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ω-pluripolar sets and subextension of
ω-plurisubharmoni funtions on ompat Kähler manifoldsby Le Mau Hai, Nguyen Van Khue and Pham Hoang Hiep (Hanoi)Abstrat. We establish some results on ω-pluripolarity and omplete ω-pluripolarityfor sets in a ompat Kähler manifold X with fundamental form ω. Moreover, we studysubextension of ω-psh funtions on a hyperonvex domain in X and prove a omparisonpriniple for the lass E(X, ω) reently introdued and investigated by Guedj�Zeriahi.1. Introdution. Plurisubharmoni (psh) and holomorphi funtionsare very important objets of omplex analysis. In order to study singularitiesof psh funtions Demailly, Lempert and Shi�man in [DLS℄ introdued thenotion of quasi-psh funtions, whih are loally a sum of a psh funtionand a smooth funtion. Regarding this notion reently Koªodziej [Ko℄ andGuedj�Zeriahi [GZ1℄, [GZ2℄ introdued and investigated ω-psh funtions ona ompat Kähler manifold with fundamental form ω. They studied someproblems of pluripotential theory in a loal setting (for bounded hyperonvexdomains in C

n) for ω-psh funtions, in partiular, the Dirihlet problem.The aim of this paper is to study some other problems of pluripotentialtheory of ω-psh funtions. Namely in Setion 3 we study ω-pluripolar andomplete ω-pluripolar sets in a ompat Kähler manifold. In partiular, weprove that a subset S of a ompat Kähler manifold X with fundamentalform ω is loally pluripolar if and only if there exists a ϕ ∈ E∞(X,ω) (seeDe�nition 2.3) suh that ϕ = −∞ on S. This result in a weaker form wasproved by Guedj�Zeriahi in [GZ2℄. Setion 4 is devoted to investigating om-plete ω-pluripolar sets in the projetive spae CP
n. We prove that a subset

S ⊂ CP
n is omplete ω-pluripolar in CP

n if and only if S ∩ Uj is ompletepluripolar in the oordinate neighbourhood Uj = {[z0 : . . . : zn] ∈ CP
n :

zj 6= 0} for 0 ≤ j ≤ n. It is shown that a subset S ⊂ CP
n is omplete

ω-pluripolar in CP
n i� S̃ = π−1(S) ∪ {0} is omplete pluripolar in C

n+1where π : C
n+1 \ {0} → CP

n denotes the anonial projetion. Next in Se-2000 Mathematis Subjet Classi�ation: Primary 32W20; Seondary 32Q15.Key words and phrases: ω-plurisubharmoni, Kähler manifold, ω-pluripolar set.[25℄ © Instytut Matematyzny PAN, 2007



26 Le Mau Hai et al.tion 5 we study the problem of subextension for ω-psh funtions. We showthat every psh funtion in the lass F (see De�nition 2.2) on a hyperonvexdomain in a ompat Kähler manifold X an be subextended to an ω-pshfuntion on X. Finally, in Setion 6 we establish a omparison priniple forthe lass E(X,ω) introdued and investigated reently by Guedj�Zeriahi (see[GZ2℄).Aknowledgements. The authors would like to thank the referees forvaluable omments whih improved the presentation of the paper.2. Preliminaries. In this setion we reall some elements of pluripo-tential theory in the loal setting that an be found in Bedford�Taylor [BT℄,Klimek [Kl℄, and Cegrell [Ce1℄, [Ce2℄.2.1. Let Ω be a bounded domain in C
n. The Cn-apaity in the sense ofBedford and Taylor on Ω is the set funtion given by

Cn(E) = Cn(E,Ω) = sup
{ \
E

(ddcu)n : u ∈ PSH(Ω), −1 ≤ u ≤ 0
}

for every Borel set E in Ω. It is known [BT℄ that
Cn(E) =

\
Ω

(ddch∗E,Ω)n,where h∗E,Ω is the relative extremal psh funtion for E (relative to Ω) de�nedas the smallest upper semiontinuous majorant of
hE,Ω(z) = sup{u(z) : u ∈ PSH(Ω), u ≤ 0, u ≤ −1 on E}.2.2. Let p ≥ 1. In [Ce1℄ and [Ce2℄ Cegrell introdued the following lassesof psh funtions on a bounded hyperonvex domain Ω in C

n:
E0 = E0(Ω) =

{
ϕ ∈ PSH(Ω) ∩ L∞(Ω) : lim

z→∂Ω
ϕ(z) = 0,

\
Ω

(ddcϕ)n <∞
}
,

F = F(Ω) =
{
ϕ ∈ PSH(Ω) : ∃E0 ∋ ϕj ց ϕ, sup

j≥1

\
Ω

(ddcϕj)
n <∞

}
,

E = E(Ω) =
{
ϕ ∈ PSH(Ω) : ∀z0 ∈ Ω, there exists a neighbourhood
U ∋ z0 and E0 ∋ ϕj ց ϕ on U with sup

j≥1

\
Ω

(ddcϕj)
n <∞

}
.

Reently Bªoki [Bl℄ has proved that (belonging to) E is a loal property.This result motivates the introdution of the following spae:
D = D(Ω) = {ϕ ∈ PSH(Ω) : ∀z0 ∈ Ω, there is a neighbourhood U ∋ z0suh that ϕ|U ∈ E(U) + R}.



ω-pluripolar sets on ompat Kähler manifolds 272.3. Let X be a ompat Kähler manifold with fundamental form ω.For example, X is a projetive spae with the Fubini�Study Kähler form
ω = ωFS. An upper semiontinuous funtion ϕ : X → [−∞,∞) is said to be
ω-psh if ϕ ∈ L1(X) and

ω + ddcϕ ≥ 0.We denote by PSH(X,ω) the set of all ω-psh funtions on X. Along thelines of [Ce1℄, the following lasses of ω-psh funtions were onsidered byGuedj and Zeriahi in [GZ2℄:
E(X,ω) = {ϕ ∈ PSH(X,ω) : ∀z0 ∈ X, there is a neighbourhood U of z0and a potential θ of ω on U suh that ϕ+ θ|U ∈ D(U)},

Ep(X,ω) =
{
ϕ ∈ PSH(X,ω) : ∃ PSH(X,ω) ∩ L∞(X) ∋ ϕj ց ϕ,

sup
j≥1

\
X

|ϕj |
pωnϕj

<∞
}

and
E∞(X,ω) =

⋂

p≥1

Ep(X,ω).

2.4. Following Bedford and Taylor [BT℄, Koªodziej [Ko℄ onsidered the
Capω-apaity on X given by

Capω(E) = sup
{ \
E

ωnϕ : ϕ ∈ PSH(X,ω), 0 ≤ ϕ ≤ 1
}

for all Borel sets E ⊂ X. In [Ko℄ (see also [GZ2℄), it is proved that if {Uα}is a �nite over of X by stritly pseudoonvex open subsets Uα = {z ∈ X :
ϕα(z) < 0} where ϕα is a stritly psh smooth funtion on a neighbourhoodof Uα then for every δ > 0 there exists C > 0 suh that

1

C
Capω(·) ≤ CapBT(·) ≤ C Capω(·),where

CapBT(E) =
∑

α

Cn(E ∩ Uα, U
δ
α), U δα = {z ∈ Uα : ϕα(z) < −δ}.The following equality was proved by Guedj and Zeriahi in [GZ1℄:

Capω(E) =
\
X

(−h∗E,ω)ωnh∗
E,ωfor all Borel sets E ⊂ X, where

hE,ω(z) = sup{ϕ(z) : ϕ ∈ PSH(X,ω), ϕ ≤ 0 and ϕ ≤ −1 on E}.2.5. Let S ⊂ X. We say that S is ω-pluripolar if there exists ϕ ∈PSH(X,ω) suh that S ⊂ ϕ−1(−∞) and ϕ 6≡ −∞. If ϕ an be hosensuh that S = ϕ−1(−∞) then S is said to be a omplete ω-pluripolar set.



28 Le Mau Hai et al.In [GZ1℄ the authors have shown that S is ω-pluripolar if and only if S isloally pluripolar.2.6. Given a domain Ω in X and an ω-psh funtion ϕ on Ω, an ω-pshfuntion ϕ̃ on X is said to be a subextension of ϕ if ϕ̃ ≤ ϕ on Ω.2.7. In this paper we use Proposition 6.5 and Theorem 5.1 of [GZ2℄. Thelatter is laimed to hold for n > 2 (see Theorem 7.5 in [GZ2℄). However, it isnot mentioned that Proposition 6.5 also holds for n > 2. We now prove that,using the notation of [GZ2℄. Namely we establish the following. Let µ be aprobability measure on a ompat onneted Kähler manifold, dimCX = n,equipped with the Kähler form ω. Assume that there exist α > p/(p + 1)and A > 0 suh that
µ(E) ≤ ACapω(E)αfor all Borel sets E ⊂ X. Then Ep(X,ω) ⊂ Lp(X).First we reall that integration by parts on a ompat manifold alwaysholds sine there is no boundary. Now the above laim follows from thefollowing three results.1) Let ϕ ∈ PSH(X,ω) ∩ L∞(X). Then\

X

(−ϕ)pωn ≤
\
X

(−ϕ)pωϕ ∧ ωn−1 ≤ · · · ≤
\
X

(−ϕ)pωnϕ.Indeed, let T be a losed positive urrent. Then\
X

(−ϕ)pωϕ ∧ T =
\
X

(−ϕ)pω ∧ T +
\
X

(−ϕ)pddcϕ ∧ T

=
\
X

(−ϕ)pω ∧ T + p
\
X

(−ϕ)p−1dϕ ∧ dcϕ ∧ T

≥
\
X

(−ϕ)pω ∧ T,and 1) follows.2) Let ϕ ∈ Ep(X,ω). ThenCapω(ϕ < −2t) ≤ C(ϕ)/tp+1.Indeed,Capω(ϕ < −2t) = sup
{ \
{ϕ<−2t}

ωnu : u ∈ PSH(X,ω), −1 ≤ u ≤ 0
}

≤ sup
{ \
{ϕ/t<u−1}

ωnu : u ∈ PSH(X,ω), −1 ≤ u ≤ 0
}

≤ sup
{ \
{ϕ/t<u−1}

ωnϕ/t : u ∈ PSH(X,ω), −1 ≤ u ≤ 0
}
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≤

\
{ϕ/t<−1}

(ω + ωϕ/t)
n ≤

\
{ϕ<−t}

n∑

j=0

Cjn
ωjϕ
tj

∧ ωn−j

=
n∑

j=0

Cjn
tj

\
{ϕ<−t}

ωjϕ ∧ ωn−j =
\

{ϕ<−t}

ωn +
n∑

j=1

Cjn
tj

\
{ϕ<−t}

ωjϕ ∧ ωn−j

≤
\

{ϕ<−t}

ωn +
n∑

j=1

Cjn
tj+p

\
X

(−ϕ)pωjϕ ∧ ωn−j

≤
\

{ϕ<−t}

ωn +

∑n
j=1C

j
n

T
X(−ϕ)pωnϕ

tj+p

≤
1

t1+p

[\
X

(−ϕ)pωn +
n∑

j=1

Cjn

\
X

(−ϕ)pωnϕ

]
≤
C(ϕ)

tp+1
.

Proof of Proposition 6.5 of [GZ2℄ for n > 2. Let ϕ ∈ Ep(X,ω) with
supX ϕ = −1. By the Fubini theorem we have\

X

(−ϕ)p dµ = p

∞\
1

tp−1µ(ϕ < −t) dt+ µ(X)

≤ pA

∞\
1

tp−1(Capω(ϕ < −t))α dt+ µ(X).From 2) it follows that\
X

(−ϕ)p dµ ≤ 1 + C(ϕ)

∞\
1

1

tα(p+1)+1−p
dt <∞

beause from the hypothesis we have α(p+ 1) + 1 − p > 1.3. ω-pluripolar and omplete ω-pluripolar sets. In this setion weinvestigate ω-pluripolar and omplete ω-pluripolar sets on a ompat Kählermanifold with fundamental form ω. Before stating the �rst result we wouldlike to explain its origin. In Theorem 6.2 of [GZ1℄ the authors proved thatevery loally pluripolar set is an ω-pluripolar set. Here we give another proofof this fat by applying a reent result on solution of the Monge�Ampèreequation presented in [GZ2℄.3.1. Theorem. Let S be a loally ω-pluripolar set in X. Then thereexists ϕ ∈ E∞(X,ω) suh that ϕ ≡ −∞ on S and ϕ 6≡ −∞.In order to prove the theorem we need the following lemma.



30 Le Mau Hai et al.3.2. Lemma. Let Ω be a domain in X whih is biholomorphi to a ballin C
n and D ⋐ Ω. Let ϕ ∈ F∞(Ω). Then there exists u ∈ E∞(X, aω) forsome a > 0 suh that u ≤ ϕ on D. Here

F∞ = F∞(Ω) =
⋂

p≥1

Fp(Ω)with
Fp = Fp(Ω) =

{
ϕ ∈ PSH(Ω) : ∃E0 ∋ ϕj ց ϕ, sup

j≥1

\
Ω

(−ϕj)
p(ddcϕj)

n <∞
}
.Proof. By hypothesis, ϕ ≤ 0 on Ω. We an assume that ϕ 6≡ 0. Put

hD,ϕ(z) = sup{u(z) : u ∈ PSH(Ω), u ≤ 0 and u|D ≤ ϕ}.Sine ϕ ≤ h∗D,ϕ and ϕ ∈ F∞(Ω) it follows that h∗D,ϕ ∈ F∞(Ω) ([Ce1℄).Moreover, hD,ϕ = ϕ on D and supp(ddch∗D,ϕ)n ⊂ D. It is easy to see that
(ddch∗D,ϕ)n 6= 0. Indeed, otherwise Lemma 3.3 in [Ah℄ implies that h∗D,ϕ ≡ 0onΩ, hene ϕ≡ 0, whih is a ontradition. Consider the probability measure
µ = α−1(ddch∗D,ϕ)n with α =

T
Ω(ddch∗D,ϕ)n 6= 0. It follows from the Hölderinequality (see [Ko℄) that for eah p ≥ 1 there exist Ap, Bp > 0 suh that

µ(E) = µ(E ∩D) ≤
1

α

\
Ω

(−h∗
E∩D,Ω

)p(ddch∗D,ϕ)n

≤
Ap
α

( \
Ω

(−h∗D,ϕ)p(ddch∗D,ϕ)n
)n/(p+n)

×
( \
Ω

(−h∗
E∩D,Ω

)p(ddch∗
E∩D,Ω

)n
)p/(p+n)

≤
Ap
α

( \
Ω

(−h∗D,ϕ)p(ddch∗D,ϕ)n
)n/(p+n)

Cn(E ∩D,Ω)p/(p+n)

≤ Bp Capω(E ∩D,X)p/(p+n)for all Borel sets E ⊂ X. Proposition 6.5 and Theorem 5.1 in [GZ2℄ implythat there exists v ∈ E∞(X,ω) with ωnv = µ. Let θ be a negative potentialof ω on Ω, ω = ddcθ. Sine
(ddc(v + θ))n = (ddcv + ω)n =

1

α
(ddch∗D,ϕ)non Ω, by the omparison priniple we have

v + θ ≤
1

α1/n
h∗D,ϕon Ω. Notie that E∞(X,Aω) = AE∞(X,ω) for all A > 0, and hene for

u = α1/n(v+c) where c = infD θ it follows that u ∈ E∞(X,α1/nω). Moreover,
u ≤ h∗D,ϕ on D, and therefore u ≤ ϕ almost everywhere on D. Thus u ≤ ϕon D.



ω-pluripolar sets on ompat Kähler manifolds 31Proof of Theorem 3.1. Let S be a loally ω-pluripolar set in X. Then by[H℄ we an �nd hyperonvex subsets Vs ⋐ Us and ϕs ∈ F∞(Us) suh that
ϕs = −∞ on S ∩ Us and X =

⋃k
s=1 Vs. We may assume that every Us isbiholomorphi to a ball in C

n. For eah s = 1, . . . , k applying Lemma 3.2we an �nd us ∈ E∞(X, asω) with as > 0 suh that us ≤ ϕs on Vs. Hene
{ϕs = −∞} ∩ Vs = {us = −∞} ∩ Vs for s = 1, . . . , k. Put

u =
1

k

k∑

s=1

us
as
.From the onvexity of E∞(X,ω), we infer that u ∈ E∞(X,ω) and u = −∞on S. This ompletes the proof of Theorem 3.1.

Remark. Theorem 3.1 also follows from [GZ2℄. Indeed, by Example 6.3in [GZ2℄, we an �nd ϕ ∈ E1(X,ω) suh that ϕ ≡ −∞ on S. It is enough toonsider the funtion u := −log(−ϕ).Next we investigate the ompleteness of ω-pluripolar sets. Given a pluri-polar set S ⊂ X, as in the loal setting put
S∗ = {z ∈ X : ϕ(z) = −∞, ∀ϕ ∈ PSH(X,ω), ϕ|S = −∞}.In the loal setting (for pseudoonvex domains in C

n) Zeriahi [Ze℄ provedthat if S is an Fσ and Gδ pluripolar set suh that S = S∗ then S is om-plete pluripolar. By a similar argument using the approximation theorem ofDemailly [De℄ for ω-psh funtions we also obtain3.3. Proposition. Let S be an Fσ and Gδ ω-pluripolar set suh that
S = S∗. Then S is omplete ω-pluripolar.Proof. Sine S is Fσ and Gδ, we an write S and X \ S as inreasingunions of ompat subsets

S =
∞⋃

j=1

Kj , X \ S =
∞⋃

j=1

Lj .

Let a ∈ Lj. Then a /∈ S∗. Hene, there exists u(j)
a ∈ PSH(X,ω) suh that

u
(j)
a |S ≡ −∞ and u(j)

a (a) > −∞. Sine εu(j)
a ∈ PSH(X,ω) for all 0 < ε < 1,we an assume that

u(j)
a |S ≡ −∞, u(j)

a (a) > −1, u(j)
a ≤ 0.By [De℄ there exists a sequene {u

(j)
k } ⊂ PSH∩C∞(X,ω) that dereasespointwise to u(j)

a on X. Applying Dini's theorem we �nd ka suh that
u

(j)
ka

|Kj
≤ −2j , u

(j)
ka

(a) > −1, u
(j)
ka

≤ 0.Let Ua be a neighbourhood of a suh that u(j)
ka
> −1 on Ua. Now a standardargument using the ompatness of Lj implies that there exists a ontinuous



32 Le Mau Hai et al.funtion vj ∈ PSH(X,ω) suh that(i) vj |Kj
≤ −2j .(ii) vj |Lj
> −1.(iii) vj ≤ 0.Set

v =

∞∑

j=1

2−jvj .Then v ∈ PSH(X,ω) and S = {v = −∞}, and the proposition follows.3.4. Proposition. Let S be a losed omplete loally ω-pluripolar set in
X. Then S is omplete ω-pluripolar.Proof. From the proof of Theorem 1 in [Co℄ it follows that there exist�nite open oversD′′

i ⋐ D′
i ⋐ Di, 1 ≤ i ≤ m, ofX and negative psh funtions

ϕi on Di suh that(i) S ∩Di = {ϕi = −∞}, X =
⋃m
i=1D

′′
i .(ii) ϕi − ϕj is bounded on Di ∩Dj \ S.(iii) ω = ddcθi on Di where θi is a stritly psh funtion on Di and θi < 0.As in the proof of Theorem 1 in [Co℄ we an hoose pi ∈ C∞

0 (X) with pi ≥ 0and supp pi ⊂ D′
i suh that

(1) ϕi + pi < ϕj + pj on (∂D′
i ∩D

′′
j ) \ S.Set

ϕ(z) =
1

M
sup

1≤i≤m
{ϕi(z) + pi(z) : z ∈ D′

i}whereM > 0 is hosen suh that pi/M+θi is psh on D′
i for 1 ≤ i ≤ m. From(1) we see that ϕ is upper semiontinuous on X. Moreover, (iii) implies that

ϕ ∈ PSH(X,ω). It is easy to hek that S = ϕ−1(−∞).
Remark. Proposition 3.4 was in fat proved in [DLS℄ by Demailly�Lempert�Shi�man.Now we investigate omplete pluripolarity in the ase dimX = 1. Wehave the following result.3.5. Proposition. Let dimX = 1 and S an ω-pluripolar set in X. Then(i) S = S∗.(ii) S is omplete ω-pluripolar if and only if S is a Gδ.Proof. (i) Take an ω-psh funtion u on X suh that u 6≡ −∞ and S ⊂

{u = −∞}. Let z 6∈ S. Sine dimX = 1, by [Lan℄ there exists a dereasingneighbourhood basis Uj of z suh that inf∂Uj
u > −∞. Take εj > 0 suh



ω-pluripolar sets on ompat Kähler manifolds 33that inf∂Uj
εju > −1. De�ne

vj(z) =

{
max{εju(z),−1} on Uj ,
εju(z) on X \ Uj .It follows that vj is ω-psh on X with vj ≥ −1 on Uj and vj = −∞ on S \Uj .Let

v =
∞∑

j=1

vj
2j
.From the onvexity of PSH(X,ω) it follows that v is ω-psh on X with v(z) >

−1 and v = −∞ on S. Hene z 6∈ S∗ and the desired onlusion follows.(ii) The neessity is obvious. It remains to prove the su�ieny. Assumethat S is a Gδ ω-pluripolar set. Fix z ∈ X. Take a oordinate neighbourhood
Uz of z in X and a smooth subharmoni funtion θz on a neighbourhoodof Uz suh that ω = ddcθz. Sine S ∩ Uz is a Gδ polar set, Deny's theorem(see [Lan℄) implies that there exists a subharmoni funtion uz on Uz suhthat Uz ∩ S = {uz = −∞}. Let ϕ be an ω-psh funtion on X suh that
S ⊂ {ϕ = −∞} and ϕ 6≡ −∞. As in the proof of (i) we an �nd an ω-pshfuntion ϕz on X suh that ϕz ≥ −1 on U ′

z and U ′
z ∩S ⊂ {ϕz = −∞} where

U ′
z is some neighbourhood of z with U ′

z ⋐ Uz. De�ne
ψz =

{
max{uz − supU ′

z
uz − 1 − θz + infU ′

z
θz, ϕz} on U ′

z,

ϕz on X \ U ′
z.It follows that ψz is ω-psh on X with U ′

z ∩ S = {ψz = −∞}. By the om-patness of X we an �nd a �nite open over U ′
zj
, j = 1, . . . ,m, of X. Put

ψ =
1

m

m∑

j=1

ψzj
.Then ψ is ω-psh with S = {ψ = −∞}.4. Complete ω-pluripolar sets in CP
n. This setion is devoted tostudying the omplete ω-pluripolarity of subsets in CP

n equipped with theFubini�Study Kähler form ω = ωFS. First we prove the following4.1. Proposition. Let S ⊂ CP
n. Then S is omplete ω-pluripolar ifand only if S ∩ Uj is omplete pluripolar in Uj for 0 ≤ j ≤ n where

Uj = {z = [z0 : . . . : zn] ∈ CP
n : zj 6= 0}Proof. Neessity. Let S be a omplete ω-pluripolar subset in CP

n. Thenthere exists an ω-psh funtion ϕ on CP
n suh that ϕ 6≡ −∞ and S =

{ϕ = −∞}. Let π : Cn+1 \ {0} → CP
n be the anonial projetion. Then

π|Vj
: Vj → Uj is biholomorphi where

Vj = {(z0, . . . , zj−1, 1, zj+1, . . . , zn)} ⊂ C
n+1 \ {0}.



34 Le Mau Hai et al.The funtion ψ(z) = ϕ(π(z))+ 1
2 log(

∑n
k=0 |zk|

2), z ∈ Vj , is plurisubharmonion Vj and (π|Vj
)−1(S)∩Vj = {ψ = −∞}. Hene (π|Vj

)−1(S)∩Vj is ompletepluripolar in Vj . From S ∩Uj = π|Vj
((π|Vj

)−1(S)∩Vj) it follows that S ∩Ujis omplete pluripolar in Uj for 0 ≤ j ≤ n.Su�ieny. Assume that S ∩ Uj is omplete pluripolar for 0 ≤ j ≤ n.Sine CP
n \ Uj is omplete ω-pluripolar, we an �nd an ω-psh funtion ujon CP

n suh that
{uj = −∞} = CP

n \ Uj .By [Si℄ there exists vj ∈ L(Uj) suh that {vj = −∞} = S ∩Uj. The example1.2 in [GZ1℄ shows that the funtion
ṽj(z) =

{
vj(z) −

1
2 log(1 + ‖z‖2) for z ∈ Uj ,

lim
Uj∋w→z

(
vj(w) − 1

2 log(1 + ‖w‖2)
) for z ∈ CP

n \ Uj ,belongs to PSH(CP
n, ω). Moreover {ṽj = −∞} ∩ Uj = S ∩ Uj . Let

ϕj =
uj + ṽj

2
.Then

(2)
ϕj ∈ PSH(CP

n, ω), {ϕj = −∞} ∩ Uj = S ∩ Uj ,

ϕj = −∞ on CP
n \ Uj .By (2) if ϕ = max{ϕj : 0 ≤ j ≤ n} then ϕ is ω-psh on CP

n and {ϕ =
−∞} = S. The proof of Proposition 4.1 is omplete.Next we establish a result on omplete ω-pluripolarity of a subset in CP

n.4.2. Proposition. Let π : C
n+1\{0} → CP

n be the anonial projetionand S ⊂ CP
n. Then S is omplete ω-pluripolar if and only if S̃ = π−1(S)

∪ {0} is omplete pluripolar in C
n+1.Proof. Assume that S is omplete ω-pluripolar. Take an ω-psh funtion

ϕ on CP
n with ϕ 6≡ −∞ and S = {ϕ = −∞}. Consider ϕ̃(z) = ϕ(π(z)) +

log ‖z‖ for z ∈ C
n+1 \ {0}. Sine ϕ is an ω-psh funtion on CP

n it followsthat ϕ̃ is plurisubharmoni on C
n+1 \ {0}, and hene on C

n+1. Beause
ϕ̃(0) = limz→0(ϕ(π(z)) + log ‖z‖) = −∞ we infer that S̃ = {ϕ̃ = −∞}.Hene S̃ is omplete pluripolar in C

n+1.Conversely, assume that S̃ is omplete pluripolar in C
n+1. For eah 0 ≤

j ≤ n, let Vj = {(z0, . . . , zj−1, 1, zj+1, . . . , zn)} ⊂ C
n+1 \ {0} and Uj = {z =

[z0 : . . . : zn] ∈ CP
n : zj 6= 0}. Then π|Vj

: Vj → Uj is biholomorphiand S̃ ∩ Vj = π−1(S) ∩ Vj is omplete pluripolar in Vj . This implies that
S∩Uj is omplete pluripolar in Uj . Proposition 4.1 implies that S is omplete
ω-pluripolar in CP

n.



ω-pluripolar sets on ompat Kähler manifolds 354.3. Proposition. Let S be an ω-pluripolar set in CP
n. Then

[S]∗CP
n ∩ Uj = [S ∩ Uj ]

∗
Uj

for j = 0, . . . , n,and hene
[S]∗CP

n =
n⋃

j=0

[S ∩ Uj ]
∗
Uj
.Proof. It is easy to see that [S ∩ Uj ]

∗
Uj

⊂ [S]∗
CP

n ∩ Uj . Hene, it remainsto show that [S]∗
CP

n ∩ Uj ⊂ [S ∩ Uj ]
∗
Uj

for 0 ≤ j ≤ n. Let z0 ∈ [S]∗
CP

n ∩ Ujand u ∈ PSH(Uj) with u = −∞ on S ∩ Uj . By [Si℄ we may assume that
u ∈ L(Uj). As in the proof of Proposition 4.1 the funtion

ũ(z) =

{
u(z) − 1

2 log(1 + ‖z‖2) for z ∈ Uj ,
lim

Uj∋w→z

(
u(w) − 1

2 log(1 + ‖w‖2)
) for z ∈ CP

n \ Uj ,is ω-psh on CP
n and ũ = −∞ on S ∩Uj . Let v be an ω-psh funtion on CP

nsuh that {v = −∞} = CP
n \ Uj , and set ϕ = (ũ+ v)/2. Then ϕ is psh on

CP
n and ϕ = −∞ on S. Hene ϕ(z0) = −∞. Thus ũ, and therefore u, isequal to −∞ at z0. This shows that z0 ∈ [S ∩ Uj ]

∗
Uj
.4.4. Proposition. Let S be a Gδ set whih is a ountable union ofompat omplete pluripolar sets in C

n. Then S is omplete ω-pluripolar in
CP

n = C
n ∪H∞.Proof. We write S =

⋃∞
j=1 Sj , where Sj are ompat omplete pluripolarsets in C

n. Proposition 3.4 implies that Sj is omplete ω-pluripolar in CP
n.On the other hand,

[S]∗CP
n =

∞⋃

j=1

[Sj ]
∗
CP

n =
∞⋃

j=1

Sj = S.Now the desired onlusion follows from Proposition 3.3.4.5. Examples. (a) Let f be an entire funtion on C and E = {(z, f(z)) :
z ∈ C} = {[1 : z : f(z)] : z ∈ C} ⊂ C

2 ⊂ CP
2. We have

[E]∗
CP

2 ∩ U0 = [E ∩ U0]
∗
U0

= E,

[E]∗
CP

2 ∩ U1 = [E ∩ U1]
∗
U1
r = [{(1/z, f(z)/z) : z ∈ C

∗}]∗
C2

= [{(z, zf(1/z)) : z ∈ C
∗}]∗

C2 = E ∩ U1 (by [Wie℄).Let now f(z) = ez. We have
[E]∗

CP
2 ∩ U2 = [E ∩ U2]

∗
U2

= [{(e−z, ze−z) : z ∈ C}]∗
C2

= [{(ez,−zez) : z ∈ C}]∗
C2 (by Corollary 2.6 in [Edi℄)

= {(ez,−zez) : z ∈ C} = {(e−z, ze−z) : z ∈ C} = E ∩ U2.Thus {(z, ez) : z ∈ C} is omplete ω-pluripolar in CP
2.



36 Le Mau Hai et al.Now we give an example in whih the pluripolar hull of a graph forthe lass of ω-psh funtions may not oinide with the graph. Let P (t) =
cdt

d + · · · + c0 be a polynomial of degree d > 1. Consider the graph
E = {(λ, P (λ)) : λ ∈ C} = {[1 : λ : P (λ)] : λ ∈ C} ⊂ C

2 ⊂ CP
2We show that

[E]∗
CP

2 = E ∪ {[0 : 0 : 1]}where [E]∗
CP

2 denotes the pluripolar envelope of E for the lass PSH(CP
2, ω).It is easy to see that E ⊂ [E]∗

CP
2 . We show that {[0 : 0 : 1]} ∈ [E]∗

CP
2 .Let u ∈ PSH(CP

2, ω) be suh that u([1 : λ : P (λ)]) = −∞ for λ ∈ C.De�ne
ϕ(ξ, η) = u([ξ : η : 1]) +

1

2
log(1 + |ξ|2 + |η|2)for (ξ, η) ∈ C

2. From the ω-plurisubharmoniity of u it follows that ϕ is pshon C
2 and
ϕ

(
1

P (λ)
,

λ

P (λ)

)
= u

([
1

P (λ)
:

λ

P (λ)
: 1

])
+

1

2
log

(
1 +

1 + |λ|2

|P (λ)|2

)

= u([1 : λ : P (λ)]) +
1

2
log

(
1 +

1 + |λ|2

|P (λ)|2

)
= −∞for λ ∈ C \ P−1(0). Take R > 0 su�iently large suh that P (λ) = 0 for all

λ ∈ C with |λ| < R. Thus
ϕ

(
1

P (1/λ)
,

1

λP (1/λ)

)
= −∞ on C \ {|λ| < R},and hene

ϕ

(
1

P (1/λ)
,

1

λP (1/λ)

)
= −∞ for 0 < |λ| < 1/R.Consider the funtion

ψ(λ) = ϕ

(
λd

cd + · · · + c0λd
,

λd−1

cd + · · · + c0λd

)

for |λ| < 1/R. Then ψ is subharmoni on {|λ| < 1/R} and ψ(λ) = −∞ for
0 < |λ| < 1/R. Therefore ψ(0) = −∞, and onsequently

u([0 : 0 : 1]) = ϕ(0, 0) = ψ(0) = −∞.Thus {[0 : 0 : 1]} ∈ [E]∗
CP

2 .Conversely, we show that [E]∗
CP

2 ⊂ E ∪ {[0 : 0 : 1]}. Assume that
[x0 : y0 : z0] ∈ CP

2 \ E ∪ {[0 : 0 : 1]}. Consider the funtion
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u([x, y, z])

=





1

d
log

∣∣∣∣
z

x
− P

(
y

x

)∣∣∣∣ −
1

2
log

(
1 +

|y|2 + |z|2

|x|2

) for x 6= 0,

lim
[x′,y′,z′]→[0,y,z]

{
1

d
log

∣∣∣∣
z′

x′
−P

(
y′

x′

)∣∣∣∣ −
1

2
log

(
1+

|y′|2+|z′|2

|x′|2

)} for x = 0.Example 1.2 in [GZ1℄ implies that u ∈ PSH(CP
2, ω). We have u|E = −∞.Now we hek that u([x0 : y0 : z0]) > −∞. First we assume that x0 6= 0and u([x0 : y0 : z0]) = −∞. Then d−1 log |z0/x0 − P (y0/x0)| = −∞, andonsequently z0/x0 = P (y0/x0). Hene [x0 : y0 : z0] ∈ E, whih is impossible.In the ase x0 = 0 and y0 6= 0 we have

u([0 : y0 : z0])

≥ lim
x→0

{
1

d
log

∣∣∣∣
z0
x

− P

(
y0

x

)∣∣∣∣ −
1

2
log(|x|2 + |y0|

2 + |z0|
2) + log |x|

}

≥
1

d
log |cd| +

1

2
log

|y0|
2

|y0|2 + |z0|2
> −∞.Finally, if y0 = 0 then z0 6= 0 and [0 : 0 : z0] = [0 : 0 : 1], whih is alsoimpossible. Thus [E]∗

CP
2 = E ∪ {[0 : 0 : 1]}.(b) Let f(z) = e1/z, z 6= 0, and E = {(z, e1/z) : z 6= 0} = {[1 : z : e1/z] :

z 6= 0} ⊂ C
2 ⊂ CP

2. We have
E∗

CP
2 ∩ U0 = [E ∩ U0]

∗
U0

= [{(z, e1/z) : z 6= 0}]∗
C2 = E ∩ U0 (by [Wie℄),

E∗
CP

2 ∩ U1 = [E ∩ U1]
∗
U1

= [{(1/z, e1/z/z) : z 6= 0}]∗
C2

= [{(z, zez) : z 6= 0}]∗
C2 = (E ∩ U1) ∪ {[0 : 1 : 0]},

[E]∗
CP

2 ∩ U2 = [E ∩ U2]
∗
U2

= [{(e−1/z, ze−1/z) : z 6= 0}]∗
C2

= [{(ez,−ez/z) : z 6= 0}]∗
C2 = [π(P )]∗

C2,where π : C
2 → C

2, π(z, w) = (ez, w) and P = {(z,−ez/z) : z 6= 0}. Sine Pis loally losed in C
2 and π is an A-overing map (see the preise de�nitionin [Edi℄) and by Theorem 2.5 in [Edi℄ we have
[π(P )]∗

C2 = π(P ∗) = π(P ) = E ∩ U2.Thus [E]∗
CP

2 ∩ U2 = E ∩ U2. Therefore
[E]∗

CP
2 = E ∪ {[0 : 1 : 0]}.5. Subextension of ω-psh funtions. Let X be a ompat Kählermanifold with fundamental form ω, and Ω a hyperonvex domain in X.Assume that ϕ ∈ PSH(Ω). In this setion we investigate the existene of an

ω-psh funtion ϕ̃ on X suh that ϕ̃ ≤ ϕ on Ω. Suh an ω-psh funtion issaid to be a subextension of ϕ. Now we have



38 Le Mau Hai et al.5.1. Theorem. Let Ω be a hyperonvex domain in X suh that ω has anegative potential θ on Ω. Assume that ϕ ∈ F(Ω). Then there exist a > 0and ϕ̃ ∈ PSH(X, aω) suh that ϕ̃ 6≡ −∞ and ϕ̃ ≤ ϕ on Ω.Proof. Let E0(Ω) ∋ ϕj ց ϕ be suh that α =
T
Ω(ddcϕ)n < ∞. Take aninreasing exhaustion sequene {Ωj} of Ω by relatively ompat subdomains

Ωj ⋐ Ω. For eah j ≥ 1, put
hj = hΩj ,ϕj

= sup{v ∈ PSH(Ω) : v ≤ 0 and v|Ωj
≤ ϕj}.Then E0(Ω) ∋ hj ց ϕ and

αj =
\
Ω

(ddchj)
n ≤

\
Ω

(ddchj+1)
n = αj+1 → α(see Proposition 5.1 in [Ce2℄). Consider the probability measure µj =

(1/αj)(dd
chj)

n on X. Notie that supp(ddchj)
n ⊂ Ωj . Theorem 5.1 in[Ko℄ and Proposition 2.10 in [GZ1℄ imply that for eah j, p ≥ 1 there exist

Ap, B
j
p > 0 suh that

µj(E) = µj(E ∩Ωj) ≤
1

αj

\
Ω

(−h∗
E∩Ωj

)p(ddchj)
n

≤
Ap
αj

( \
Ω

(−hj)
p(ddchj)

n
)n/(p+n)( \

Ω

(−h∗
E∩Ωj

)p(ddch∗E∩Ωj
)n

)p/(p+n)

≤
Ap
αj

( \
Ω

(−hj)
p(ddchj)

n
)n/(p+n)

Cn(E ∩Ωj , Ω)p/(p+n)

≤ Bj
p Capω(E ∩Ωj , X)p/(p+n)for all Borel sets E ⊂ X. Proposition 6.5 and Theorem 5.1 in [GZ2℄ implythat there exists vj ∈ Ep(X,ω) suh that

ωnvj
= µj and sup

X
vj = −1.Sine

(ddc(vj + θ))n = ωnvj
= µj =

(
ddc

(
1

α
1/n
j

hj

))n

on Ω, by the omparison priniple in [BT℄ it follows that
vj + θ ≤

1

α
1/n
j

hj

on Ω. Thus for uj = α
1/n
j (vj + c) with c = infΩ θ < 0 we have uj ∈PSH(X,α

1/n
j ω) ∩ L∞(X) ⊂ PSH(X,α1/nω) ∩ L∞(X) and supX uj =

α
1/n
j (c− 1), uj ≤ hj ≤ ϕj on Ωj . De�ne ϕ̃ = (limj→∞ uj)

∗. Sine supX uj =

α
1/n
j (c − 1) → α1/n(c − 1) as j → ∞, we have ϕ̃ 6≡ −∞ and it is easy to



ω-pluripolar sets on ompat Kähler manifolds 39see that ϕ̃ ∈ PSH(X, aω) with a = α1/n and ϕ̃ ≤ ϕ on Ω. Theorem 5.1 isompletely proved.5.2. Corollary. Let Ω be a bounded hyperonvex domain in C
n and

ϕ ∈ F(Ω). Then there exists ϕ̃ ∈ Lε(C
n) suh that ϕ̃ ≤ ϕ on Ω. Here

ε =
[ \
Ω

(ddcϕ)n
]1/n

,

Lε = {u ∈ PSH(Cn) : u(z) ≤ ε log+ ‖z‖ +O(1)}.Proof. Consider Ω as a domain in CP
n = C

n ∪ H∞. By Theorem 5.1there exists ψ ∈ PSH(CP
n, εω) suh that ψ ≤ ϕ on Ω and ψ 6≡ −∞. De�ne

ϕ̃(z) = ψ(z) +
ε

2
log(1 + ‖z‖2) − cwith

c = sup
Ω

ε

2
log(1 + ‖z‖2).It follows that ϕ̃ ∈ Lε(C

n) and ϕ̃ ≤ ϕ on Ω.
Remark. Corollary 5.2 was proved as Theorem 5.1 of [CKZ℄.6. Appendix: The omparison priniple in the lass E(X,ω). In[Ko℄ Koªodziej proved the omparison priniple for bounded ω-psh funtionsby using the approximation theorem of Demailly [De℄. The aim of this setionis to establish this priniple in the lass E(X,ω). Notie that here we givea diret proof without using Demailly's theorem.6.1. Theorem. Let ϕ, ψ, ϕ1, . . . , ϕn−1 ∈ E(X,ω) and T = ωϕ1

∧ · · · ∧
ωϕn−1

. Then \
{ϕ<ψ}

ωψ ∧ T ≤
\

{ϕ<ψ}

ωϕ ∧ T +
\

{ϕ=ψ=−∞}

ωϕ ∧ T.

Proof. We split the proof into the following two steps.
Step 1. First we prove that

(3)
\

{ϕ<ψ}

ωψ ∧ T ≤
\

{ϕ≤ψ}

ωϕ ∧ T.For this, we establish the equality
(4)

\
X

(ddcϕ+ ω) ∧ T =
\
X

ω ∧ T.Assume for the moment that (4) is true. Put ϕε = max(ϕ + ε, ψ), ε > 0.From (4) it follows that\
X

(ddcϕε + ω) ∧ T =
\
X

ωn =
\
X

(ddcϕ+ ω) ∧ T.



40 Le Mau Hai et al.This equality together with the equality
(ddcϕε + ω) ∧ T |{ϕ+ε>ψ} = (ddcϕ+ ω) ∧ T |{ϕ+ε>ψ} (see [KH℄)implies that \

{ϕ+ε≤ψ}

(ddcϕε + ω) ∧ T ≤
\

{ϕ≤ψ}

(ddcϕ+ ω) ∧ T.

On the other hand,
(ddcϕε + ω) ∧ T |{ϕ+ε<ψ} = (ddcψ + ω) ∧ T |{ϕ+ε<ψ}so we obtain\

{ϕ+ε<ψ}

(ddcψ + ω) ∧ T =
\

{ϕ+ε<ψ}

(ddcϕε + ω) ∧ T ≤
\

{ϕ≤ψ}

(ddcϕ+ ω) ∧ T.

Letting ε tend to 0 we obtain\
{ϕ<ψ}

ωψ ∧ T ≤
\

{ϕ≤ψ}

ωϕ ∧ T,

beause {ϕ+ ε < ψ} ր {ϕ < ψ} as ε→ 0. Thus (3) follows.To prove (4), we �rst observe that by Stokes' formula, if ϕ is boundedthen
(5)

\
X

ddcϕ ∧ T = 0.

Next onsider the ase ϕ ∈ E(X,ω). Set ϕj = max(ϕ,−j). Notie that
ϕj ∈ E(X,ω) ∩ L∞(X) and ϕj ց ϕ. Therefore ddcϕj ∧ T weakly onvergesto ddcϕ ∧ T . Using the above result we have TX ddcϕj ∧ T = 0 for all j, andhene TX ddcϕ ∧ T = 0.
Step 2. Applying Step 1 to ϕ+ ε and ψ we get\

{ϕ+ε<ψ}

ωψ ∧ T ≤
\

{ϕ+ε≤ψ}

ωϕ ∧ T.

Letting ε tend to 0 we have\
{ϕ<ψ}

ωψ ∧ T ≤
\

{ϕ<ψ}

ωϕ ∧ T +
\

{ϕ=ψ=−∞}

ωϕ ∧ T,

beause {ϕ+ ε ≤ ψ} ր {ϕ < ψ} ∪ {ϕ = ψ = −∞} as ε→ 0.6.2. Corollary. Let ϕ, ψ ∈ E(X,ω). Then\
{ϕ<ψ}

ωnψ ≤
\

{ϕ<ψ}

ωnϕ +
\

{ϕ=ψ=−∞}

ωnϕ.
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