On natural vector bundle morphisms $T_{A} \circ \otimes_{s}^{q} \rightarrow \otimes_{s}^{q} \circ T_{A}$ over $\mathrm{id}_{T_{A}}$

by A. Ntyam and A. Mba (Yaoundé)

Abstract

Some properties and applications of natural vector bundle morphisms $T_{A} \circ \otimes_{s}^{q} \rightarrow \otimes_{s}^{q} \circ T_{A}$ over $\mathrm{id}_{T_{A}}$ are presented.

1. Introduction. Let $T_{A}: \mathcal{M} f \rightarrow \mathcal{F} \mathcal{M}$ be a Weil functor. For any vector bundle (E, M, π) with the standard fibre V, the bundle $\left(T_{A} E, T_{A} M, T_{A} \pi\right)$ is a well-defined vector bundle since T_{A} is product-preserving. One can consider the following vector bundles:

$$
\begin{aligned}
\otimes_{s}^{q} \pi & : \otimes_{s}^{q} E \rightarrow M \\
T_{A}\left(\otimes_{s}^{q} \pi\right) & : T_{A}\left(\otimes_{s}^{q} E\right) \rightarrow T_{A} M \\
\otimes_{s}^{q}\left(T_{A} \pi\right) & : \otimes_{s}^{q} T_{A} E \rightarrow T_{A} M
\end{aligned}
$$

Let $S: M \rightarrow \otimes_{s}^{q} E$ be a tensor field of type (q, s) and $\Phi: T_{A}\left(\otimes_{s}^{q} E\right) \rightarrow$ $\otimes_{S}^{q} T_{A} E$ a vector bundle morphism over $\operatorname{id}_{T_{A} M}$; then $\widetilde{S}:=\Phi \circ T_{A} S$ is a tensor field of the same type on $\left(T_{A} E, T_{A} M, T_{A} \pi\right)$. When Φ comes from a natural vector bundle morphism $T_{A} \circ \otimes_{s}^{q} \rightarrow \otimes_{s}^{q} \circ T_{A}$ over $\mathrm{id}_{T_{A} M}$ and $E=T M$ the tangent bundle of a manifold M, one can define some interesting natural operators $\otimes_{s}^{q} \circ T \rightsquigarrow\left(\otimes_{s}^{q} \circ T\right) T_{A}$ (see [4]) by using the canonical flow natural equivalence $\kappa: T_{A} \circ T \rightarrow T \circ T_{A}$ (see [7] for the case $q=1$).

The main result of this paper is Proposition 3.1 that reduces the research of natural vector bundle morphisms $T_{A} \circ \otimes_{s}^{q} \rightarrow \otimes_{s}^{q} \circ T_{A}$ over id T_{A} to that of equivariant linear maps $T_{A}\left(\otimes_{s}^{q} V\right) \rightarrow \otimes_{s}^{q}\left(T_{A} V\right)$.

2. Weil functor

2.1. Weil algebra

Definition 2.1. A Weil algebra is a finite-dimensional quotient of the algebra of germs $\mathcal{E}_{p}=C_{0}^{\infty}\left(\mathbb{R}^{p}, \mathbb{R}\right)\left(p \in \mathbb{N}^{*}\right)$.

2000 Mathematics Subject Classification: Primary 58A32.
Key words and phrases: Weil bundle, natural transformation, tensor field, prolongation.

We denote by \mathcal{M}_{p} the ideal of germs vanishing at $0 ; \mathcal{M}_{p}$ is the maximal ideal of the local algebra \mathcal{E}_{p}.

EXAMPLE 2.1. (1) \mathbb{R} is a Weil algebra since it is canonically isomorphic to the quotient $\mathcal{E}_{p} / \mathcal{M}_{p}$.
(2) $J_{0}^{r}\left(\mathbb{R}^{p}, \mathbb{R}\right)=\mathcal{E}_{p} / \mathcal{M}_{p}^{r+1}$ is a Weil algebra.
2.2. Covariant description of a Weil functor $T_{A}: \mathcal{M} f \rightarrow \mathcal{F} \mathcal{M}$. We write $\mathcal{M} f$ for the category of finite-dimensional differential manifolds and mappings of class C^{∞}; furthermore, $\mathcal{F} \mathcal{M}$ is the category of fibred manifolds and fibred manifold morphisms.

Let $A=\mathcal{E}_{p} / I$ be a Weil algebra and consider a manifold M. In the set of $\varphi \in C^{\infty}\left(\mathbb{R}^{p}, M\right)$ such that $\varphi(0)=x$, one defines an equivalence relation \mathcal{R}_{x} by: $\varphi \mathcal{R}_{x} \psi$ if and only if $[h]_{x} \circ[\psi]_{0}-[h]_{x} \circ[\varphi]_{0} \in I$ for any $[h]_{x} \in C_{x}^{\infty}(M, \mathbb{R})$.

The equivalence class of φ is denoted by $j_{A} \varphi$ and is called the A-velocity of φ at 0 ; the class $j_{A} \varphi$ depends only on the germ of φ at 0 . The quotient set is denoted by $\left(T_{A} M\right)_{x}$ and the disjoint union of $\left(T_{A} M\right)_{x}, x \in M$, by $T_{A} M$.

The mapping $\pi_{A, M}: T_{A} M \rightarrow M, j_{A} \varphi \mapsto \varphi(0)$, defines a bundle structure on $T_{A} M$ and for any differentiable mapping $f: M \rightarrow N$, one defines a bundle morphism $T_{A} f: T_{A} M \rightarrow T_{A} N$ (over f) by $T_{A} f\left(j_{A} \varphi\right)=j_{A}(f \circ \varphi)$.

The correspondence $T_{A}: \mathcal{M} f \rightarrow \mathcal{F} \mathcal{M}$ is a product-preserving bundle functor ([4]).

Example 2.2. If $A=J_{0}^{r}\left(\mathbb{R}^{p}, \mathbb{R}\right)$, then T_{A} is equivalent to the functor T_{p}^{r} of (p, r)-velocities, and if $A=\mathcal{E}_{1} / \mathcal{M}_{1}^{2}$, then $T_{A}=T$, the tangent functor.
2.3. The canonical flow natural equivalence $\kappa: T_{A} \circ T \rightarrow T \circ T_{A}$. Let T_{A}, T_{B} be two Weil functors with $A=\mathcal{E}_{p} / I, B=\mathcal{E}_{q} / J$; let M be a manifold. For any $\zeta=j_{A} \varphi \in T_{A} T_{B} M$, there is a differentiable mapping $\Phi: \mathbb{R}^{p} \times \mathbb{R}^{q} \rightarrow M$ such that $\varphi(z)=j_{B} \Phi_{z}$ in a neighbourhood of $0 \in \mathbb{R}^{p}$ (see [4]). By this result, one can define a natural equivalence

$$
\kappa: T_{A} \circ T_{B} \rightarrow T_{B} \circ T_{A}
$$

as follows:

$$
\kappa_{M}(\zeta)=j_{B} \eta
$$

where $\eta: \mathbb{R}^{q} \rightarrow T_{A} M, t \mapsto j_{A} \Phi^{t}$. In particular, for $T_{B}=T$, we obtain the canonical flow natural equivalence $\kappa: T_{A} \circ T \rightarrow T \circ T_{A}$ associated to the bundle functor T_{A}.
3. Natural vector bundle morphisms $T_{A} \circ \otimes_{S}^{q} \rightarrow \otimes_{S}^{q} \circ T_{A}$ over $\mathrm{id}_{T_{A}}$. In this section, $A=\mathcal{E}_{p} / I$ is a Weil algebra with $\mathcal{M}_{p} \supset I \supset \mathcal{M}_{p}^{r+1}, r$ minimal; $(q, s) \in \mathbb{N}^{2} ; V$ is a finite-dimensional real vector space.
3.1. Preliminaries. We write $\mathcal{V B}$ for the subcategory of $\mathcal{F} \mathcal{M}$ of vector bundles and vector bundle morphisms; \mathcal{D} is the subcategory of $\mathcal{V B}$ of vector bundles with the standard fibre V and morphisms of vector bundles which are isomorphisms on fibres.

Let us consider the following vector spaces:

$$
\begin{aligned}
T_{A}\left(\otimes_{s}^{q} V\right) & :=T_{A}\left(\left(\otimes^{s} V^{*}\right) \otimes\left(\otimes^{q} V\right)\right) \\
\otimes_{s}^{q}\left(T_{A}(V)\right) & :=\left(\otimes^{s}\left(T_{A} V\right)^{*}\right) \otimes\left(\otimes^{q} T_{A} V\right)
\end{aligned}
$$

If φ is a linear automorphism of V, one can consider the following linear automorphisms:

$$
\begin{aligned}
T_{A}\left(\otimes_{s}^{q} \varphi\right) & :=T_{A}\left(\otimes^{s}\left({ }^{t} \varphi^{-1}\right) \otimes\left(\otimes^{q} \varphi\right)\right) \\
\otimes_{s}^{q}\left(T_{A} \varphi\right) & :=\otimes^{s}\left({ }^{t}\left(T_{A} \varphi\right)^{-1}\right) \otimes\left(\otimes^{q} T_{A} \varphi\right)
\end{aligned}
$$

respectively on $T_{A}\left(\otimes_{s}^{q} V\right)$ and $\otimes_{s}^{q}\left(T_{A}(V)\right)$.
Finally, consider the functors $T_{A} \circ \otimes_{s}^{q}: \mathcal{D} \rightarrow \mathcal{V} \mathcal{B}$ and $\otimes_{s}^{q} \circ T_{A}: \mathcal{D} \rightarrow \mathcal{V} \mathcal{B}$ defined as follows:

$$
\left\{\begin{array}{l}
T_{A} \circ \otimes_{S}^{q}((E, M, \pi))=\left(T_{A}\left(\otimes_{s}^{q} E\right), T_{A} M, T_{A}\left(\otimes_{s}^{q} \pi\right)\right) \\
T_{A} \circ \otimes_{s}^{q}((\bar{f}, f))=\left(T_{A} \bar{f}, T_{A}\left(\otimes_{s}^{q} f\right)\right)
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\otimes_{s}^{q} \circ T_{A}((E, M, \pi))=\left(\otimes_{s}^{q}\left(T_{A} E\right), T_{A} M, \otimes_{s}^{q}\left(T_{A} \pi\right)\right), \\
\otimes_{s}^{q} \circ T_{A}((\bar{f}, f))=\left(T_{A} \bar{f}, \otimes_{s}^{q}\left(T_{A} f\right)\right)
\end{array}\right.
$$

3.2. Natural vector bundle morphisms $T_{A} \circ \otimes_{s}^{q} \rightarrow \otimes_{S}^{q} \circ T_{A}$ over $\mathrm{id}_{T_{A}}$. Let us consider the representation $\rho_{q, s, V}: G L(V) \rightarrow G L\left(\otimes_{s}^{q} V\right)$ given by $\rho_{q, s, V}(u)=\otimes_{s}^{q}(u)$ Let $\lambda_{V}: G L(V) \times V \rightarrow V,(u, x) \mapsto u(x)$, denote the canonical linear action; the map $T_{A} \lambda_{V}: T_{A} G L(V) \times T_{A} V \rightarrow T_{A} V$ is also a linear action, so there is a unique representation $j_{V}: T_{A} G L(V) \rightarrow$ $G L\left(T_{A} V\right)$ defined by $j_{V}\left(j_{A} \varphi\right)\left(j_{A} \eta\right)=T_{A} \lambda_{V}\left(j_{A} \varphi, j_{A} \eta\right)$. The representation $j_{\otimes_{s}^{q} V} \circ T_{A} \rho_{q, s, V}: T_{A} G L(V) \rightarrow G L\left(T_{A}\left(\otimes_{s}^{q} V\right)\right)$ will be denoted $\left(\rho_{q, s, V}\right)_{1}$; $\left(\rho_{q, s, V}\right)_{1}$ induces a left action of $T_{A} G L(V)$ on $T_{A}\left(\otimes_{s}^{q} V\right)$ defined by $\widetilde{g} \cdot T=$ $\left(\rho_{q, s, V}\right)_{1}(\widetilde{g})(T)$. The representations $\rho_{q, s, T_{A} V}$ and j_{V} also induce a left action of $T_{A} G L(V)$ on $\otimes_{s}^{q} T_{A} V$ defined by $\widetilde{g} \cdot \widetilde{T}=\rho_{q, s, T_{A} V}\left(j_{V}(\widetilde{g})\right)(\widetilde{T})$. The particular case $T_{A}=J_{p}^{1}$ (the bundle functor of $(p, 1)$-velocities) is treated in [1].

Definition 3.1. A linear map $\bar{\tau}: T_{A}\left(\otimes_{s}^{q} V\right) \rightarrow \otimes_{s}^{q}\left(T_{A} V\right)$ is said to be equivariant if it is $T_{A} G L(V)$-equivariant with respect to the previous actions, i.e.

$$
\rho_{q, s, T_{A} V}\left(j_{V}(\widetilde{g})\right) \circ \bar{\tau}=\bar{\tau} \circ\left(\rho_{q, s, V}\right)_{1}(\widetilde{g})
$$

for all $\widetilde{g} \in T_{A} G L(V)$.
DEFINITION 3.2. A natural vector bundle morphism $\tau: T_{A} \circ \otimes_{S}^{q} \rightarrow \otimes_{S}^{q} \circ T_{A}$ over $\mathrm{id}_{T_{A}}$ is a system of base-preserving vector bundle morphisms, τ_{E} :
$T_{A}\left(\otimes_{s}^{q} E\right) \rightarrow \otimes_{s}^{q}\left(T_{A} E\right)$, for every \mathcal{D}-object E, such that $\otimes_{s}^{q}\left(T_{A} f\right) \circ \tau_{E}=$ $\tau_{F} \circ T_{A}\left(\otimes_{s}^{q} f\right)$ for each \mathcal{D}-morphism $f: E \rightarrow F$.

Proposition 3.1. There is a bijective correspondence between the set of all natural vector bundle morphisms $\tau: T_{A} \circ \otimes_{s}^{q} \rightarrow \otimes_{s}^{q} \circ T_{A}$ over $\mathrm{id}_{T_{A}}$ and the set of all equivariant linear maps $T_{A}\left(\otimes_{s}^{q} V\right) \rightarrow \otimes_{S}^{q}\left(T_{A} V\right)$.

Proof. Let $\varphi: \pi^{-1}(U) \rightarrow U \times V$ be a local trivialisation of a vector bundle (E, M, π) and put

$$
\begin{equation*}
\left.\tau_{E}\right|_{\left[T_{A}\left(\otimes_{s}^{q} \pi\right)\right]^{-1}\left(T_{A} U\right)}=\left(\otimes_{s}^{q} T_{A} \varphi^{-1}\right) \circ\left(\operatorname{id}_{T_{A} U} \times \bar{\tau}\right) \circ T_{A}\left(\otimes_{s}^{q} \varphi\right) \tag{1}
\end{equation*}
$$

1° The right hand side of (1) does not depend on φ : Indeed, let φ_{1} : $\pi^{-1}(U) \rightarrow U \times V$ be another local trivialisation such that $\left(\varphi_{1} \circ \varphi^{-1}\right)(x, t)=$ $(x, a(x) \cdot t)$; one has

$$
\left\{\begin{array}{l}
\left(\otimes_{s}^{q} \varphi_{1}\right) \circ\left(\otimes_{s}^{q} \varphi^{-1}\right)(x, T)=\left(x, \rho_{q, s, V}(a(x)) \cdot T\right) \\
\left(T_{A} \varphi_{1} \circ T_{A} \varphi^{-1}\right)(\widetilde{x}, \widetilde{t})=\left(\widetilde{x}, j_{V}\left(T_{A} a(\widetilde{x})\right) \cdot \widetilde{t}\right) \\
T_{A}\left(\otimes_{s}^{q} \varphi_{1}\right) \circ T_{A}\left(\otimes_{s}^{q} \varphi^{-1}\right)(\widetilde{x}, \widetilde{T})=\left(\widetilde{x},\left(\rho_{q, s, V}\right)_{1}\left(T_{A} a(\widetilde{x})\right) \cdot \widetilde{T}\right) \\
\left.\otimes_{s}^{q}\left(T_{A} \varphi_{1}\right) \circ \otimes_{s}^{q}\left(T_{A} \varphi\right)^{-1}\left(\widetilde{x}, T_{1}\right)=\left(\widetilde{x}, \rho_{q, s, T_{A} V}\left(j_{V}\left(T_{A} a(\widetilde{x})\right)\right)\right) \cdot T_{1}\right)
\end{array}\right.
$$

$2^{\circ} \tau$ is a natural vector bundle morphism: Indeed, let $f: E \rightarrow E^{\prime}$ be a \mathcal{D}-morphism over $\bar{f}, \varphi: \pi^{-1}(U) \rightarrow U \times V$ a local trivialisation of E, and $\varphi^{\prime}:\left(\pi^{\prime}\right)^{-1}\left(U^{\prime}\right) \rightarrow U^{\prime} \times V$ a local trivialisation of E^{\prime} such that $\bar{f}(U) \subset U^{\prime}$. Let us put $\left(\varphi^{\prime} \circ f \circ \varphi^{-1}\right)(x, t)=(\bar{f}(x), b(x) \cdot t)$. For any $(\widetilde{x}, \widetilde{T}) \in T_{A}\left(\otimes_{s}^{q} \varphi\right) \circ$ $\left(T_{A}\left(\otimes_{s}^{q} \pi\right)\right)^{-1}\left(T_{A} U\right)$,

$$
\begin{aligned}
\left(\otimes_{s}^{q}\left(T_{A} \varphi^{\prime}\right) \circ \otimes_{s}^{q}\left(T_{A} f\right) \circ \tau_{E} \circ\right. & T_{A}\left(\otimes_{s}^{q} \varphi^{-1}\right)(\widetilde{x}, \widetilde{T}) \\
& \left.=\left(T_{A} \bar{f}(\widetilde{x}), \rho_{q, s, T_{A} V}\left(j_{V}\left(T_{A} b(\widetilde{x})\right)\right)\right) \cdot \bar{\tau}(\widetilde{T})\right)
\end{aligned}
$$

and

$$
\begin{aligned}
&\left(\otimes_{s}^{q} T_{A} \varphi^{\prime}\right) \circ \tau_{E^{\prime}} \circ T_{A}\left(\otimes_{s}^{q} f\right) \circ T_{A}\left(\otimes_{s}^{q} \varphi^{-1}\right)(\widetilde{x}, \widetilde{T}) \\
&=\left(T_{A} \bar{f}(\widetilde{x}), \bar{\tau} \circ\left(\rho_{q, s, V}\right)_{1}\left(T_{A} b(\widetilde{x})\right) \cdot \widetilde{T}\right)
\end{aligned}
$$

but $\bar{\tau}$ is equivariant, hence $\otimes_{s}^{q}\left(T_{A} f\right) \circ \tau_{E}=\tau_{E^{\prime}} \circ T_{A}\left(\otimes_{s}^{q} f\right)$. Furthermore, $\tau_{V \rightarrow \mathrm{pt}}=\bar{\tau}$, where pt is a one-point manifold.
3° The map $\Psi: \bar{\tau} \mapsto \tau$ is obviously injective. The surjection can be shown as follows: given a natural vector bundle morphism $\tau: T_{A} \circ \otimes_{s}^{q} \rightarrow \otimes_{s}^{q} \circ T_{A}$ over $\mathrm{id}_{T_{A}}$, define $\bar{\tau}: T_{A}\left(\otimes_{S}^{q} V\right) \rightarrow \otimes_{S}^{q}\left(T_{A} V\right)$ by $\bar{\tau}=\tau_{V \rightarrow \mathrm{pt}}$.
(i) For a linear automorphism φ of V, we have $\otimes_{s}^{q}\left(T_{A} \varphi\right) \circ \bar{\tau}=\bar{\tau} \circ T_{A}\left(\otimes_{s}^{q} \varphi\right)$: Indeed, φ is a \mathcal{D}-morphism over $\mathrm{id}_{\mathrm{pt}}$, so $\otimes_{s}^{q}\left(T_{A} \varphi\right) \circ \tau_{V \rightarrow \mathrm{pt}}=\tau_{V \rightarrow \mathrm{pt}} \circ T_{A}\left(\otimes_{s}^{q} \varphi\right)$.
(ii) $\tau_{\mathbb{R}^{m} \times V \rightarrow \mathbb{R}^{m}}=\operatorname{id}_{T_{A} \mathbb{R}^{m}} \times \bar{\tau}$: Indeed, the projection $\mathrm{pr}_{2}: \mathbb{R}^{m} \times V \rightarrow V$, $(x, t) \mapsto t$, is a \mathcal{D}-morphism (over $\mathbb{R}^{m} \rightarrow \mathrm{pt}$), hence

$$
T_{A}\left(\mathrm{pr}_{2}\right)=\mathrm{pr}_{2}: T_{A} \mathbb{R}^{m} \times T_{A} V \rightarrow T_{A} V
$$

is also a \mathcal{D}-morphism. Moreover

$$
\otimes_{s}^{q}\left(\mathrm{pr}_{2}\right)=\mathrm{pr}_{2}: \mathbb{R}^{m} \times\left(\otimes_{s}^{q} V\right) \rightarrow \otimes_{s}^{q} V
$$

then

$$
T_{A}\left(\otimes_{s}^{q}\left(\operatorname{pr}_{2}\right)\right)=\operatorname{pr}_{2}: T_{A} \mathbb{R}^{m} \times T_{A}\left(\otimes_{s}^{q} V\right) \rightarrow T_{A}\left(\otimes_{s}^{q} V\right)
$$

The relation $\otimes_{s}^{q}\left(T_{A}\left(\mathrm{pr}_{2}\right)\right) \circ \tau_{\mathbb{R}^{m} \times V \rightarrow \mathbb{R}^{m}}=\tau_{V \rightarrow \mathrm{pt}} \circ T_{A}\left(\otimes_{s}^{q}\left(\mathrm{pr}_{2}\right)\right)$ can be written $\mathrm{pr}_{2} \circ \tau_{\mathbb{R}^{m} \times V \rightarrow \mathbb{R}^{m}}=\bar{\tau} \circ \mathrm{pr}_{2}$, hence $\tau_{\mathbb{R}^{m} \times V \rightarrow \mathbb{R}^{m}}=\mathrm{id}_{T_{A} \mathbb{R}^{m}} \times \bar{\tau}$.
(iii) $\bar{\tau}$ is equivariant: Taking $f(x, t)=(x, a(x) \cdot t)$, where $a: \mathbb{R}^{p} \rightarrow G L(V)$ is C^{∞}, the relation

$$
\otimes_{s}^{q}\left(T_{A} f\right) \circ \tau_{\mathbb{R}^{p} \times V \rightarrow \mathbb{R}^{p}}=\tau_{\mathbb{R}^{p} \times V \rightarrow \mathbb{R}^{p}} \circ T_{A}\left(\otimes_{s}^{q} f\right)
$$

is equivalent to

$$
\left.\rho_{q, s, T_{A} V}\left(j_{V}\left(T_{A} a(\widetilde{x})\right)\right)\right) \circ \bar{\tau}=\bar{\tau} \circ\left(\rho_{q, s, V}\right)_{1}\left(T_{A} a(\widetilde{x})\right),
$$

for $\widetilde{x} \in T_{A} \mathbb{R}^{p}$. But for $\widetilde{g}=j_{A} g \in T_{A} G L(V)$, one can write $\widetilde{g}=T_{A} a(\widetilde{x})$ with $a=g$ and $\widetilde{x}=j_{A}\left(\mathrm{id}_{\mathbb{R}^{p}}\right)$.
(iv) $\Psi(\bar{\tau})=\tau$: Indeed, each local trivialisation $\varphi: \pi^{-1}(U) \rightarrow U \times V$ of a vector bundle (E, M, π) is a \mathcal{D}-morphism over id_{U}, hence

$$
\otimes_{s}^{q}\left(T_{A} \varphi\right) \circ \tau_{\left.E\right|_{U}}=\tau_{U \times V \rightarrow U} \circ T_{A}\left(\otimes_{s}^{q} \varphi\right)=\left(\mathrm{id}_{T_{A} U} \times \bar{\tau}\right) \circ T_{A}\left(\otimes_{s}^{q} \varphi\right)
$$

by (ii), i.e. $\tau_{\left.E\right|_{U}}=\Psi(\bar{\tau})_{\left.E\right|_{U}}$, according to (1).
4. Equivariant linear maps $T_{A}\left(\otimes_{s}^{q} V\right) \rightarrow \otimes_{s}^{q}\left(T_{A} V\right)$
4.1. The case $q=s=0$. An equivariant linear map $\bar{\tau}: T_{A}\left(\otimes_{0}^{0} V\right) \rightarrow$ $\otimes_{0}^{0}\left(T_{A} V\right)$ is simply a linear form $\bar{\tau}: T_{A} \mathbb{R} \rightarrow \mathbb{R}$ since $\left(\rho_{0,0, V}\right)_{1}(\widetilde{g})=\mathrm{id}_{T_{A} \mathbb{R}}$ and $\rho_{0,0, T_{A} V}\left(j_{V}(\widetilde{g})\right)=\operatorname{id}_{\mathbb{R}}$. Moreover, each linear form $i \in A^{*}$ defines an equivariant linear map $\bar{\tau}: T_{A}\left(\otimes_{0}^{0} V\right) \rightarrow \otimes_{0}^{0}\left(T_{A} V\right)$ by $\bar{\tau}=i$.
4.2. The case $q=1$, $s=0$. A linear map $\bar{\tau}: T_{A} V \rightarrow T_{A} V$ is equivariant if and only if $j_{V}(\widetilde{g}) \circ \bar{\tau}=\bar{\tau} \circ j_{V}(\widetilde{g})$ for any $\widetilde{g} \in T_{A} G L(V)$. For a fixed element $c \in A$, one can define an equivariant linear map $\bar{\tau}_{c}: T_{A} V \rightarrow T_{A} V$ by

$$
\bar{\tau}_{c}(u)=c \cdot u=T_{A}(\cdot)(c, u)
$$

where $\cdot: \mathbb{R} \times V \rightarrow V$ is the multiplication map; moreover, $\bar{\tau}_{c}$ is a module endomorphism over id_{A}.

Proposition 4.1. Equivariant linear maps $T_{A} V \rightarrow T_{A} V$ are $\bar{\tau}_{c}, c \in A$.
Proof. Let $T_{A}: \mathcal{M} f \rightarrow \mathcal{F} \mathcal{M}$ be a Weil functor and $\widetilde{T}_{A}: \mathcal{V B} \rightarrow \mathcal{F} \mathcal{M}$ the product-preserving gauge bundle functor on $\mathcal{V B}$ defined as follows:

$$
\left\{\begin{array}{l}
\widetilde{T}_{A}(E, M, \pi)=\left(T_{A} E, M, \pi_{A, M} \circ T_{A} \pi\right) \\
\widetilde{T}_{A}(\bar{f}, f)=\left(\bar{f}, T_{A} f\right)
\end{array}\right.
$$

There is a bijective correspondence between the set of natural vector bundle morphisms $T_{A} \rightarrow T_{A}$ over $\mathrm{id}_{T_{A}}$ and the set of natural transformations $\widetilde{T}_{A} \rightarrow$
\widetilde{T}_{A} over $\mathrm{id}_{T_{A}}$, by definition. Furthermore, the pair $\left(A^{\prime}, V^{\prime}\right)$ associated to \widetilde{T}_{A} is (A, A). According to Theorem 2 of [5], natural transformations $\widetilde{T}_{A} \rightarrow \widetilde{T}_{A}$ over $\mathrm{id}_{T_{A}}$ correspond to module endomorphisms $A \rightarrow A$ over id ${ }_{A}$; the induced equivariant linear maps $T_{A} V \rightarrow T_{A} V$ are exactly the maps $\bar{\tau}_{c}, c \in A$.

REmARK 4.1. More generally, for $q \in \mathbb{N}$ and $s=0$, one can construct some equivariant linear maps $T_{A}\left(\otimes_{0}^{q} V\right) \rightarrow \otimes_{0}^{q}\left(T_{A} V\right)$ by using [2] for example. For $(q, s) \in \mathbb{N}^{2}$, one can use [2] and the result below to construct some equivariant linear maps $T_{A}\left(\otimes_{s}^{q} V\right) \rightarrow \otimes_{S}^{q}\left(T_{A} V\right)$.

Proposition 4.2. Let $\bar{\tau}: T_{A}\left(\otimes_{0}^{q} V\right) \rightarrow \otimes_{0}^{q}\left(T_{A} V\right)$ be an equivariant linear map. Then there is an equivariant linear map $\tau: T_{A}\left(\otimes_{s}^{q} V\right) \rightarrow \otimes_{s}^{q}\left(T_{A} V\right)$ $(s \in \mathbb{N})$ defined by

$$
\tau\left(j_{A} \varphi\right)\left(j_{A} \eta_{1}, \ldots, j_{A} \eta_{s}\right)=\bar{\tau}\left(j_{A}\left(\varphi *\left(\eta_{1}, \ldots, \eta_{s}\right)\right)\right)
$$

where $\varphi: \mathbb{R}^{p} \rightarrow \otimes_{s}^{q} V, \eta_{1}, \ldots, \eta_{s}: \mathbb{R}^{p} \rightarrow V$ are C^{∞} and

$$
\varphi *\left(\eta_{1}, \ldots, \eta_{s}\right): \mathbb{R}^{p} \rightarrow \otimes_{0}^{q} V, \quad z \rightarrow \varphi(z)\left(\eta_{1}(z), \ldots, \eta_{s}(z)\right)
$$

Proof. See [1] for $T_{A}=T_{p}^{1}$.

5. Applications

5.1. Prolongations of functions. Let (E, M, π) be a vector bundle; sections of $\otimes_{0}^{0} E=M \times \mathbb{R}$ are smooth functions on M. With such a function f, one can associate the prolongation

$$
i \circ T_{A} f: T_{A} M \rightarrow \mathbb{R}
$$

where $i: A \rightarrow \mathbb{R}$ is linear. In particular, assume that $A=\mathcal{E}_{p} / \mathcal{M}_{p}^{r+1}=$ $J_{0}^{r}\left(\mathbb{R}^{p}, \mathbb{R}\right)$; then the dual basis $\left\{e_{\alpha}^{*} ;|\alpha| \leq r\right\}$ of $\left\{e_{\alpha}=j_{0}^{r}\left(z^{\alpha}\right) ;|\alpha| \leq r\right\}$ induces the prolongations of functions: $f^{(\bar{\alpha})}=e_{\alpha}^{*} \circ T_{A} f,|\alpha| \leq r$ (see [6] for $T_{A}=T_{1}^{r}$.
5.2. Prolongations of vector fields. Assume that $E=T M$ is the tangent bundle of M and let $\kappa: T_{A} T \rightarrow T T_{A}$ be the canonical flow natural equivalence associated to $T_{A}([4])$. For a natural vector bundle morphism $\tau: T_{A} \rightarrow T_{A}$ and a smooth vector field $X \in \mathfrak{X}(M)$,

$$
\kappa_{M} \circ \tau_{T M} \circ T_{A} X
$$

is a smooth vector field on $T_{A} M$. If τ comes from $c \in A$, one can write

$$
\kappa_{M} \circ \tau_{T M} \circ T_{A} X=\left(\operatorname{af}(c) \circ \mathcal{T}_{A}\right)_{M}
$$

where $\operatorname{af}(c): T T_{A} \rightarrow T T_{A}$ is the natural affinor given by $[\operatorname{af}(c)]_{M}=\kappa_{M} \circ$ $\tau_{T M} \circ \kappa_{M}^{-1}$ and $\mathcal{T}_{A}: T \rightsquigarrow T T_{A}$ the canonical flow operator induced by T_{A}. This means in particular that all linear natural operators : $T \rightsquigarrow T T_{A}$ can be found with natural vector bundle morphisms $T_{A} \circ \otimes_{0}^{1} \rightarrow \otimes_{0}^{1} \circ T_{A}$.
5.3. Prolongations of tensor fields of type (q, s). One can use Proposition 4.2 to find natural vector bundle morphisms $\tau: T_{A} \circ \otimes_{s}^{q} \rightarrow \otimes_{s}^{q} \circ T_{A}$. For a smooth tensor field $\varphi: M \rightarrow \otimes_{s}^{q} T M$,

$$
\otimes_{S}^{q}\left(\kappa_{M}\right) \circ \tau_{T M} \circ T_{A} \varphi
$$

is a tensor field of the same type (see [7] for $q=1$). One defines in this way a natural operator

$$
A: \otimes_{s}^{q} \circ T \rightsquigarrow\left(\otimes_{s}^{q} \circ T\right) T_{A}
$$

by $A_{M}(\varphi)=\otimes_{S}^{q}\left(\kappa_{M}\right) \circ \tau_{T M} \circ T_{A} \varphi$.

References

[1] L. A. Cordero, C. T. J. Dobson and M. de León, Differential Geometry of Frame Bundles, Kluwer, 1989.
[2] J. Dębecki, Linear liftings of skew-symmetric tensor fields to Weil bundles, Czechoslovak Math. J. 55 (130) (2005), 809-816.
[3] J. Gancarzewicz, W. M. Mikulski and Z. Pogoda, Lifts of some tensor fields and connections to product preserving functors, Nagoya Math. J. 135 (1994), 1-14.
[4] I. Kolář, J. Slovák and P. W. Michor, Natural Operations in Differential Geometry, Springer, Berlin, 1993.
[5] W. M. Mikulski, Product preserving gauge bundle functors on vector bundles, Colloq. Math. 90 (2001), 277-285.
[6] A. Morimoto, Lifting of some types of tensor fields and connections to tangent bundles of (p, r)-velocities, Nagoya Math. J. 40 (1970), 13-31.
[7] A. Ntyam and K. J. Wouafo, New versions of curvature and torsion formulas for the complete lifting of a linear connection to Weil bundles, Ann. Polon. Math. 82 (2003), 133-140.

École Normale Supérieure
BP 47 Yaoundé, Cameroun
E-mail: antyam@uy1.uninet.cm alpmba@yahoo.fr

Received 10.1.2009
and in final form 4.3.2009

