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Existence and nonexistence of solutions for
a quasilinear elliptic system

by Qin Li and Zuodong Yang (Nanjing)

Abstract. By a sub-super solution argument, we study the existence of positive
solutions for the system 

−∆pu = a1(x)F1(x, u, v) in Ω,

−∆qv = a2(x)F2(x, u, v) in Ω,

u, v > 0 in Ω,

u = v = 0 on ∂Ω,

where Ω is a bounded domain in RN with smooth boundary or Ω = RN . A nonexistence
result is obtained for radially symmetric solutions.

1. Introduction. In this paper, we consider the existence and nonex-
istence of positive solutions for the system

−∆pu = a1(x)F1(x, u, v) in Ω,

−∆qv = a2(x)F2(x, u, v) in Ω,

u, v > 0 in Ω,

u = v = 0 on ∂Ω,

(1.1)

where Ω is a bounded domain in RN with smooth boundary or Ω = RN
(when Ω = RN , the condition u = v = 0 on ∂Ω should be understood
as u(x) → 0, v(x) → 0 as |x| → ∞), ∆pu = div(|∇u|p−2∇u), p > 1,
∆qv = div(|∇v|q−2∇v), q > 1. Each ai(x) (i = 1, 2) is a positive C0,α(Ω)
(α ∈ (0, 1)) function, and each function Fi : Ω × (0,∞) × (0,∞) → (0,∞)
is continuously differentiable on its domain.

Systems of the above form are mathematical models occurring in stud-
ies of the p-Laplacian system, generalized reaction-diffusion theory, non-
Newtonian fluid theory [AM], non-Newtonian filtration [K] and the turbu-
lent flow of a gas in porous medium. Media with p > 2 are called dilatant
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fluids and those with p < 2 are called pseudoplastics. If p = 2, they are
Newtonian fluids. When p 6= 2, the problem becomes more complicated
since certain nice properties inherent to the case p = 2 seem to be lost or at
least difficult to verify. The main differences between p = 2 and p 6= 2 can
be found in [G2] and [GW].

There are many works dealing with the Lane–Emden system
−∆u = a1(x)F1(x, u, v) in Ω,

−∆v = a2(x)F2(x, u, v) in Ω,

u, v > 0 in Ω,

u = v = 0 on ∂Ω.

(1.2)

For example, [G1] and [Z] studied (1.2) with a1(x)F1(x, u, v) = u−pv−q,
a2(x)F2(x, u, v) = u−rv−s, that is, Fi (i = 1, 2) are singular in all variables.
We say that Fi(x, u, v) is singular in u (or v) if limu→0 Fi(x, u, v) = ∞
(resp. limv→0 Fi(x, u, v) = ∞). By using the sub-super solution method,
[G1] studied the existence, nonexistence, uniqueness, and C1-regularity of
solutions for (1.2). Furthermore, [Z] studied the existence, uniqueness and
boundary behavior of solutions for (1.2) under different assumptions.

In [CMT], the authors considered the following system with nonsingular
nonlinearities in all variables:{−∆U(x) = ∇H(x, U(x)) in Ω,

U(x) = 0 on ∂Ω,
(1.3)

where U(x) = (u1, u2) : Ω → R2, H(x, u1, u2) = |u1|α1 |u2|α2 with αi > 1.
By using variational methods, the authors provided the existence of nine
nontrivial solutions characterized by sign properties of each component.

For the case p 6= 2, q 6= 2, Lee et al. [LSY1], [LSY2] studied the existence
of solutions for the singular system

−∆pu = λ(f1(u, v)− u−γ1) in Ω,

−∆qv = λ(f2(u, v)− v−γ2) in Ω,

u = v = 0 on ∂Ω,

(1.4)

where γi ∈ (0, 1), fi ∈ C([0,∞) × [0,∞)), fi are nondecreasing in both u
and v, i = 1, 2, λ > 0, p, q > 1.

In [YY2], Yin and Yang studied the existence and nonexistence of entire
positive solutions for the nonlinear elliptic system

−∆pu = a(x)um + λc(x)vn, x ∈ RN ,

−∆qv = b(x)vl + θc(x)un, x ∈ RN ,

u, v > 0, x ∈ RN ,

u→ 0, v → 0 as |x| → ∞,

(1.5)

where 1< p, q <N , λ, θ ≥ 0 are nonnegative parameters, a, b, c : RN→ [0,∞)
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are locally Hölder continuous functions not identically zero,−∞<m<p−1,
−∞ < l < q − 1, max{p− 1, q − 1} < n.

Moreover, when the nonlinearities are nonsingular in all variables, a lot
of articles deal with blow-up solutions: see, for example, [WY1], [MY1]
and [WY2].

Motivated by the above results, we establish results when the nonlinear-
ities are singular in one of the variables and nonsingular in the others. Thus
we assume Fi (i = 1, 2) satisfy the following conditions:

(F1) Fi (i = 1, 2) are locally Hölder continuous.
(F2) For each i ∈ {1, 2}, there exists a continuous function gi :

(0,∞) → (0,∞) satisfying Fi(x, t1, t2) ≤ gi(ti) for all (x, t1, t2)
in Ω × (0,∞) × (0,∞) with g1(s)/s

p−1 and g2(s)/s
q−1 decreasing

on (0,∞), and

lim
s→∞

g1(s)

sp−1
= 0, lim

s→∞

g2(s)

sq−1
= 0.

(F3) For each i ∈ {1, 2}, there exists δi ∈ (0, 1) and a continuous
nonincreasing function hi : (0, δ1) × (0, δ2) → (0,∞) satisfying
Fi(x, t1, t2) ≥ hi(t1, t2) for all (x, t1, t2) ∈ Ω × (0, δ1)× (0, δ2), and
lims→0 hi(s, s) ∈ (0,∞].

Now, we give an example of nonlinearities F1, F2 satisfying the assump-
tions (F1)–(F3). Let

F1(x, t1, t2) = t
(p−1)α1

1 (t2 + ε2)
α2 with α1, α2 < 0, ε2 > 1,

F2(x, t1, t2) = (t1 + ε1)
α1t

(q−1)α2

2 with α1, α2 < 0, ε1 > 1.

Then, we choose

h1(t1, t2) = t
(p−1)α1

1 (t2 + ε2)
α2 , h2(t1, t2) = (t1 + ε1)

α1t
(q−1)α2

2 ,

g1(t1) = ε−α2
2 t

(p−1)α1

1 , g2(t2) = ε−α1
1 t

(q−1)α2

2 .

By a direct computation, we can easily show that the functions Fi, hi, gi
satisfy the assumptions (F1)–(F3).

The main purpose of this paper is to investigate the existence and nonex-
istence of positive solutions for (1.1). Our main results are:

Theorem 1.1. Let Ω ⊂ RN be a bounded domain with smooth boundary,
and assume (F1)–(F3) hold. Then problem (1.1) has a solution.

Theorem 1.2. Let Ω = RN , and assume (F1)–(F3) hold, and ai satisfy
∞�

0

rA(r) dr <∞ where A(r) = max
|x|=r

(a1(x) + a2(x)).

Then problem (1.1) has a solution.
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Theorem 1.3. Let Ω = RN , and assume that Fi : RN × [0,∞)× [0,∞)
→ RN are continuous functions. If there exist ε > 0, r0 ≥ 0, and a contin-
uous function B : [r0,∞)→ (0,∞) satisfying

∞�

r0

rB(r) dr =∞

such that for all x ∈ RN with |x| ≥ r0, we have

2∑
i=1

ai(x)Fi(x, u, v) ≥ B(r) for all |(u, v)| ≤ ε,

then problem (1.1) has no radial positive bounded solutions.

2. Preliminaries

Definition 2.1. Let Ω be a bounded domain in RN with smooth bound-
ary. We say (u, v) is a subsolution of (1.1) provided

−∆pu ≤ a1(x)F1(x, u, v) in Ω,

−∆qv ≤ a2(x)F2(x, u, v) in Ω,

u, v > 0 in Ω,

u = v = 0 on ∂Ω.

A supersolution (u, v) is defined by reversing the inequalities.

Lemma 2.2. Assume that (u, v) is a subsolution and (u, v) is a super-
solution of problem (1.1), with u ≤ u, v ≤ v in Ω, and u = v = u = v = 0
on ∂Ω. Then problem (1.1) has a solution (u, v) with u ≤ u ≤ u, v ≤ v ≤ v.
In particular, u = v = 0 on ∂Ω.

Lemma 2.3 (Diaz-Saa Inequality, see also [MY2, Lemma 2.7]). Let
Ω ⊂ RN be an open set. For i = 1, 2, let ωi ∈ L∞(Ω) be such that ωi > 0

a.e. in Ω, ωi ∈W 1,p(Ω), ∆pω
1/p
i ∈ L∞(Ω) and ω1 = ω2 on ∂Ω. Then

�

Ω

[
−∆pω

1/p
1

ω
(p−1)/p
1

− −∆pω
1/p
2

ω
(p−1)/p
2

]
(ω1 − ω2) dx ≥ 0

if ωi/ωj ∈ L∞(Ω) for i 6= j, i, j = 1, 2.

Lemma 2.4. Let Ω be a bounded domain in RN with smooth boundary,
ai(·) ∈ C0,α(Ω) for some α ∈ (0, 1), and ai(x) > 0 for all x ∈ Ω. Then the
problem 

−∆pw = ai(x) in Ω,

w(x) > 0 in Ω,

w(x) = 0 on ∂Ω

has a unique solution.
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3. Proof of Theorem 1.1. Consider the eigenvalue problem
−∆pφ = λai(x)|φ|p−2φ in Ω,

φ(x) > 0 in Ω,

φ(x) = 0 on ∂Ω.

Let φi1 (i = 1, 2) be the eigenfunctions corresponding to the first eigenval-

ues λi1 (i = 1, 2) respectively. Then φi1 > 0 (i = 1, 2) in Ω.

Using the assumptions on hi (i = 1, 2), we get

lim
s→0+

h1(s, s)

sp−1
=∞, lim

s→0+

h2(s, s)

sq−1
=∞.

Then there exist ε1, ε2 > 0 satisfying

h1(s, s)

sp−1
≥ λ11, ∀s ∈ (0, ε1),

h2(s, s)

sq−1
≥ λ21, ∀s ∈ (0, ε2).

Let (u, v) = (C1φ
1
1, C2φ

2
1), where Ci (i = 1, 2) satisfy

0 < Ci < min

{
1,

ε

2 maxx∈Ω φ
i
1(x)

}
, ε = min{ε1, ε2}.

We get

−∆pu = −Cp−11 div(|∇φ11|p−2∇φ11) = Cp−11 λ11a1(x)|φ11|p−2φ11

≤ λ11a1(x)(C1φ
1
1 + C2φ

2
1)
p−1 ≤ a1(x)h1(C1φ

1
1 + C2φ

2
1, C1φ

1
1 + C2φ

2
1)

≤ a1(x)h1(C1φ
1
1, C2φ

2
1) ≤ a1(x)F1(x, u, v).

Using a similar method, we can obtain

−∆qv ≤ a2(x)F2(x, u, v).

Thus, (u, v) = (C1φ
1
1, C2φ

2
1) is a subsolution of (1.1).

Next, we will construct a supersolution. By the assumptions on gi
(i = 1, 2), we define

gi(t) =
2

t

t�

t/2

ĝi(s) ds, t > 0,

where

ĝ1(s) = sup
t≥s>0

g1(t)

tp−1
, ĝ2(s) = sup

t≥s>0

g2(t)

tq−1
.

Then gi(·) ∈ C1((0,∞), (0,∞)), g1(t) > g1(t)/t
p−1 and g2(t) > g2(t)/t

p−1

for all t > 0, and gi(·) is nonincreasing on (0,∞).
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Let wa1+a2(x) be the solution to the problem
−∆pw = a1(x) + a2(x) in Ω,

w(x) > 0 in Ω,

w(x) = 0 on ∂Ω,

and C0 = maxx∈Ω wa1+a2(x). Then we define u : Ω → (0,∞) implicitly by

wa1+a2 =
1

C1

u�

0

(
sp−1

sp−1g1(s) + 1

) 1
p−1

ds

where C1 satisfies

C0C1 <

C1�

0

(
sp−1

sp−1g1(s) + 1

) 1
p−1

ds.

Then we have 0 ≤ u ≤ C1. Thus,

Cp−11 (a1(x) + a2(x)) = −Cp−11 div(|∇w|p−2∇w)

= −div

(
1

g1(u) + (u)−(p−1)
|∇u|p−2∇u

)
= − 1

g1(u) + (u)−(p−1)
div(|∇u|p−2∇u)

− |∇u|p d
du

(
1

g1(u) + (u)−(p−1)

)
≤ − 1

g1(u) + (u)−(p−1)
div(|∇u|p−2∇u).

Then we have

−∆pu ≥ Cp−11 (a1(x) + a2(x))[g1(u) + (u)−(p−1)]

≥ (a1(x) + a2(x))(u)p−1
[
g1(u)

(u)p−1
+

1

(u)p−1

]
≥ a1(x)g1(u) ≥ a1(x)F1(x, u, v).

Using a similar method, we can find a function v : Ω → (0,∞) satisfying

−∆qv ≥ a2(x)g2(v) ≥ a2(x)F2(x, u, v).

Thus, we have constructed a supersolution (u, v).

Now, we show that u ≤ u for all x ∈ Ω. Let

Ωu,u = {x ∈ Ω : u > u}.

We have to show that Ωu,u = ∅. Assume, on the contrary, that Ωu,u 6= ∅.
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By exploiting Lemma 2.3 with ω1 = up, ω2 = up, we have

0 ≤
�

Ωu,u

(
−∆pω

1/p
1

ω
(p−1)/p
1

− −∆pω
1/p
2

ω
(p−1)/p
2

)
(ω1 − ω2) dx

=
�

Ωu,u

(
−∆pu

up−1
− −∆pu

up−1

)
(up−1 − up−1) dx

≤
�

Ωu,u

a1(x)

[
F1(x, u, v)

up−1
− g1(u)

up−1

]
(up−1 − up−1) dx

≤
�

Ωu,u

a1(x)

[
g1(u)

up−1
− g1(u)

up−1

]
(up−1 − up−1) dx < 0,

which is a contradiction. Thus Ωu,u = ∅. On the other hand, u = u = 0 on
∂Ω. Thus, we have u ≤ u for all x ∈ Ω. Similarly, v ≤ v for all x ∈ Ω.

By Lemma 2.2, there exists a function (u, v) solving (1.1) with u ≤ u ≤ u
on Ω and v ≤ v ≤ v on Ω. Thus, the proof of Theorem 1.1 is finished.

4. Proof of Theorem 1.2. Consider the system
−∆pu = a1(x)F1(x, u, v) in Bn,

−∆qv = a2(x)F2(x, u, v) in Bn,

u, v > 0 in Bn,

u = v = 0 on ∂Bn,

(4.1)

where Bn is the open ball of radius n centered at the origin. By Theorem 1.1,
we know (4.1) has a solution, say (un, vn). Next, we construct an upper
bound for this sequence. Similar to the proof of Theorem 1.1, we define
u(·) : [0,∞)→ (0,∞) implicitly by

wA(r) =
1

C1

u(r)�

0

(
sp−1

sp−1g1(s) + 1

) 1
p−1

ds

where C1, g1(s) are defined in Theorem 1.1, and wA(·) is a positive bounded
radially symmetric solution of the problem

−∆pw(r) = A(r), 0 ≤ r <∞,

w(r) > 0, 0 ≤ r <∞,

w′(0) = 0, limr→∞w(r) = 0.

Then, by direct computation similar to the one in the proof of Theorem 1.1,
we obtain

−∆pu(r) ≥ A(r)g1(u(r)) ≥ a1(x)g1(u(r)) ≥ a1(x)F1(x, u(r), v(r))
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for all x ∈ RN . Using the same method, we can find a function v(·) : [0,∞)
→ (0,∞) satisfying

−∆qv(r) ≥ A(r)g2(v(r)) ≥ a2(x)g2(v(r)) ≥ a2(x)F2(x, u(r), v(r))

for all x ∈ RN . Lemma 2.2 implies that 0 < un(x) ≤ u(r) and 0 < vn(x)
≤ v(r) for all x ∈ Bn, that is, {un(x)}∞n=1 and {vn(x)}∞n=1 are bounded in
Bn ⊂ RN . By (F1), (4.1) and the continuity of ai, we can easily deduce that
∆pu

n(x) and ∆qv
n(x) are bounded in Bn, which implies that |∇un(x)| ≤M

and |∇vn(x)| ≤ M for some M > 0. Thus, by the Arzelà–Ascoli theorem,
{un(x)}∞n=1 and {vn(x)}∞n=1 have subsequences (still denoted by {un(x)}∞n=1

and {vn(x)}∞n=1) converging uniformly to u(x) and v(x). Moreover, we have

u(x) ≤ u(r), v(x) ≤ v(r), ∀x ∈ RN .

Therefore, (u, v) is a solution of
−∆pu = a1(x)F1(x, u, v) in RN ,

−∆qv = a2(x)F2(x, u, v) in RN ,

u(x), v(x) > 0 in RN ,

lim
|x|→∞

u(x) = lim
|x|→∞

v(x) = 0.

(4.2)

This finishes the proof of Theorem 1.2.

5. Proof of Theorem 1.3. Arguing by contradiction, we suppose that
(u, v) is a radial positive bounded solution for problem (4.2). Then (u, v)
satisfies 

−(rN−1Φ(u))′ = rN−1a1(r)F1(r, u(r), v(r)), 0 ≤ r <∞,

−(rN−1Ψ(v))′ = rN−1a2(r)F2(r, u(r), v(r)), 0 ≤ r <∞,

u(r), v(r) > 0, 0 ≤ r <∞,
limr→∞ u(r) = limr→∞ v(r) = 0,

(5.1)

where Φ(u) = |u′|p−2u′ and Ψ(v) = |v′|q−2v′.
It is easy to see that u′(r) < 0 and v′(r) < 0, which implies that u(r)

and v(r) are decreasing. Summing in (5.1), we obtain

r(Φ′(u(r)) + Ψ ′(v(r))) + (N − 1)[Φ(u(r)) + Ψ(v(r))]

= −r
2∑
i=1

ai(r)Fi(r, u(r), v(r)) ≤ −rB(r).

Let

ϕ(r) =

r�

0

[Φ(u(t)) + Ψ(v(t))] dt.
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Then

rϕ′(r)− r0ϕ′(r0) =

r�

r0

(tϕ′(t))′ dt =

r�

r0

[tϕ′′(t) + ϕ′(t)] dt

≤ −
r�

r0

tB(t) dt+ (2−N)

r�

r0

ϕ′(t) dt→ −∞

as r →∞. This implies that there exists a constant C > 0 satisfying

−rϕ′(r) > C for r > r0 > 0,

that is,
−ϕ′(r) > Cr−1 for r > r0 > 0.

Thus, we have

ϕ(r0)− ϕ(r) = −
r�

r0

ϕ′(t) dt >

r�

r0

Ct−1 dt = C ln r − C ln r0 →∞

as r → ∞, which is a contradiction. Hence, the proof of Theorem 1.3 is
completed.
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