On natural vector bundle morphisms

 $T_A \circ \otimes^q_s \to \otimes^q_s \circ T_A$ over id_{T_A}

by A. NTYAM and A. MBA (Yaoundé)

Abstract. Some properties and applications of natural vector bundle morphisms $T_A \circ \otimes_s^q \to \otimes_s^q \circ T_A$ over id_{T_A} are presented.

1. Introduction. Let $T_A : \mathcal{M}f \to \mathcal{F}\mathcal{M}$ be a Weil functor. For any vector bundle (E, M, π) with the standard fibre V, the bundle $(T_A E, T_A M, T_A \pi)$ is a well-defined vector bundle since T_A is product-preserving. One can consider the following vector bundles:

$$\otimes_{s}^{q}\pi:\otimes_{s}^{q}E\to M,$$

$$T_{A}(\otimes_{s}^{q}\pi):T_{A}(\otimes_{s}^{q}E)\to T_{A}M,$$

$$\otimes_{s}^{q}(T_{A}\pi):\otimes_{s}^{q}T_{A}E\to T_{A}M.$$

Let $S: M \to \bigotimes_s^q E$ be a tensor field of type (q, s) and $\Phi: T_A(\bigotimes_s^q E) \to \bigotimes_s^q T_A E$ a vector bundle morphism over $\operatorname{id}_{T_A M}$; then $\widetilde{S} := \Phi \circ T_A S$ is a tensor field of the same type on $(T_A E, T_A M, T_A \pi)$. When Φ comes from a natural vector bundle morphism $T_A \circ \bigotimes_s^q \to \bigotimes_s^q \circ T_A$ over $\operatorname{id}_{T_A M}$ and E = TM the tangent bundle of a manifold M, one can define some interesting natural operators $\bigotimes_s^q \circ T \rightsquigarrow (\bigotimes_s^q \circ T)T_A$ (see [4]) by using the canonical flow natural equivalence $\kappa: T_A \circ T \to T \circ T_A$ (see [7] for the case q = 1).

The main result of this paper is Proposition 3.1 that reduces the research of natural vector bundle morphisms $T_A \circ \otimes_s^q \to \otimes_s^q \circ T_A$ over id_{T_A} to that of equivariant linear maps $T_A(\otimes_s^q V) \to \otimes_s^q(T_A V)$.

2. Weil functor

2.1. Weil algebra

DEFINITION 2.1. A Weil algebra is a finite-dimensional quotient of the algebra of germs $\mathcal{E}_p = C_0^{\infty}(\mathbb{R}^p, \mathbb{R}) \ (p \in \mathbb{N}^*).$

2000 Mathematics Subject Classification: Primary 58A32.

Key words and phrases: Weil bundle, natural transformation, tensor field, prolongation.

We denote by \mathcal{M}_p the ideal of germs vanishing at 0; \mathcal{M}_p is the maximal ideal of the local algebra \mathcal{E}_p .

EXAMPLE 2.1. (1) \mathbb{R} is a Weil algebra since it is canonically isomorphic to the quotient $\mathcal{E}_p/\mathcal{M}_p$.

(2) $J_0^r(\mathbb{R}^p, \mathbb{R}) = \mathcal{E}_p/\mathcal{M}_p^{r+1}$ is a Weil algebra.

2.2. Covariant description of a Weil functor $T_A : \mathcal{M}f \to \mathcal{FM}$. We write $\mathcal{M}f$ for the category of finite-dimensional differential manifolds and mappings of class C^{∞} ; furthermore, \mathcal{FM} is the category of fibred manifolds and fibred manifold morphisms.

Let $A = \mathcal{E}_p/I$ be a Weil algebra and consider a manifold M. In the set of $\varphi \in C^{\infty}(\mathbb{R}^p, M)$ such that $\varphi(0) = x$, one defines an equivalence relation \mathcal{R}_x by: $\varphi \mathcal{R}_x \psi$ if and only if $[h]_x \circ [\psi]_0 - [h]_x \circ [\varphi]_0 \in I$ for any $[h]_x \in C_x^{\infty}(M, \mathbb{R})$.

The equivalence class of φ is denoted by $j_A \varphi$ and is called the *A*-velocity of φ at 0; the class $j_A \varphi$ depends only on the germ of φ at 0. The quotient set is denoted by $(T_A M)_x$ and the disjoint union of $(T_A M)_x$, $x \in M$, by $T_A M$.

The mapping $\pi_{A,M}: T_AM \to M, j_A\varphi \mapsto \varphi(0)$, defines a bundle structure on T_AM and for any differentiable mapping $f: M \to N$, one defines a bundle morphism $T_Af: T_AM \to T_AN$ (over f) by $T_Af(j_A\varphi) = j_A(f \circ \varphi)$.

The correspondence $T_A : \mathcal{M}f \to \mathcal{F}\mathcal{M}$ is a product-preserving bundle functor ([4]).

EXAMPLE 2.2. If $A = J_0^r(\mathbb{R}^p, \mathbb{R})$, then T_A is equivalent to the functor T_p^r of (p, r)-velocities, and if $A = \mathcal{E}_1/\mathcal{M}_1^2$, then $T_A = T$, the tangent functor.

2.3. The canonical flow natural equivalence $\kappa : T_A \circ T \to T \circ T_A$. Let T_A , T_B be two Weil functors with $A = \mathcal{E}_p/I$, $B = \mathcal{E}_q/J$; let M be a manifold. For any $\zeta = j_A \varphi \in T_A T_B M$, there is a differentiable mapping $\Phi : \mathbb{R}^p \times \mathbb{R}^q \to M$ such that $\varphi(z) = j_B \Phi_z$ in a neighbourhood of $0 \in \mathbb{R}^p$ (see [4]). By this result, one can define a natural equivalence

$$\kappa: T_A \circ T_B \to T_B \circ T_A$$

as follows:

$$\kappa_M(\zeta) = j_B \eta,$$

where $\eta : \mathbb{R}^q \to T_A M$, $t \mapsto j_A \Phi^t$. In particular, for $T_B = T$, we obtain the canonical flow natural equivalence $\kappa : T_A \circ T \to T \circ T_A$ associated to the bundle functor T_A .

3. Natural vector bundle morphisms $T_A \circ \otimes_s^q \to \otimes_s^q \circ T_A$ over id_{T_A} . In this section, $A = \mathcal{E}_p/I$ is a Weil algebra with $\mathcal{M}_p \supset I \supset \mathcal{M}_p^{r+1}$, r minimal; $(q, s) \in \mathbb{N}^2$; V is a finite-dimensional real vector space.

296

3.1. Preliminaries. We write \mathcal{VB} for the subcategory of \mathcal{FM} of vector bundles and vector bundle morphisms; \mathcal{D} is the subcategory of \mathcal{VB} of vector bundles with the standard fibre V and morphisms of vector bundles which are isomorphisms on fibres.

Let us consider the following vector spaces:

$$T_A(\otimes_s^q V) := T_A((\otimes^s V^*) \otimes (\otimes^q V)),$$

$$\otimes_s^q(T_A(V)) := (\otimes^s (T_A V)^*) \otimes (\otimes^q T_A V).$$

If φ is a linear automorphism of V, one can consider the following linear automorphisms:

$$T_A(\otimes^q_s \varphi) := T_A(\otimes^s({}^t \varphi^{-1}) \otimes (\otimes^q \varphi)),$$

$$\otimes^q_s(T_A \varphi) := \otimes^s({}^t(T_A \varphi)^{-1}) \otimes (\otimes^q T_A \varphi)$$

respectively on $T_A(\otimes^q_s V)$ and $\otimes^q_s(T_A(V))$.

Finally, consider the functors $T_A \circ \otimes_s^q : \mathcal{D} \to \mathcal{VB}$ and $\otimes_s^q \circ T_A : \mathcal{D} \to \mathcal{VB}$ defined as follows:

$$\begin{cases} T_A \circ \otimes_s^q((E, M, \pi)) = (T_A(\otimes_s^q E), T_A M, T_A(\otimes_s^q \pi)), \\ T_A \circ \otimes_s^q((\bar{f}, f)) = (T_A \bar{f}, T_A(\otimes_s^q f)), \end{cases}$$

and

$$\begin{cases} \otimes_s^q \circ T_A((E, M, \pi)) = (\otimes_s^q(T_A E), T_A M, \otimes_s^q(T_A \pi)), \\ \otimes_s^q \circ T_A((\bar{f}, f)) = (T_A \bar{f}, \otimes_s^q(T_A f)). \end{cases}$$

3.2. Natural vector bundle morphisms $T_A \circ \otimes_s^q \to \otimes_s^q \circ T_A$ over id_{T_A} . Let us consider the representation $\rho_{q,s,V} : GL(V) \to GL(\otimes_s^q V)$ given by $\rho_{q,s,V}(u) = \otimes_s^q(u)$. Let $\lambda_V : GL(V) \times V \to V$, $(u,x) \mapsto u(x)$, denote the canonical linear action; the map $T_A\lambda_V : T_AGL(V) \times T_AV \to T_AV$ is also a linear action, so there is a unique representation $j_V : T_AGL(V) \to GL(T_AV)$ defined by $j_V(j_A\varphi)(j_A\eta) = T_A\lambda_V(j_A\varphi, j_A\eta)$. The representation $j_{\otimes_s^q V} \circ T_A\rho_{q,s,V} : T_AGL(V) \to GL(T_A(\otimes_s^q V))$ will be denoted $(\rho_{q,s,V})_1$; $(\rho_{q,s,V})_1$ induces a left action of $T_AGL(V)$ on $T_A(\otimes_s^q V)$ defined by $\tilde{g} \cdot T = (\rho_{q,s,V})_1(\tilde{g})(T)$. The representations ρ_{q,s,T_AV} and j_V also induce a left action of $T_AGL(V)$ on $\otimes_s^q T_AV$ defined by $\tilde{g} \cdot \tilde{T} = \rho_{q,s,T_AV}(j_V(\tilde{g}))(\tilde{T})$. The particular case $T_A = J_p^1$ (the bundle functor of (p, 1)-velocities) is treated in [1].

DEFINITION 3.1. A linear map $\overline{\tau} : T_A(\otimes_s^q V) \to \otimes_s^q(T_A V)$ is said to be equivariant if it is $T_A GL(V)$ -equivariant with respect to the previous actions, i.e.

$$\rho_{q,s,T_AV}(j_V(\widetilde{g})) \circ \overline{\tau} = \overline{\tau} \circ (\rho_{q,s,V})_1(\widetilde{g})$$

for all $\widetilde{g} \in T_A GL(V)$.

DEFINITION 3.2. A natural vector bundle morphism $\tau : T_A \circ \otimes_s^q \to \otimes_s^q \circ T_A$ over id_{T_A} is a system of base-preserving vector bundle morphisms, τ_E : $T_A(\otimes^q_s E) \to \otimes^q_s(T_A E)$, for every \mathcal{D} -object E, such that $\otimes^q_s(T_A f) \circ \tau_E = \tau_F \circ T_A(\otimes^q_s f)$ for each \mathcal{D} -morphism $f: E \to F$.

PROPOSITION 3.1. There is a bijective correspondence between the set of all natural vector bundle morphisms $\tau : T_A \circ \otimes_s^q \to \otimes_s^q \circ T_A$ over id_{T_A} and the set of all equivariant linear maps $T_A(\otimes_s^q V) \to \otimes_s^q(T_A V)$.

Proof. Let $\varphi : \pi^{-1}(U) \to U \times V$ be a local trivialisation of a vector bundle (E, M, π) and put

(1)
$$\tau_E \mid_{[T_A(\otimes_s^q \pi)]^{-1}(T_A U)} = (\otimes_s^q T_A \varphi^{-1}) \circ (\mathrm{id}_{T_A U} \times \overline{\tau}) \circ T_A(\otimes_s^q \varphi).$$

1° The right hand side of (1) does not depend on φ : Indeed, let φ_1 : $\pi^{-1}(U) \to U \times V$ be another local trivialisation such that $(\varphi_1 \circ \varphi^{-1})(x,t) = (x, a(x) \cdot t)$; one has

$$\begin{cases} (\otimes_s^q \varphi_1) \circ (\otimes_s^q \varphi^{-1})(x,T) = (x,\rho_{q,s,V}(a(x)) \cdot T), \\ (T_A \varphi_1 \circ T_A \varphi^{-1})(\widetilde{x},\widetilde{t}) = (\widetilde{x},j_V(T_A a(\widetilde{x})) \cdot \widetilde{t}), \\ T_A(\otimes_s^q \varphi_1) \circ T_A(\otimes_s^q \varphi^{-1})(\widetilde{x},\widetilde{T}) = (\widetilde{x},(\rho_{q,s,V})_1(T_A a(\widetilde{x})) \cdot \widetilde{T}), \\ \otimes_s^q (T_A \varphi_1) \circ \otimes_s^q (T_A \varphi)^{-1}(\widetilde{x},T_1) = (\widetilde{x},\rho_{q,s,T_AV}(j_V(T_A a(\widetilde{x})))) \cdot T_1). \end{cases}$$

 $2^{\circ} \tau$ is a natural vector bundle morphism: Indeed, let $f: E \to E'$ be a \mathcal{D} -morphism over $\overline{f}, \varphi: \pi^{-1}(U) \to U \times V$ a local trivialisation of E, and $\varphi': (\pi')^{-1}(U') \to U' \times V$ a local trivialisation of E' such that $\overline{f}(U) \subset U'$. Let us put $(\varphi' \circ f \circ \varphi^{-1})(x,t) = (\overline{f}(x), b(x) \cdot t)$. For any $(\widetilde{x}, \widetilde{T}) \in T_A(\otimes^q_s \varphi) \circ (T_A(\otimes^q_s \pi))^{-1}(T_A U),$

$$(\otimes_{s}^{q}(T_{A}\varphi') \circ \otimes_{s}^{q}(T_{A}f) \circ \tau_{E} \circ T_{A}(\otimes_{s}^{q}\varphi^{-1})(\widetilde{x},\widetilde{T}) = (T_{A}\overline{f}(\widetilde{x}), \rho_{q,s,T_{A}V}(j_{V}(T_{A}b(\widetilde{x})))) \cdot \overline{\tau}(\widetilde{T}))$$

and

$$(\otimes_s^q T_A \varphi') \circ \tau_{E'} \circ T_A(\otimes_s^q f) \circ T_A(\otimes_s^q \varphi^{-1})(\widetilde{x}, \widetilde{T}) = (T_A \overline{f}(\widetilde{x}), \overline{\tau} \circ (\rho_{q,s,V})_1(T_A b(\widetilde{x})) \cdot \widetilde{T});$$

but $\overline{\tau}$ is equivariant, hence $\otimes_s^q(T_A f) \circ \tau_E = \tau_{E'} \circ T_A(\otimes_s^q f)$. Furthermore, $\tau_{V \to \text{pt}} = \overline{\tau}$, where pt is a one-point manifold.

3° The map $\Psi : \overline{\tau} \mapsto \tau$ is obviously injective. The surjection can be shown as follows: given a natural vector bundle morphism $\tau : T_A \circ \otimes_s^q \to \otimes_s^q \circ T_A$ over id_{T_A} , define $\overline{\tau} : T_A(\otimes_s^q V) \to \otimes_s^q (T_A V)$ by $\overline{\tau} = \tau_{V \to \text{pt}}$.

(i) For a linear automorphism φ of V, we have $\otimes_s^q(T_A\varphi) \circ \overline{\tau} = \overline{\tau} \circ T_A(\otimes_s^q \varphi)$: Indeed, φ is a \mathcal{D} -morphism over $\operatorname{id}_{\operatorname{pt}}$, so $\otimes_s^q(T_A\varphi) \circ \tau_{V\to\operatorname{pt}} = \tau_{V\to\operatorname{pt}} \circ T_A(\otimes_s^q \varphi)$.

(ii) $\tau_{\mathbb{R}^m \times V \to \mathbb{R}^m} = \operatorname{id}_{T_A \mathbb{R}^m} \times \overline{\tau}$: Indeed, the projection $\operatorname{pr}_2 : \mathbb{R}^m \times V \to V$, $(x, t) \mapsto t$, is a \mathcal{D} -morphism (over $\mathbb{R}^m \to \operatorname{pt}$), hence

$$T_A(\mathrm{pr}_2) = \mathrm{pr}_2 : T_A \mathbb{R}^m \times T_A V \to T_A V$$

is also a \mathcal{D} -morphism. Moreover

$$\otimes_s^q(\mathrm{pr}_2) = \mathrm{pr}_2 : \mathbb{R}^m \times (\otimes_s^q V) \to \otimes_s^q V,$$

then

$$T_A(\otimes^q_s(\mathrm{pr}_2)) = \mathrm{pr}_2 : T_A \mathbb{R}^m \times T_A(\otimes^q_s V) \to T_A(\otimes^q_s V)$$

The relation $\otimes_s^q(T_A(\mathrm{pr}_2)) \circ \tau_{\mathbb{R}^m \times V \to \mathbb{R}^m} = \tau_{V \to \mathrm{pt}} \circ T_A(\otimes_s^q(\mathrm{pr}_2))$ can be written $\mathrm{pr}_2 \circ \tau_{\mathbb{R}^m \times V \to \mathbb{R}^m} = \overline{\tau} \circ \mathrm{pr}_2$, hence $\tau_{\mathbb{R}^m \times V \to \mathbb{R}^m} = \mathrm{id}_{T_A \mathbb{R}^m} \times \overline{\tau}$.

(iii) $\overline{\tau}$ is equivariant: Taking $f(x,t) = (x, a(x) \cdot t)$, where $a : \mathbb{R}^p \to GL(V)$ is C^{∞} , the relation

$$\otimes_{s}^{q}(T_{A}f) \circ \tau_{\mathbb{R}^{p} \times V \to \mathbb{R}^{p}} = \tau_{\mathbb{R}^{p} \times V \to \mathbb{R}^{p}} \circ T_{A}(\otimes_{s}^{q}f)$$

is equivalent to

$$\rho_{q,s,T_AV}(j_V(T_Aa(\widetilde{x})))) \circ \overline{\tau} = \overline{\tau} \circ (\rho_{q,s,V})_1(T_Aa(\widetilde{x})),$$

for $\widetilde{x} \in T_A \mathbb{R}^p$. But for $\widetilde{g} = j_A g \in T_A GL(V)$, one can write $\widetilde{g} = T_A a(\widetilde{x})$ with a = g and $\widetilde{x} = j_A(\operatorname{id}_{\mathbb{R}^p})$.

(iv) $\Psi(\overline{\tau}) = \tau$: Indeed, each local trivialisation $\varphi : \pi^{-1}(U) \to U \times V$ of a vector bundle (E, M, π) is a \mathcal{D} -morphism over id_U , hence

$$\otimes_{s}^{q}(T_{A}\varphi) \circ \tau_{E|_{U}} = \tau_{U \times V \to U} \circ T_{A}(\otimes_{s}^{q}\varphi) = (\mathrm{id}_{T_{A}U} \times \overline{\tau}) \circ T_{A}(\otimes_{s}^{q}\varphi),$$

(ii) i.e. $\tau_{=i} = \mathcal{U}(\overline{\tau}) = \mathrm{coverding to}(1)$

by (ii), i.e. $\tau_{E|_U} = \Psi(\overline{\tau})_{E|_U}$, according to (1).

4. Equivariant linear maps $T_A(\otimes^q_s V) \to \otimes^q_s(T_A V)$

4.1. The case q = s = 0. An equivariant linear map $\overline{\tau} : T_A(\otimes_0^0 V) \to \otimes_0^0(T_A V)$ is simply a linear form $\overline{\tau} : T_A \mathbb{R} \to \mathbb{R}$ since $(\rho_{0,0,V})_1(\widetilde{g}) = \operatorname{id}_{T_A \mathbb{R}}$ and $\rho_{0,0,T_A V}(j_V(\widetilde{g})) = \operatorname{id}_{\mathbb{R}}$. Moreover, each linear form $i \in A^*$ defines an equivariant linear map $\overline{\tau} : T_A(\otimes_0^0 V) \to \otimes_0^0(T_A V)$ by $\overline{\tau} = i$.

4.2. The case q = 1, s = 0. A linear map $\overline{\tau} : T_A V \to T_A V$ is equivariant if and only if $j_V(\tilde{g}) \circ \overline{\tau} = \overline{\tau} \circ j_V(\tilde{g})$ for any $\tilde{g} \in T_A GL(V)$. For a fixed element $c \in A$, one can define an equivariant linear map $\overline{\tau}_c : T_A V \to T_A V$ by

$$\overline{\tau}_c(u) = c \cdot u = T_A(\cdot)(c, u),$$

where $\cdot : \mathbb{R} \times V \to V$ is the multiplication map; moreover, $\overline{\tau}_c$ is a module endomorphism over id_A .

PROPOSITION 4.1. Equivariant linear maps $T_A V \to T_A V$ are $\overline{\tau}_c, c \in A$.

Proof. Let $T_A : \mathcal{M}f \to \mathcal{F}\mathcal{M}$ be a Weil functor and $\widetilde{T}_A : \mathcal{V}\mathcal{B} \to \mathcal{F}\mathcal{M}$ the product-preserving gauge bundle functor on $\mathcal{V}\mathcal{B}$ defined as follows:

$$\begin{cases} \widetilde{T}_A(E, M, \pi) = (T_A E, M, \pi_{A,M} \circ T_A \pi), \\ \widetilde{T}_A(\overline{f}, f) = (\overline{f}, T_A f). \end{cases}$$

There is a bijective correspondence between the set of natural vector bundle morphisms $T_A \to T_A$ over id_{T_A} and the set of natural transformations $\widetilde{T}_A \to$ \widetilde{T}_A over id_{T_A} , by definition. Furthermore, the pair (A', V') associated to \widetilde{T}_A is (A, A). According to Theorem 2 of [5], natural transformations $\widetilde{T}_A \to \widetilde{T}_A$ over id_{T_A} correspond to module endomorphisms $A \to A$ over id_A ; the induced equivariant linear maps $T_A V \to T_A V$ are exactly the maps $\overline{\tau}_c, c \in A$.

REMARK 4.1. More generally, for $q \in \mathbb{N}$ and s = 0, one can construct some equivariant linear maps $T_A(\otimes_0^q V) \to \otimes_0^q (T_A V)$ by using [2] for example. For $(q, s) \in \mathbb{N}^2$, one can use [2] and the result below to construct some equivariant linear maps $T_A(\otimes_s^q V) \to \otimes_s^q (T_A V)$.

PROPOSITION 4.2. Let $\overline{\tau}$: $T_A(\otimes_0^q V) \to \otimes_0^q (T_A V)$ be an equivariant linear map. Then there is an equivariant linear map τ : $T_A(\otimes_s^q V) \to \otimes_s^q (T_A V)$ $(s \in \mathbb{N})$ defined by

$$\tau(j_A\varphi)(j_A\eta_1,\ldots,j_A\eta_s) = \overline{\tau}(j_A(\varphi*(\eta_1,\ldots,\eta_s))),$$

where $\varphi: \mathbb{R}^p \to \bigotimes_s^q V, \eta_1,\ldots,\eta_s: \mathbb{R}^p \to V \text{ are } C^\infty \text{ and}$
 $\varphi*(\eta_1,\ldots,\eta_s): \mathbb{R}^p \to \bigotimes_0^q V, \quad z \to \varphi(z)(\eta_1(z),\ldots,\eta_s(z)).$
Proof. See [1] for $T_A = T_n^1$.

5. Applications

5.1. Prolongations of functions. Let (E, M, π) be a vector bundle; sections of $\bigotimes_{0}^{0} E = M \times \mathbb{R}$ are smooth functions on M. With such a function f, one can associate the prolongation

$$i \circ T_A f : T_A M \to \mathbb{R},$$

where $i : A \to \mathbb{R}$ is linear. In particular, assume that $A = \mathcal{E}_p / \mathcal{M}_p^{r+1} = J_0^r(\mathbb{R}^p, \mathbb{R})$; then the dual basis $\{e_\alpha^*; |\alpha| \leq r\}$ of $\{e_\alpha = j_0^r(z^\alpha); |\alpha| \leq r\}$ induces the prolongations of functions: $f^{(\alpha)} = e_\alpha^* \circ T_A f$, $|\alpha| \leq r$ (see [6] for $T_A = T_1^r$).

5.2. Prolongations of vector fields. Assume that E = TM is the tangent bundle of M and let $\kappa : T_AT \to TT_A$ be the canonical flow natural equivalence associated to T_A ([4]). For a natural vector bundle morphism $\tau : T_A \to T_A$ and a smooth vector field $X \in \mathfrak{X}(M)$,

$$\kappa_M \circ \tau_{TM} \circ T_A X$$

is a smooth vector field on $T_A M$. If τ comes from $c \in A$, one can write

$$\kappa_M \circ \tau_{TM} \circ T_A X = (\mathrm{af}(c) \circ \mathcal{T}_A)_M$$

where $\operatorname{af}(c): TT_A \to TT_A$ is the natural affinor given by $[\operatorname{af}(c)]_M = \kappa_M \circ \tau_{TM} \circ \kappa_M^{-1}$ and $\mathcal{T}_A: T \to TT_A$ the canonical flow operator induced by T_A . This means in particular that all linear natural operators : $T \to TT_A$ can be found with natural vector bundle morphisms $T_A \circ \otimes_0^1 \to \otimes_0^1 \circ T_A$. **5.3.** Prolongations of tensor fields of type (q, s). One can use Proposition 4.2 to find natural vector bundle morphisms $\tau : T_A \circ \otimes_s^q \to \otimes_s^q \circ T_A$. For a smooth tensor field $\varphi : M \to \otimes_s^q TM$,

$$\otimes^q_s(\kappa_M) \circ \tau_{TM} \circ T_A \varphi$$

is a tensor field of the same type (see [7] for q = 1). One defines in this way a natural operator

$$A: \otimes_s^q \circ T \rightsquigarrow (\otimes_s^q \circ T)T_A$$

by $A_M(\varphi) = \otimes_s^q(\kappa_M) \circ \tau_{TM} \circ T_A \varphi$.

References

- L. A. Cordero, C. T. J. Dobson and M. de León, Differential Geometry of Frame Bundles, Kluwer, 1989.
- J. Dębecki, Linear liftings of skew-symmetric tensor fields to Weil bundles, Czechoslovak Math. J. 55 (130) (2005), 809–816.
- [3] J. Gancarzewicz, W. M. Mikulski and Z. Pogoda, Lifts of some tensor fields and connections to product preserving functors, Nagoya Math. J. 135 (1994), 1–14.
- I. Kolář, J. Slovák and P. W. Michor, Natural Operations in Differential Geometry, Springer, Berlin, 1993.
- W. M. Mikulski, Product preserving gauge bundle functors on vector bundles, Colloq. Math. 90 (2001), 277–285.
- [6] A. Morimoto, Lifting of some types of tensor fields and connections to tangent bundles of (p, r)-velocities, Nagoya Math. J. 40 (1970), 13–31.
- [7] A. Ntyam and K. J. Wouafo, New versions of curvature and torsion formulas for the complete lifting of a linear connection to Weil bundles, Ann. Polon. Math. 82 (2003), 133–140.

École Normale Supérieure BP 47 Yaoundé, Cameroun E-mail: antyam@uy1.uninet.cm alpmba@yahoo.fr

> Received 10.1.2009 and in final form 4.3.2009

(1970)