Existence and nonexistence of solutions for a quasilinear elliptic system

by Qin Li and Zuodong Yang (Nanjing)

Abstract

By a sub-super solution argument, we study the existence of positive solutions for the system $$
\begin{cases}-\Delta_{p} u=a_{1}(x) F_{1}(x, u, v) & \text { in } \Omega \\ -\Delta_{q} v=a_{2}(x) F_{2}(x, u, v) & \text { in } \Omega \\ u, v>0 & \text { in } \Omega \\ u=v=0 & \text { on } \partial \Omega\end{cases}
$$

where Ω is a bounded domain in \mathbb{R}^{N} with smooth boundary or $\Omega=\mathbb{R}^{N}$. A nonexistence result is obtained for radially symmetric solutions.

1. Introduction. In this paper, we consider the existence and nonexistence of positive solutions for the system

$$
\begin{cases}-\Delta_{p} u=a_{1}(x) F_{1}(x, u, v) & \text { in } \Omega \tag{1.1}\\ -\Delta_{q} v=a_{2}(x) F_{2}(x, u, v) & \text { in } \Omega \\ u, v>0 & \text { in } \Omega \\ u=v=0 & \text { on } \partial \Omega\end{cases}
$$

where Ω is a bounded domain in \mathbb{R}^{N} with smooth boundary or $\Omega=\mathbb{R}^{N}$ (when $\Omega=\mathbb{R}^{N}$, the condition $u=v=0$ on $\partial \Omega$ should be understood as $u(x) \rightarrow 0, v(x) \rightarrow 0$ as $|x| \rightarrow \infty), \Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right), p>1$, $\Delta_{q} v=\operatorname{div}\left(|\nabla v|^{q-2} \nabla v\right), q>1$. Each $a_{i}(x)(i=1,2)$ is a positive $C^{0, \alpha}(\bar{\Omega})$ $(\alpha \in(0,1))$ function, and each function $F_{i}: \Omega \times(0, \infty) \times(0, \infty) \rightarrow(0, \infty)$ is continuously differentiable on its domain.

Systems of the above form are mathematical models occurring in studies of the p-Laplacian system, generalized reaction-diffusion theory, nonNewtonian fluid theory (AM, non-Newtonian filtration (K) and the turbulent flow of a gas in porous medium. Media with $p>2$ are called dilatant

[^0]fluids and those with $p<2$ are called pseudoplastics. If $p=2$, they are Newtonian fluids. When $p \neq 2$, the problem becomes more complicated since certain nice properties inherent to the case $p=2$ seem to be lost or at least difficult to verify. The main differences between $p=2$ and $p \neq 2$ can be found in (G2) and GW].

There are many works dealing with the Lane-Emden system

$$
\begin{cases}-\Delta u=a_{1}(x) F_{1}(x, u, v) & \text { in } \Omega \tag{1.2}\\ -\Delta v=a_{2}(x) F_{2}(x, u, v) & \text { in } \Omega \\ u, v>0 & \text { in } \Omega \\ u=v=0 & \text { on } \partial \Omega\end{cases}
$$

For example, [G1] and [Z] studied (1.2) with $a_{1}(x) F_{1}(x, u, v)=u^{-p} v^{-q}$, $a_{2}(x) F_{2}(x, u, v)=u^{-r} v^{-s}$, that is, $F_{i}(i=1,2)$ are singular in all variables. We say that $F_{i}(x, u, v)$ is singular in u (or v) if $\lim _{u \rightarrow 0} F_{i}(x, u, v)=\infty$ (resp. $\left.\lim _{v \rightarrow 0} F_{i}(x, u, v)=\infty\right)$. By using the sub-super solution method, G1] studied the existence, nonexistence, uniqueness, and C^{1}-regularity of solutions for (1.2). Furthermore, [Z] studied the existence, uniqueness and boundary behavior of solutions for (1.2) under different assumptions.

In [CMT, the authors considered the following system with nonsingular nonlinearities in all variables:

$$
\begin{cases}-\Delta U(x)=\nabla H(x, U(x)) & \text { in } \Omega \tag{1.3}\\ U(x)=0 & \text { on } \partial \Omega\end{cases}
$$

where $U(x)=\left(u_{1}, u_{2}\right): \Omega \rightarrow \mathbb{R}^{2}, H\left(x, u_{1}, u_{2}\right)=\left|u_{1}\right|^{\alpha_{1}}\left|u_{2}\right|^{\alpha_{2}}$ with $\alpha_{i}>1$. By using variational methods, the authors provided the existence of nine nontrivial solutions characterized by sign properties of each component.

For the case $p \neq 2, q \neq 2$, Lee et al. [LSY1], LSY2] studied the existence of solutions for the singular system

$$
\begin{cases}-\Delta_{p} u=\lambda\left(f_{1}(u, v)-u^{-\gamma_{1}}\right) & \text { in } \Omega \tag{1.4}\\ -\Delta_{q} v=\lambda\left(f_{2}(u, v)-v^{-\gamma_{2}}\right) & \text { in } \Omega \\ u=v=0 & \text { on } \partial \Omega\end{cases}
$$

where $\gamma_{i} \in(0,1), f_{i} \in C([0, \infty) \times[0, \infty)), f_{i}$ are nondecreasing in both u and $v, i=1,2, \lambda>0, p, q>1$.

In [YY2], Yin and Yang studied the existence and nonexistence of entire positive solutions for the nonlinear elliptic system

$$
\begin{cases}-\Delta_{p} u=a(x) u^{m}+\lambda c(x) v^{n}, & x \in \mathbb{R}^{N} \tag{1.5}\\ -\Delta_{q} v=b(x) v^{l}+\theta c(x) u^{n}, & x \in \mathbb{R}^{N} \\ u, v>0, & x \in \mathbb{R}^{N} \\ u \rightarrow 0, v \rightarrow 0 & \text { as }|x| \rightarrow \infty\end{cases}
$$

where $1<p, q<N, \lambda, \theta \geq 0$ are nonnegative parameters, $a, b, c: \mathbb{R}^{N} \rightarrow[0, \infty)$
are locally Hölder continuous functions not identically zero, $-\infty<m<p-1$, $-\infty<l<q-1, \max \{p-1, q-1\}<n$.

Moreover, when the nonlinearities are nonsingular in all variables, a lot of articles deal with blow-up solutions: see, for example, WY1, MY1] and WY2.

Motivated by the above results, we establish results when the nonlinearities are singular in one of the variables and nonsingular in the others. Thus we assume $F_{i}(i=1,2)$ satisfy the following conditions:
$\left(\mathrm{F}_{1}\right) F_{i}(i=1,2)$ are locally Hölder continuous.
$\left(\mathrm{F}_{2}\right)$ For each $i \in\{1,2\}$, there exists a continuous function g_{i} : $(0, \infty) \rightarrow(0, \infty)$ satisfying $F_{i}\left(x, t_{1}, t_{2}\right) \leq g_{i}\left(t_{i}\right)$ for all $\left(x, t_{1}, t_{2}\right)$ in $\Omega \times(0, \infty) \times(0, \infty)$ with $g_{1}(s) / s^{p-1}$ and $g_{2}(s) / s^{q-1}$ decreasing on $(0, \infty)$, and

$$
\lim _{s \rightarrow \infty} \frac{g_{1}(s)}{s^{p-1}}=0, \quad \lim _{s \rightarrow \infty} \frac{g_{2}(s)}{s^{q-1}}=0
$$

(F_{3}) For each $i \in\{1,2\}$, there exists $\delta_{i} \in(0,1)$ and a continuous nonincreasing function $h_{i}:\left(0, \delta_{1}\right) \times\left(0, \delta_{2}\right) \rightarrow(0, \infty)$ satisfying $F_{i}\left(x, t_{1}, t_{2}\right) \geq h_{i}\left(t_{1}, t_{2}\right)$ for all $\left(x, t_{1}, t_{2}\right) \in \Omega \times\left(0, \delta_{1}\right) \times\left(0, \delta_{2}\right)$, and $\lim _{s \rightarrow 0} h_{i}(s, s) \in(0, \infty]$.

Now, we give an example of nonlinearities F_{1}, F_{2} satisfying the assumptions $\left(\mathrm{F}_{1}\right)-\left(\mathrm{F}_{3}\right)$. Let

$$
\begin{array}{ll}
F_{1}\left(x, t_{1}, t_{2}\right)=t_{1}^{(p-1) \alpha_{1}}\left(t_{2}+\epsilon_{2}\right)^{\alpha_{2}} & \text { with } \alpha_{1}, \alpha_{2}<0, \epsilon_{2}>1 \\
F_{2}\left(x, t_{1}, t_{2}\right)=\left(t_{1}+\epsilon_{1}\right)^{\alpha_{1}} t_{2}^{(q-1) \alpha_{2}} & \text { with } \alpha_{1}, \alpha_{2}<0, \epsilon_{1}>1
\end{array}
$$

Then, we choose

$$
\begin{aligned}
h_{1}\left(t_{1}, t_{2}\right) & =t_{1}^{(p-1) \alpha_{1}}\left(t_{2}+\epsilon_{2}\right)^{\alpha_{2}}, & h_{2}\left(t_{1}, t_{2}\right) & =\left(t_{1}+\epsilon_{1}\right)^{\alpha_{1}} t_{2}^{(q-1) \alpha_{2}}, \\
g_{1}\left(t_{1}\right) & =\epsilon_{2}^{-\alpha_{2}} t_{1}^{(p-1) \alpha_{1}}, & g_{2}\left(t_{2}\right) & =\epsilon_{1}^{-\alpha_{1}} t_{2}^{(q-1) \alpha_{2}}
\end{aligned}
$$

By a direct computation, we can easily show that the functions F_{i}, h_{i}, g_{i} satisfy the assumptions $\left(\mathrm{F}_{1}\right)-\left(\mathrm{F}_{3}\right)$.

The main purpose of this paper is to investigate the existence and nonexistence of positive solutions for (1.1). Our main results are:

ThEOREM 1.1. Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain with smooth boundary, and assume $\left(\mathrm{F}_{1}\right)-\left(\mathrm{F}_{3}\right)$ hold. Then problem (1.1) has a solution.

ThEOREM 1.2. Let $\Omega=\mathbb{R}^{N}$, and assume $\left(\mathrm{F}_{1}\right)-\left(\mathrm{F}_{3}\right)$ hold, and a_{i} satisfy

$$
\int_{0}^{\infty} r A(r) d r<\infty \quad \text { where } \quad A(r)=\max _{|x|=r}\left(a_{1}(x)+a_{2}(x)\right)
$$

Then problem (1.1) has a solution.

ThEOREM 1.3. Let $\Omega=\mathbb{R}^{N}$, and assume that $F_{i}: \mathbb{R}^{N} \times[0, \infty) \times[0, \infty)$ $\rightarrow \mathbb{R}^{N}$ are continuous functions. If there exist $\epsilon>0, r_{0} \geq 0$, and a continuous function $B:\left[r_{0}, \infty\right) \rightarrow(0, \infty)$ satisfying

$$
\int_{r_{0}}^{\infty} r B(r) d r=\infty
$$

such that for all $x \in \mathbb{R}^{N}$ with $|x| \geq r_{0}$, we have

$$
\sum_{i=1}^{2} a_{i}(x) F_{i}(x, u, v) \geq B(r) \quad \text { for all }|(u, v)| \leq \epsilon
$$

then problem (1.1) has no radial positive bounded solutions.

2. Preliminaries

Definition 2.1. Let Ω be a bounded domain in \mathbb{R}^{N} with smooth boundary. We say $(\underline{u}, \underline{v})$ is a subsolution of (1.1) provided

$$
\begin{cases}-\Delta_{p} \underline{u} \leq a_{1}(x) F_{1}(x, \underline{u}, \underline{v}) & \text { in } \Omega \\ -\Delta_{q} \underline{v} \leq a_{2}(x) F_{2}(x, \underline{u}, \underline{v}) & \text { in } \Omega \\ \underline{u}, \underline{v}>0 & \text { in } \Omega \\ \underline{u}=\underline{v}=0 & \text { on } \partial \Omega\end{cases}
$$

A supersolution (\bar{u}, \bar{v}) is defined by reversing the inequalities.
Lemma 2.2. Assume that $(\underline{u}, \underline{v})$ is a subsolution and (\bar{u}, \bar{v}) is a supersolution of problem (1.1), with $\underline{u} \leq \bar{u}, \underline{v} \leq \bar{v}$ in Ω, and $\underline{u}=\underline{v}=\bar{u}=\bar{v}=0$ on $\partial \Omega$. Then problem (1.1) has a solution (u, v) with $\underline{u} \leq u \leq \bar{u}, \underline{v} \leq v \leq \bar{v}$. In particular, $u=v=0$ on $\partial \Omega$.

Lemma 2.3 (Diaz-Saa Inequality, see also MY2, Lemma 2.7]). Let $\Omega \subset \mathbb{R}^{N}$ be an open set. For $i=1,2$, let $\omega_{i} \in L^{\infty}(\Omega)$ be such that $\omega_{i}>0$ a.e. in $\Omega, \omega_{i} \in W^{1, p}(\Omega), \Delta_{p} \omega_{i}^{1 / p} \in L^{\infty}(\Omega)$ and $\omega_{1}=\omega_{2}$ on $\partial \Omega$. Then

$$
\int_{\Omega}\left[\frac{-\Delta_{p} \omega_{1}^{1 / p}}{\omega_{1}^{(p-1) / p}}-\frac{-\Delta_{p} \omega_{2}^{1 / p}}{\omega_{2}^{(p-1) / p}}\right]\left(\omega_{1}-\omega_{2}\right) d x \geq 0
$$

if $\omega_{i} / \omega_{j} \in L^{\infty}(\Omega)$ for $i \neq j, i, j=1,2$.
LEMMA 2.4. Let Ω be a bounded domain in \mathbb{R}^{N} with smooth boundary, $a_{i}(\cdot) \in C^{0, \alpha}(\bar{\Omega})$ for some $\alpha \in(0,1)$, and $a_{i}(x)>0$ for all $x \in \bar{\Omega}$. Then the problem

$$
\begin{cases}-\Delta_{p} w=a_{i}(x) & \text { in } \Omega, \\ w(x)>0 & \text { in } \Omega, \\ w(x)=0 & \text { on } \partial \Omega\end{cases}
$$

has a unique solution.
3. Proof of Theorem 1.1. Consider the eigenvalue problem

$$
\begin{cases}-\Delta_{p} \phi=\lambda a_{i}(x)|\phi|^{p-2} \phi & \text { in } \Omega \\ \phi(x)>0 & \text { in } \Omega \\ \phi(x)=0 & \text { on } \partial \Omega\end{cases}
$$

Let $\phi_{1}^{i}(i=1,2)$ be the eigenfunctions corresponding to the first eigenvalues $\lambda_{1}^{i}(i=1,2)$ respectively. Then $\phi_{1}^{i}>0(i=1,2)$ in Ω.

Using the assumptions on $h_{i}(i=1,2)$, we get

$$
\lim _{s \rightarrow 0^{+}} \frac{h_{1}(s, s)}{s^{p-1}}=\infty, \quad \lim _{s \rightarrow 0^{+}} \frac{h_{2}(s, s)}{s^{q-1}}=\infty
$$

Then there exist $\epsilon_{1}, \epsilon_{2}>0$ satisfying

$$
\frac{h_{1}(s, s)}{s^{p-1}} \geq \lambda_{1}^{1}, \quad \forall s \in\left(0, \epsilon_{1}\right), \quad \frac{h_{2}(s, s)}{s^{q-1}} \geq \lambda_{1}^{2}, \quad \forall s \in\left(0, \epsilon_{2}\right)
$$

Let $(\underline{u}, \underline{v})=\left(C_{1} \phi_{1}^{1}, C_{2} \phi_{1}^{2}\right)$, where $C_{i}(i=1,2)$ satisfy

$$
0<C_{i}<\min \left\{1, \frac{\epsilon}{2 \max _{x \in \bar{\Omega}} \phi_{1}^{i}(x)}\right\}, \quad \epsilon=\min \left\{\epsilon_{1}, \epsilon_{2}\right\}
$$

We get

$$
\begin{aligned}
-\Delta_{p} \underline{u} & =-C_{1}^{p-1} \operatorname{div}\left(\left|\nabla \phi_{1}^{1}\right|^{p-2} \nabla \phi_{1}^{1}\right)=C_{1}^{p-1} \lambda_{1}^{1} a_{1}(x)\left|\phi_{1}^{1}\right|^{p-2} \phi_{1}^{1} \\
& \leq \lambda_{1}^{1} a_{1}(x)\left(C_{1} \phi_{1}^{1}+C_{2} \phi_{1}^{2}\right)^{p-1} \leq a_{1}(x) h_{1}\left(C_{1} \phi_{1}^{1}+C_{2} \phi_{1}^{2}, C_{1} \phi_{1}^{1}+C_{2} \phi_{1}^{2}\right) \\
& \leq a_{1}(x) h_{1}\left(C_{1} \phi_{1}^{1}, C_{2} \phi_{1}^{2}\right) \leq a_{1}(x) F_{1}(x, \underline{u}, \underline{v})
\end{aligned}
$$

Using a similar method, we can obtain

$$
-\Delta_{q} \underline{v} \leq a_{2}(x) F_{2}(x, \underline{u}, \underline{v})
$$

Thus, $(\underline{u}, \underline{v})=\left(C_{1} \phi_{1}^{1}, C_{2} \phi_{1}^{2}\right)$ is a subsolution of (1.1).
Next, we will construct a supersolution. By the assumptions on g_{i} ($i=1,2$), we define

$$
\bar{g}_{i}(t)=\frac{2}{t} \int_{t / 2}^{t} \widehat{g}_{i}(s) d s, \quad t>0
$$

where

$$
\widehat{g}_{1}(s)=\sup _{t \geq s>0} \frac{g_{1}(t)}{t^{p-1}}, \quad \widehat{g}_{2}(s)=\sup _{t \geq s>0} \frac{g_{2}(t)}{t^{q-1}}
$$

Then $\bar{g}_{i}(\cdot) \in C^{1}((0, \infty),(0, \infty)), \bar{g}_{1}(t)>g_{1}(t) / t^{p-1}$ and $\bar{g}_{2}(t)>g_{2}(t) / t^{p-1}$ for all $t>0$, and $\bar{g}_{i}(\cdot)$ is nonincreasing on $(0, \infty)$.

Let $w_{a_{1}+a_{2}}(x)$ be the solution to the problem

$$
\begin{cases}-\Delta_{p} w=a_{1}(x)+a_{2}(x) & \text { in } \Omega \\ w(x)>0 & \text { in } \Omega \\ w(x)=0 & \text { on } \partial \Omega\end{cases}
$$

and $C_{0}=\max _{x \in \bar{\Omega}} w_{a_{1}+a_{2}}(x)$. Then we define $\bar{u}: \bar{\Omega} \rightarrow(0, \infty)$ implicitly by

$$
w_{a_{1}+a_{2}}=\frac{1}{C_{1}} \int_{0}^{\bar{u}}\left(\frac{s^{p-1}}{s^{p-1} \bar{g}_{1}(s)+1}\right)^{\frac{1}{p-1}} d s
$$

where C_{1} satisfies

$$
C_{0} C_{1}<\int_{0}^{C_{1}}\left(\frac{s^{p-1}}{s^{p-1} \bar{g}_{1}(s)+1}\right)^{\frac{1}{p-1}} d s
$$

Then we have $0 \leq \bar{u} \leq C_{1}$. Thus,

$$
\begin{aligned}
C_{1}^{p-1}\left(a_{1}(x)+a_{2}(x)\right)= & -C_{1}^{p-1} \operatorname{div}\left(|\nabla w|^{p-2} \nabla w\right) \\
= & -\operatorname{div}\left(\frac{1}{\bar{g}_{1}(\bar{u})+(\bar{u})^{-(p-1)}}|\nabla \bar{u}|^{p-2} \nabla \bar{u}\right) \\
= & -\frac{1}{\bar{g}_{1}(\bar{u})+(\bar{u})^{-(p-1)}} \operatorname{div}\left(|\nabla \bar{u}|^{p-2} \nabla \bar{u}\right) \\
& -|\nabla \bar{u}|^{p} \frac{d}{d \bar{u}}\left(\frac{1}{\bar{g}_{1}(\bar{u})+(\bar{u})^{-(p-1)}}\right) \\
\leq & -\frac{1}{\bar{g}_{1}(\bar{u})+(\bar{u})^{-(p-1)}} \operatorname{div}\left(|\nabla \bar{u}|^{p-2} \nabla \bar{u}\right)
\end{aligned}
$$

Then we have

$$
\begin{aligned}
-\Delta_{p} \bar{u} & \geq C_{1}^{p-1}\left(a_{1}(x)+a_{2}(x)\right)\left[\bar{g}_{1}(\bar{u})+(\bar{u})^{-(p-1)}\right] \\
& \geq\left(a_{1}(x)+a_{2}(x)\right)(\bar{u})^{p-1}\left[\frac{g_{1}(\bar{u})}{(\bar{u})^{p-1}}+\frac{1}{(\bar{u})^{p-1}}\right] \\
& \geq a_{1}(x) g_{1}(\bar{u}) \geq a_{1}(x) F_{1}(x, \bar{u}, \bar{v})
\end{aligned}
$$

Using a similar method, we can find a function $\bar{v}: \bar{\Omega} \rightarrow(0, \infty)$ satisfying

$$
-\Delta_{q} \bar{v} \geq a_{2}(x) g_{2}(\bar{v}) \geq a_{2}(x) F_{2}(x, \bar{u}, \bar{v})
$$

Thus, we have constructed a supersolution (\bar{u}, \bar{v}).
Now, we show that $\underline{u} \leq \bar{u}$ for all $x \in \bar{\Omega}$. Let

$$
\Omega_{\underline{u}, \bar{u}}=\{x \in \Omega: \underline{u}>\bar{u}\} .
$$

We have to show that $\Omega_{\underline{u}, \bar{u}}=\emptyset$. Assume, on the contrary, that $\Omega_{\underline{u}, \bar{u}} \neq \emptyset$.

By exploiting Lemma 2.3 with $\omega_{1}=\underline{u}^{p}, \omega_{2}=\bar{u}^{p}$, we have

$$
\begin{aligned}
0 & \leq \int_{\Omega_{\underline{u}, \bar{u}}}\left(\frac{-\Delta_{p} \omega_{1}^{1 / p}}{\omega_{1}^{(p-1) / p}}-\frac{-\Delta_{p} \omega_{2}^{1 / p}}{\omega_{2}^{(p-1) / p}}\right)\left(\omega_{1}-\omega_{2}\right) d x \\
& =\int_{\Omega_{\underline{u}, \bar{u}}}\left(\frac{-\Delta_{p} \underline{u}}{\underline{u}^{p-1}}-\frac{-\Delta_{p} \bar{u}}{\bar{u}^{p-1}}\right)\left(\underline{u}^{p-1}-\bar{u}^{p-1}\right) d x \\
& \leq \int_{\Omega_{\underline{u}, \bar{u}}} a_{1}(x)\left[\frac{F_{1}(x, \underline{u}, \underline{v})}{\underline{u}^{p-1}}-\frac{g_{1}(\bar{u})}{\bar{u}^{p-1}}\right]\left(\underline{u}^{p-1}-\bar{u}^{p-1}\right) d x \\
& \leq \int_{\Omega_{\underline{u}, \bar{u}}} a_{1}(x)\left[\frac{g_{1}(\underline{u})}{\underline{u}^{p-1}}-\frac{g_{1}(\bar{u})}{\bar{u}^{p-1}}\right]\left(\underline{u}^{p-1}-\bar{u}^{p-1}\right) d x<0,
\end{aligned}
$$

which is a contradiction. Thus $\Omega_{\underline{u}, \bar{u}}=\emptyset$. On the other hand, $\underline{u}=\bar{u}=0$ on $\partial \Omega$. Thus, we have $\underline{u} \leq \bar{u}$ for all $\bar{x} \in \bar{\Omega}$. Similarly, $\underline{v} \leq \bar{v}$ for all $x \in \bar{\Omega}$.

By Lemma 2.2, there exists a function (u, v) solving (1.1) with $\underline{u} \leq u \leq \bar{u}$ on $\bar{\Omega}$ and $\underline{v} \leq v \leq \bar{v}$ on $\bar{\Omega}$. Thus, the proof of Theorem 1.1 is finished.
4. Proof of Theorem 1.2. Consider the system

$$
\begin{cases}-\Delta_{p} u=a_{1}(x) F_{1}(x, u, v) & \text { in } B_{n} \tag{4.1}\\ -\Delta_{q} v=a_{2}(x) F_{2}(x, u, v) & \text { in } B_{n} \\ u, v>0 & \text { in } B_{n} \\ u=v=0 & \text { on } \partial B_{n}\end{cases}
$$

where B_{n} is the open ball of radius n centered at the origin. By Theorem 1.1, we know (4.1) has a solution, say $\left(u^{n}, v^{n}\right)$. Next, we construct an upper bound for this sequence. Similar to the proof of Theorem 1.1, we define $\bar{u}(\cdot):[0, \infty) \rightarrow(0, \infty)$ implicitly by

$$
w_{A}(r)=\frac{1}{C_{1}} \int_{0}^{\bar{u}(r)}\left(\frac{s^{p-1}}{s^{p-1} \bar{g}_{1}(s)+1}\right)^{\frac{1}{p-1}} d s
$$

where $C_{1}, \bar{g}_{1}(s)$ are defined in Theorem 1.1 , and $w_{A}(\cdot)$ is a positive bounded radially symmetric solution of the problem

$$
\begin{cases}-\Delta_{p} w(r)=A(r), & 0 \leq r<\infty \\ w(r)>0, & 0 \leq r<\infty \\ w^{\prime}(0)=0, \quad \lim _{r \rightarrow \infty} w(r)= & 0\end{cases}
$$

Then, by direct computation similar to the one in the proof of Theorem 1.1, we obtain

$$
-\Delta_{p} \bar{u}(r) \geq A(r) g_{1}(\bar{u}(r)) \geq a_{1}(x) g_{1}(\bar{u}(r)) \geq a_{1}(x) F_{1}(x, \bar{u}(r), \bar{v}(r))
$$

for all $x \in \mathbb{R}^{N}$. Using the same method, we can find a function $\bar{v}(\cdot):[0, \infty)$ $\rightarrow(0, \infty)$ satisfying

$$
-\Delta_{q} \bar{v}(r) \geq A(r) g_{2}(\bar{v}(r)) \geq a_{2}(x) g_{2}(\bar{v}(r)) \geq a_{2}(x) F_{2}(x, \bar{u}(r), \bar{v}(r))
$$

for all $x \in \mathbb{R}^{N}$. Lemma 2.2 implies that $0<u^{n}(x) \leq \bar{u}(r)$ and $0<v^{n}(x)$ $\leq \bar{v}(r)$ for all $x \in \bar{B}_{n}$, that is, $\left\{u^{n}(x)\right\}_{n=1}^{\infty}$ and $\left\{v^{n}(x)\right\}_{n=1}^{\infty}$ are bounded in $\bar{B}_{n} \subset \mathbb{R}^{N}$. By $\left(\mathrm{F}_{1}\right),(4.1)$ and the continuity of a_{i}, we can easily deduce that $\Delta_{p} u^{n}(x)$ and $\Delta_{q} v^{n}(x)$ are bounded in \bar{B}_{n}, which implies that $\left|\nabla u^{n}(x)\right| \leq M$ and $\left|\nabla v^{n}(x)\right| \leq M$ for some $M>0$. Thus, by the Arzelà-Ascoli theorem, $\left\{u^{n}(x)\right\}_{n=1}^{\infty}$ and $\left\{v^{n}(x)\right\}_{n=1}^{\infty}$ have subsequences (still denoted by $\left\{u^{n}(x)\right\}_{n=1}^{\infty}$ and $\left.\left\{v^{n}(x)\right\}_{n=1}^{\infty}\right)$ converging uniformly to $u(x)$ and $v(x)$. Moreover, we have

$$
u(x) \leq \bar{u}(r), \quad v(x) \leq \bar{v}(r), \quad \forall x \in \mathbb{R}^{N}
$$

Therefore, (u, v) is a solution of

$$
\begin{cases}-\Delta_{p} u=a_{1}(x) F_{1}(x, u, v) & \text { in } \mathbb{R}^{N}, \tag{4.2}\\ -\Delta_{q} v=a_{2}(x) F_{2}(x, u, v) & \text { in } \mathbb{R}^{N}, \\ u(x), v(x)>0 & \text { in } \mathbb{R}^{N}, \\ \lim _{|x| \rightarrow \infty} u(x)=\lim _{|x| \rightarrow \infty} v(x)=0 . & \end{cases}
$$

This finishes the proof of Theorem 1.2.
5. Proof of Theorem 1.3. Arguing by contradiction, we suppose that (u, v) is a radial positive bounded solution for problem (4.2). Then (u, v) satisfies

$$
\begin{cases}-\left(r^{N-1} \Phi(u)\right)^{\prime}=r^{N-1} a_{1}(r) F_{1}(r, u(r), v(r)), \quad 0 \leq r<\infty, \tag{5.1}\\ -\left(r^{N-1} \Psi(v)\right)^{\prime}=r^{N-1} a_{2}(r) F_{2}(r, u(r), v(r)), \quad 0 \leq r<\infty, \\ u(r), v(r)>0, \quad 0 \leq r<\infty, & \\ \lim _{r \rightarrow \infty} u(r)=\lim _{r \rightarrow \infty} v(r)=0, & \end{cases}
$$

where $\Phi(u)=\left|u^{\prime}\right|^{p-2} u^{\prime}$ and $\Psi(v)=\left|v^{\prime}\right|^{q-2} v^{\prime}$.
It is easy to see that $u^{\prime}(r)<0$ and $v^{\prime}(r)<0$, which implies that $u(r)$ and $v(r)$ are decreasing. Summing in (5.1), we obtain

$$
\begin{aligned}
& r\left(\Phi^{\prime}(u(r))+\Psi^{\prime}(v(r))\right)+(N-1)[\Phi(u(r))+\Psi(v(r))] \\
&=-r \sum_{i=1}^{2} a_{i}(r) F_{i}(r, u(r), v(r)) \leq-r B(r) .
\end{aligned}
$$

Let

$$
\varphi(r)=\int_{0}^{r}[\Phi(u(t))+\Psi(v(t))] d t .
$$

Then

$$
\begin{aligned}
r \varphi^{\prime}(r)-r_{0} \varphi^{\prime}\left(r_{0}\right) & =\int_{r_{0}}^{r}\left(t \varphi^{\prime}(t)\right)^{\prime} d t=\int_{r_{0}}^{r}\left[t \varphi^{\prime \prime}(t)+\varphi^{\prime}(t)\right] d t \\
& \leq-\int_{r_{0}}^{r} t B(t) d t+(2-N) \int_{r_{0}}^{r} \varphi^{\prime}(t) d t \rightarrow-\infty
\end{aligned}
$$

as $r \rightarrow \infty$. This implies that there exists a constant $C>0$ satisfying

$$
-r \varphi^{\prime}(r)>C \quad \text { for } r>r_{0}>0
$$

that is,

$$
-\varphi^{\prime}(r)>C r^{-1} \quad \text { for } r>r_{0}>0
$$

Thus, we have

$$
\varphi\left(r_{0}\right)-\varphi(r)=-\int_{r_{0}}^{r} \varphi^{\prime}(t) d t>\int_{r_{0}}^{r} C t^{-1} d t=C \ln r-C \ln r_{0} \rightarrow \infty
$$

as $r \rightarrow \infty$, which is a contradiction. Hence, the proof of Theorem 1.3 is completed.

Acknowledgments. This research was partly supported by National Natural Science Foundation of China (No. 11171092 and No. 11471164), the Project on Graduate Students Education and Innovation of Jiangsu Province (No. KYZZ_0209) and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 08KJB110005).

References

[AM] G. Astrita and G. Marrucci, Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill, New York, 1974.
[CMT] M. Conti, L. Merizzi and S. Terracini, On the existence of many solutions for a class of superlinear elliptic systems, J. Differential Equations 167 (2000), 357-387.
[G1] M. Ghergu, Lane-Emden systems with negative exponents, J. Funct. Anal. 258 (2010), 3295-3318.
[G2] Z. M. Guo, Some existence and multiplicity results for a class of quasilinear elliptic eigenvalue problems, Nonlinear Anal. 18 (1992), 957-971.
[GW] Z. M. Guo and J. R. L. Webb, Uniqueness of positive solutions for quasilinear elliptic equations when a parameter is large, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994), 189-198.
[K] A. S. Kalashnikov, On a nonlinear eqution appearing in the theory of nonstationary filtration, Trudy Sem. Petrovsk. 4 (1978), 137-146 (in Russian).
[LSY1] E. K. Lee, R. Shivaji and J. Ye, Classes of infinite semipositone systems, Proc. Roy. Soc. Edinburgh Sect. A 139 (2009), 853-865.
[LSY2] E. K. Lee, R. Shivaji and J. Ye, Classes of singular p-q-Laplacian semipositone systems, Discrete Contin. Dynam. Systems 27 (2010), 1123-1132.
[LY] Q. Li and Z. D. Yang, Ground state solutions for a quasilinear elliptic problem with a convection term, British J. Math. Computer Sci. 2 (2012), 114-125.
[MY1] Q. Miao and Z. D. Yang, Existence of solutions for boundary blow-up quasilinear elliptic systems, J. Appl. Math. Informatics 28 (2010), 625-637.
[MY2] J. Mo and Z. D. Yang, Boundary asymptotic behavior and uniqueness of large solutions to quasilinear elliptic equations, Comput. Math. Appl. 59 (2010), 2007-2017.
[WY1] L. Wei and Z. D. Yang, Large solutions of quasilinear elliptic system of competitive type: existence and asymptotic behavior, Int. J. Differential Equations 2010, art. ID $104625,17 \mathrm{pp}$.
[WY2] M. Z. Wu and Z. D. Yang, Existence of boundary blow-up solutions for a class of quasilinear elliptic systems, J. Appl. Math. Informatics 27 (2009), 1119-1132.
[YY1] Z. D. Yang and C. W. Yu, Ground state solutions for singular quasilinear elliptic equations, Comm. Math. Anal. 9 (2010), 12-21.
[YY2] H. H. Yin and Z. D. Yang, Existence and non-existence of entire positive solutions for quasilinear systems with singular and super-linear terms, Differential Equations Appl. 2 (2010), 241-249.
[Z] Z. J. Zhang, Positive solutions of Lane-Emden systems with negative exponents: Existence, boundary behavior and uniqueness, Nonlinear Anal. 74 (2011), 5544-5553.

Qin Li
Institute of Mathematics
School of Mathematical Sciences
Nanjing Normal University
Jiangsu Nanjing 210023, China
E-mail: 294973245@qq.com

Zuodong Yang
Institute of Mathematics School of Mathematical Sciences

Nanjing Normal University Jiangsu Nanjing 210023, China and
School of Teacher Education
Nanjing Normal University Jiangsu Nanjing 210097, China

E-mail: zdyang_jin@263.net

Received 1.10.2013 and in final form 22.3.2014

[^0]: 2010 Mathematics Subject Classification: 35J65, 35J50.
 Key words and phrases: quasilinear elliptic system, existence, nonexistence, sub-super solution.

