ([z, z + ω] ∩Ω) > 0.

For convenience, we set

Ω(x) = [x, x+ ω] ∩Ω.

An example of such a set can be found in [6].
We will be concerned with integral equations of the form

(3) φ(x) = λ
�

[x,x+ω]∩Ω

K(x, y)h(y)f(y, φ(y − τ(y))) dy, x ∈ Ω,

where the functions K,h, f, τ and parameter λ satisfy the following basic
conditions:
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• K ∈ C(Ω ×Ω, (0,∞)) and K(x+ ωie
(i), y + ωie

(i)) = K(x, y) for any
(x, y) ∈ Ω ×Ω and i ∈ {1, . . . , N}, and K is uniformly continuous (1)
on Ω ×Ω,
• h ∈ C(Ω, (0,∞)) and h(x + ωie

(i)) = h(x) for any x ∈ Ω and i ∈
{1, . . . , N},
• f ∈ C(Ω × [0,∞), [0,∞)) and f(x+ ωie

(i), u) = f(x, u) for any x ∈ Ω
and i ∈ {1, . . . , N},
• τ : Ω → Ω is continuous and τ(x + ωie

(i)) = τ(x) for any x ∈ Ω and
i ∈ {1, . . . , N},
• λ > 0.

Our main concern will be the existence and uniqueness of positive peri-
odic solutions of our equation (3). More precisely, we will look for solutions
in the set of all real continuous functions of the form φ : Ω → R such that

φ(x+ ωie
(i)) = φ(x), x ∈ Ω, i ∈ {1, . . . , N}.

This set will be denoted by Cω(Ω). We say that a function φ ∈ Cω(Ω) is an
ω-periodic solution of (3) associated with the parameter λ ∈ (0,∞) if substi-
tution of φ and λ into (3) turns it into an identity for every x ∈ Ω. Since (3)
may be interpreted as an equilibrium population distribution model, it is
of interest to find parameters λ and the associated “positive” periodic solu-
tions of (3). We will show that for a (nonnegative) function f with appropri-
ate sublinear and/or superlinear behaviors, positive periodic solutions exist
with associated parameters that lie in an interval, and that such solutions
are unique if f has additional monotonicity and convexity properties.

Let E be a real Banach space, and P a cone in E. The semi-order induced
by the cone P is denoted by “≤”: x ≤ y if and only if y − x ∈ P. Note that
when endowed with the usual linear and ordering structure as well as the
norm ‖φ‖ = maxz∈Ω(x), x∈Ω |φ(z)|, Cω(Ω) is a normed ordered linear space
with the cone P = {φ ∈ Cω(Ω) : φ(x) ≥ 0 for all x ∈ Ω}.

Definition 1 ([2]). A cone in a real Banach space is said to be solid if
it has nonempty interior.

Definition 2 ([2]). Let P be a solid cone in a real Banach space E and
denote by P ◦ the interior of P . An operator A : P ◦ → P ◦ is called α-concave
(respectively −α-convex) if A(t~) ≥ tαA~ (respectively A(t~) ≤ t−αA~)
for any ~ ∈ P ◦ and 0 < t < 1, where 0 ≤ α < 1. The operator A is
increasing (respectively decreasing) if ~1, ~2 ∈ P ◦ and ~1 ≤ ~2 imply A~1 ≤
A~2 (respectively A~1 ≥ A~2); finally, A is strongly increasing (respectively
strongly decreasing) if ~1, ~2 ∈ P ◦ and ~1 < ~2 imply A~2 − A~1 ∈ P ◦

(1) This assumption can be relaxed. Indeed, it suffices to assume that for any ε > 0,
there exists δ > 0, which does not depend on y, such that |K(x1, y) −K(x2, y)| < ε for
all x1, x2 ∈ Ω that satisfy |x1 − x2| < δ.
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(respectively A~1 −A~2 ∈ P ◦). In case the equation A~ = λ~, where λ is a
real parameter, has a unique solution in P ◦, it will be denoted by ~λ. Then
~λ is said to be strongly increasing (respectively strongly decreasing) in λ
if λ1 > λ2 implies ~λ1 − ~λ2 ∈ P ◦ (respectively ~λ2 − ~λ1 ∈ P ◦), which is
denoted by ~λ1 � ~λ2 (~λ2 � ~λ1).

Lemma A ([3]). Suppose D is an open subset of an infinite-dimensional
real Banach space E with cone P. Suppose further that the null element θ of
E belongs to D. Let ∂D be the boundary of D. If the operator Γ : P ∩D → P
is completely continuous with Γθ = θ and satisfies

inf
~∈P∩∂D

‖Γ~‖ > 0,

then Γ has a proper element in P ∩∂D associated with a positive eigenvalue.
That is, there exist ~0 ∈ P ∩ ∂D and µ0 > 0 such that Γ~0 = µ0~0.

Lemma B ([2]). Suppose P is a normal solid cone of a real Banach
space and A : P ◦ → P ◦ is an α-concave increasing (or α-convex decreasing)
operator. Then A has a unique fixed point in P ◦.

2. Main results. Suppose that

(4) 0 < m ≤ K(x, y) ≤M <∞ for x, y ∈ Ω(t) and t ∈ Ω,

and
M 6= m.

Then

1 ≥ K(x, y)
supx,y∈Ω(t), t∈ΩK(x, y)

≥
infx,y∈Ω(t), t∈ΩK(x, y)
supx,y∈Ω(t), t∈ΩK(x, y)

≥ m

M
= σ ∈ (0, 1).

Let P1 = {φ ∈ Cω(Ω) : φ(x) ≥ σ‖φ‖ for all x ∈ Ω}. Then P1 is a cone in
Cω(Ω). Define an operator F : Cω(Ω)→ Cω(Ω) by

(5) (Fu)(x) =
�

Ω(x)

K(x, y)h(y)f(y, u(y − τ(y))) dy, x ∈ Ω.

Then for x ∈ Ω,

(6) (Fu)(x) ≤M
�

Ω(x)

h(y)f(y, u(y − τ(y))) dy

and

(7) (Fu)(x) ≥ m
�

Ω(x)

h(y)f(y, u(y − τ(y))) dy ≥ σ‖Fu‖.

Lemma 1. Suppose (4) holds. Then FP1 ⊂ P1.
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Next, we need to impose an additional condition on the function f and
some additional notation. The additional condition is that

(8) f : Ω × [0,∞)→ [0,∞) is continuous with f(s, 0) = 0 for s ∈ Ω.
We also set

m(r) = inf
σr≤u≤r, s∈Ω(x), x∈Ω

f(s, u) and B =
�

Ω(x)

h(s) ds,

where, in view of the assumptions on h and Ω, we see that B is a constant
and B > 0.

Theorem 1. Suppose that (4) and (8) hold and that there exist l2 >
l1 > 0 and ζ > 0 such that l1u < f(y, u) < l2u for all y ∈ Ω and all u ≥ ζ.
Then there exist positive numbers R0, λ1 and λ2 such that for any r > R0,
(3) has a positive ω-periodic solution u∗r associated with some λ∗ ∈ [λ1, λ2]
and ‖u∗r‖ = r.

Proof. Note first that (3) has a positive ω-periodic solution u∗r associated
with λ∗ > 0 if and only if the operator F has a proper element u∗r associated
with the eigenvalue 1/λ∗ > 0. Let R0 = σ−1ζ and

Gr = {u ∈ Cω(Ω) : ‖u‖ < r},
where r > R0. Then Gr is a bounded open subset of the Banach space
Cω(Ω) and θ ∈ Gr. In view of Lemma 1 and the properties of K, h and f,
we may show that F : P1 ∩Gr → P1 is completely continuous with Fθ = θ.
Further,

(Fu)(x) =
�

Ω(x)

K(x, y)h(y)f(y, u(y − τ(y))) dy

≥ m
�

Ω(x)

h(y)f(y, u(y − τ(y))) dy

≥ l1mσ‖u‖
�

Ω(x)

h(y) dy = l1mσBr > 0

for any r > R0 and u ∈ P1 ∩ ∂Gr. So we have

inf
u∈P1∩∂Gr

‖Fu‖ ≥ l1mσBr > 0.

By Lemma A, for any r >R0, the operator F has a proper element u∗r ∈P1

associated with an eigenvalue µ∗ > 0, and u∗r satisfies ‖u∗r‖ = r. Let λ∗ =
1/µ∗. Then (3) has a positive ω-periodic solution u∗r associated with λ∗.
Thus, for any r > R0, there exists a positive ω-periodic solution u∗r ∈ P1 ∩
∂Gr associated with λ∗ > 0. That is,

u∗r(x) = λ∗
�

Ω(x)

K(x, y)h(y)f(y, u∗r(y − τ(y))) dy with ‖u∗r‖ = r.
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Then we have

u∗r(x) ≤ λ∗M
�

Ω(x)

h(y)f(y, u∗r(y − τ(y))) dy

≤ λ∗Ml2r
�

Ω(x)

h(y) dy ≤ λ∗Ml2Br

and so
‖u∗r‖ = r ≤ λ∗Ml2Br,

which means that

λ∗ ≥ 1
Ml2B

= λ1.

Meanwhile,

u∗r(x) ≥ λ∗m
�

Ω(x)

h(y)f(y, u∗r(y − τ(y))) dy(9)

≥ λ∗ml1σ‖u∗r‖
�

Ω(x)

h(y) dy = λ∗ml1Bσr,

thus
‖u∗r‖ = r ≥ λ∗ml1Bσr,

so we have

λ∗ ≤ 1
ml1Bσ

= λ2 and λ1 < λ2.

Consequently, λ∗ ∈ [λ1, λ2]. The proof is complete.

Theorem 2. Suppose that (4) and (8) hold and that there exist l1 > 0
and ζ > 0 such that f(y, u) > l1u for u ≥ ζ and all y ∈ Ω. Then there
exist positive numbers R0 and λ such that for any r > R0, (3) has a positive
ω-periodic solution u∗ associated with some λ∗ ∈ (0, λ] and ‖u∗‖ = r.

The proof is similar to the proof of Theorem 1 and so is omitted.

Theorem 3. Suppose that (4) and (8) hold and there exist r0 > 0 and
constants c2 > c1 > 0 such that c1u < f(y, u) < c2u for 0 < u < r0 and all
y ∈ Ω. Then there exist positive numbers r0, λ̂1 and λ̂2 such that for any
r ∈ (0, r0), (3) has a positive ω-periodic solution ûr associated with some
λ̂∗ ∈ [λ̂1, λ̂2] and ‖ûr‖ = r.

Proof. Define
Vr = {u ∈ Cω(Ω) : ‖u‖ < r},

where 0 < r ≤ r0. Then Vr is a bounded open subset of the Banach space
Cω(Ω) and θ ∈ Vr. In view of Lemma 1 and properties of K, f and h, we
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may show that F : P1 ∩V r → P1 is completely continuous with Fθ = θ and

Fu(x) =
�

Ω(x)

K(x, y)h(y)f(y, u(y − τ(y))) dy

≥ m
�

Ω(x)

h(y)f(y, u(y − τ(y))) dy

≥ c1mσ‖u‖
�

Ω(x)

h(y) dy = c1mσBr > 0

for any 0 < r < r0 and u ∈ P1 ∩ ∂Vr. Thus

inf
u∈P1∩∂Vr

‖Fu‖ ≥ c1mσBr > 0.

By Lemma A, for any 0 < r < r0, the operator F has a proper element
ûr ∈ P1 associated with an eigenvalue µ̂ > 0 and ûr satisfies ‖ûr‖ = r.
Letting λ̂∗ = 1/µ̂, we may then follow the last part of the proof of Theorem
1 to complete our proof.

Theorem 4. Suppose that (4) and (8) hold and that there exist c1 > 0
and r0 > 0 such that f(y, u) > c1u for 0 < u < r0 and all y ∈ Ω. Then
there exist positive numbers r0 and λ̂∗ such that for any r ∈ (0, r0), (3)
has a positive ω-periodic solution ûr associated with some λ̂ ∈ (0, λ̂∗] and
‖ûr‖ = r.

The proof is similar to that of Theorem 3; we omit it here.

Theorem 5. Suppose that (4) and (8) hold and that there exist r̃ > 0
and cer > 0 such that m(r̃) ≥ cer > 0. Then there is a positive number λ̂∗ such
that (3) has a positive ω-periodic solution ûer associated with some λ̂ ∈ (0, λ̂∗]
and ‖ûer‖ = r̃.

Proof. Indeed, let

Ver = {u ∈ Cω(Ω) : ‖u‖ < r̃}.

Then Ver is a bounded open subset of the Banach space Cω(Ω) and θ ∈ Ver,
and F : P1 ∩ V er → P1 is completely continuous with Fθ = θ. Furthermore,

inf
u∈P1∩∂Ver ‖Fu‖ ≥ cermB > 0.

From Lemma A, for r̃, the operator F has a proper element ûer ∈ P1 ∩ ∂Ver
associated with an eigenvalue µ̃∗ > 0. Let λ̂ = 1/µ̂∗. Then (3) has a positive
ω-periodic solution ûer ∈ P1 ∩ ∂Ver associated with λ̂ > 0. That is,

ûer(x) = λ̂
�

Ω(x)

K(x, y)h(y)f(y, ûer(y − τ(y))) dy with ‖ûer‖ = r̃.
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Thus we have

ûer(x) = λ̂
�

Ω(x)

K(x, y)h(y)f(y, ûer(y − τ(y))) dy

≥ λ̂mcer �

Ω(x)

h(y) dy = λ̂mcerB,
so that

‖ûer‖ = r̃ ≥ λ̂mcerB,
and hence

λ̂ ≤ r̃

mcerB = λ̂∗.

The proof is complete.

3. Uniqueness and continuous dependence in concave increasing
case. So far we have not been able to prove uniqueness for the solutions
uλ found in the previous results. However, when f is monotone and concave
in the sense defined below, uniqueness can be established together with
continuous dependence on the parameters λ.

We note that P = {u ∈ Cω(Ω) : u(x) ≥ 0 for all x ∈ Ω} is a normal solid
cone of Cω(Ω) and its interior is P ◦ = {u ∈ Cω(Ω) : u(x) > 0 for all x ∈ Ω}.

Theorem 6. Suppose that f : Ω × [0,∞) → [0,∞) is a nondecreasing
function in the second variable with f(s, u) > 0 for u > 0 and any s ∈ Ω,
and satisfies f(s, tu) ≥ tαf(s, u) for any 0 < t < 1, where 0 ≤ α < 1. Then
for any λ > 0, (3) has a unique positive ω-periodic solution uλ, and uλ has
the following properties:

(i) uλ is strongly increasing in λ on the cone P , that is, λ1 > λ2 > 0
implies uλ1 � uλ2 ;

(ii) limλ→0+ ‖uλ‖ = 0 and limλ→∞ ‖uλ‖ =∞;
(iii) uλ is continuous with respect to λ, that is, limλ→λ0 ‖uλ − uλ0‖ = 0

for any λ0 > 0.

Proof. Let Φ = λF for any λ > 0. In view of (5)–(7), we have ΦP ⊂ P.
Because h(y) > 0, f(y, u) > 0 for u > 0 and any y ∈ Ω, and K(x, y) > 0,
we see that Φ : P ◦ → P ◦. We assert that Φ : P ◦ → P ◦ is an α-concave
increasing operator. Indeed, for any 0 < t < 1,

Φ(tu)(x) = λ
�

Ω(x)

K(x, y)h(y)f(y, tu(y − τ(y))) dy

≥ λtα
�

Ω(x)

K(x, y)h(y)f(y, u(y − τ(y))) dy = tαΦ(u)(x),
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where 0 ≤ α < 1. Since f(y, u) is nondecreasing on u, we see that

(Φu1)(x) = λ
�

Ω(x)

K(x, y)h(y)f(y, u1(y − τ(y))) dy

≤ λ
�

Ω(x)

K(x, y)h(y)f(y, u2(y − τ(y))) dy = (Φu2)(x)

for u1, u2 ∈ Cω(Ω) such that u1 ≤ u2. By Lemma B, Φ has a unique fixed
point uλ ∈ P ◦.

Next, we turn to the proof of (i)–(iii). Assume 0 < λ2 < λ1. Then
uλ1 ≥ uλ2 . Indeed, define

(10) η = sup{η̃ : uλ1 ≥ η̃uλ2}.

We assert η ≥ 1. If this is not true, then 0 < η < 1, and
1
λ1
uλ1 = Fuλ1 ≥ F (ηuλ2) ≥ ηαFuλ2 =

1
λ2
ηαuη2 ,

which implies

uλ1 ≥ ηα
λ1

λ2
uλ2 ,

but since ηα λ1
λ2
> η, this is a contradiction to (10), so η ≥ 1.

From the discussion above, we have

(11) uλ1 = λ1Fuλ1 ≥ λ1Fuλ2 =
λ1

λ2
uλ2 � uλ2 .

Thus, uλ is strongly increasing in λ.

Set λ2 = λ and fix λ1 in (11). We have uλ1 ≥ (λ1/λ)uλ for λ1 > λ, and

(12) ‖uλ‖ ≤
λN1

λ1
‖uλ1‖,

where N1 > 0 is a constant. We thus have limλ→0+ ‖uλ‖ = 0. Let λ1 = λ,
and fix λ2. From (11) and the normality of P, we have limλ→∞ ‖uλ‖ =∞.

Next, we show the continuity of uλ with respect to λ. For any λ0 > 0,
by (i),

(13) uλ � uλ0 for any λ0 > λ.

Set lη = sup{ζ > 0 : uλ ≥ ζuλ0 , λ0 > λ}. Obviously, 0 < lη < 1 and
uλ ≥ lηuλ0 . Thus, we have

1
λ
uλ = Fuλ ≥ F (lηuλ0) ≥ lαηFuλ0 =

1
λ0
lαη uλ0 ,

and

uλ ≥
λ

λ0
lαη uλ0 .
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By the definition of lη,

λ

λ0
lαη ≤ lη or lη ≥

(
λ

λ0

)1/(1−α)

,

and we have

(14) uλ ≥
(
λ

λ0

)1/(1−α)

uλ0 for any λ0 > λ.

Since P is a normal cone, by (13) and (14), we see that

‖uλ0 − uλ‖ ≤ N2

[
1−

(
λ

λ0

)1/(1−α)]
‖uλ0‖ → 0, λ→ λ−0 ,

where N2 is a positive constant. In the same way, we obtain ‖uλ−uλ0‖ → 0
as λ→ λ+

0 . The proof is complete.

4. An example. As an example, we consider the existence of positive
T -periodic solutions for the equation

(15) η′(t) = −δ(t)η(t) + λh(t)η(t− τ)e−aη(t−τ),

where δ = δ(t) and h = h(t) are positive continuous T -periodic functions
defined on R+ = [0,∞), and τ, a, λ ∈ (0,∞). Note that if we take δ(t) =
δ > 0 and h(t) = 1, then (15) is the Nicholson blowflies model in [4].

We may check that a T -periodic solution of

(16) η(t) = λ

t+T�

t

H(t, s)h(s)f(η(s− τ)) ds, t ∈ R,

where f(u) = ue−au and

H(t, s) =
exp

	s
t δ(u) du

exp
	T
0 δ(u) du− 1

, s ∈ [t, t+ T ], t ∈ R,

is also a T -periodic solution of (15).
We can verify that

• H ∈ C(R×R, (0,+∞)),H(x+T, y+T ) = H(x, y) for any (x, y) ∈ R×R
and H is uniformly continuous on R× R,
• h ∈ C(R, (0,∞)) and h(x+ T ) = h(x) for any x ∈ R,
• f ∈ C(R+,R+),

and
mint∈[0,T ], s∈[t,t+T ]H(t, s)
maxt∈[0,T ], s∈[t,t+T ]H(t, s)

=
m′

M ′
= e−

	T
0 δ(u) du = σ′ ∈ (0, 1).
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Set

(Φη)(t) =
t+T�

t

H(t, s)h(s)f(η(s− τ)) ds.

Let CT (R+) be the set of all real T -periodic continuous functions defined
on R+, endowed with the usual linear structure as well as the norm

‖y‖ = sup
t∈[0,T ]

|y(t)|.

Then CT (R+) is a Banach space. Define a cone in CT (R+) by

P2 = {y ∈ CT (R+) : y(t) ≥ σ‖y‖ for all t ∈ R}.
If the operator Φ has a positive proper element η ∈ CT (R+) associated with
the eigenvalue µ, that is,

(17) Φη = µη,

then (15) has a positive T -periodic solution η(t). The function f(u) = ue−au

satisfies (8), f(u) is increasing on [0, 1/a], f(u) > 0 for u ∈ (0, 1/a], and f(u)
attains its maximum fmax = (ae)−1 at u = 1/a. Since f is continuous, there
exists r0 with 0 < δ0 < σr0 < r0 ≤ 1/a such that f(r0) = r0e

−ar0 = Cr0 >
δ0e
−aδ0 = f(δ0) > 0. Thus

m(r0) = min
σr0≤u≤r0

f(u) = f(σr0) = σr0e
−aσr0 = σr1−σ0 rσ0 e

−aσr0

= σr1−σ0 {f(r0)}σ ≥ σr1−σ0 Cσr0 > 0.

Set
Xr0 = {η ∈ CT (R+) : ‖η‖ < r0}.

Then Φ : P2∩Xr0 → P2 is completely continuous and satisfies all conditions
of Theorem 5. Thus there exists µ > 0 such that (17) holds and ‖η‖ = r0.
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