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Global exponential stability of almost periodic solutions for
a delayed single population model with hereditary effect

by Qiyuan Zhou (Changde) and Jianying Shao (Jiaxing)

Abstract. This paper is concerned with a delayed single population model with
hereditary effect. Under appropriate conditions, we employ a novel argument to establish
a criterion of the global exponential stability of positive almost periodic solutions of the
model. Moreover, an example and its numerical simulation are given to illustrate the main
result.

1. Introduction. As pointed out in [F, H], ecological effects and envi-
ronmental variability in nature are crucial factors in the study of biomath-
ematical model dynamics. In particular, periodically or almost periodically
varying environment is basic in the theory of natural selection. In fact, al-
most periodically varying environment is more common, and biodynamics
under almost periodic conditions has attracted a great deal of attention
(see, for example, [Y, K, AS, WL, XL, MC, L2, C, WWC]). Furthermore,
time-varying delay is another important factor in the modeling of biologi-
cal systems which should not be ignored. As Li and Kuang have remarked
in [LK], “Naturally, more realistic and interesting models of single or mul-
tiple species growth should take into account both the seasonality of the
changing environment and the effects of time delays.”

Accordingly, in the study of single population dynamics, the following al-
most periodic model with time-varying delay and hereditary effect was built:

(1.1) x′(t) = x(t)[a(t)− b(t)x(t)− c(t)x(t− τ(t))],

where a, b, c, τ : R → (0,∞) are almost periodic functions, x(t) represents
the density of the species at time t, a(t) is the growth rate, b(t) is the self-
inhibition rate, c(t) is the hereditary rate, and τ(t) is the time required to
reproduce a generation. Here, the assumption of almost periodicity of the co-
efficient functions and the delays in (1.1) is a way of incorporating the time-
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variability of the environment, especially when the various components of the
environment are periodic with not necessarily commensurate periods (e.g.
seasonal effects of weather, food supplies, mating habits, and harvesting).

Model (1.1) with periodic parameters has been extensively studied in
[CL1, CL2, FW, C, CXC, L1]. But for the case of almost periodic param-
eters, only Xie and Li [XL] claimed to obtain the existence of almost peri-
odic solutions by using coincidence degree theory. Unfortunately, Wang and
Zhang [WZ] and Ortega [O] found that this theory is not suitable to deduce
the existence of almost periodic solutions. The main issue is that we need
the compactness of a set of almost periodic functions, which is difficult to
get. For example, the mapping N in [XL, Lemma 3.3] is not guaranteed to
be L-compact, and hence one cannot deduce the existence of almost periodic
solutions for (1.1).

Motivated by the above discussion, in this paper, we develop a new
approach to obtain a condition for the global exponential stability of positive
almost periodic solutions of (1.1). Moreover, we estimate the exponential
convergence rate.

For simplicity of notation, for a bounded continuous function g defined
on R, we set

g+ = sup
t∈R

g(t) and g− = inf
t∈R

g(t).

Throughout this paper, we make the following assumptions for (1.1):

(1.2)


a−, b−, τ+ > 0, c(t) > b(t) for all t ∈ R,( t�

t−τ(t)

a(s) ds
)+

<∞,
( t�

t−τ(t)

[a(s)− 2Mc(s)] ds
)−

> −∞

and

(1.3)


M =

(
a(t)

c(t)

)+

exp
( t�

t−τ(t)

a(s) ds
)+

> κ,

κ =

(
a(t)

2c(t)

)−
exp
( t�

t−τ(t)

[a(s)− 2Mc(s)] ds
)−

> 0.

Then

(1.4) a(t)− 2Mc(t) < a(t)− 2
a(t)

c(t)
c(t) = −a(t) < 0 for all t ∈ R.

Let R+ = [0,∞), C = C([−τ+, 0],R) be the Banach space of all contin-
uous functions on [−τ+, 0]) equipped with the usual supremum norm ‖ · ‖,
and C+ = C([−τ+, 0],R+). If x(t) is defined on [t0 − τ+, σ) with t0 < σ,
then we define xt ∈ C by xt(θ) = x(t+ θ) for all θ ∈ [−τ+, 0].
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The initial conditions associated with (1.1) are

(1.5) xt0 = ϕ, ϕ ∈ C+, ϕ(0) > 0.

We denote an admissible solution of (1.1) and (1.5) on the maximal right-
interval of the existence by x(t; t0, ϕ). For such a solution, xt(t0, ϕ) ∈ C is
defined by (xt(t0, ϕ))(θ) = x(t+ θ; t0, ϕ) for θ ∈ [−τ+, 0].

2. Preliminaries and lemmas. Before giving our main results we first
present some definitions and lemmas.

Definition 2.1 (see [F, H]). A continuous function u : R → R is said
to be almost periodic if, for any ε > 0, the set T (u, ε) = {δ : |u(t+ δ)−u(t)|
< ε for all t ∈ R} is relatively dense, i.e., for any ε > 0, there exists l =
l(ε) > 0 such that every interval [t0, t0 + l(ε)] contains at least one δ = δ(ε)
for which |u(t+ δ)− u(t)| < ε for all t ∈ R.

From the theory of almost periodic functions in [F, H], we know that for
any ε > 0 there is l = l(ε) > 0 such that any interval [t0, t0 + l(ε)] contains
a number δ = δ(ε) for which

(2.1)

{ |a(t+ δ)− a(t)| < ε, |b(t+ δ)− b(t)| < ε,

|c(t+ δ)− c(t)| < ε, |τ(t+ δ)− τ(t)| < ε,

for all t ∈ R.

Lemma 2.1. Every solution x(t; t0, ϕ) of (1.1) and (1.5) is positive and
bounded on [t0, η(ϕ)), and η(ϕ) =∞.

Proof. Since ϕ ∈ C+, using [S1, Theorem 5.2.1], we find that xt(t0, ϕ)
is in C+ for all t ∈ [t0, η(ϕ)). For brevity, let x(t) = x(t; t0, ϕ).

We first show that x(t) > 0 for all t ∈ [t0, η(ϕ)). By way of contradiction,
suppose there exists t1 ∈ (t0, η(ϕ)) such that x(t1) = 0 and x(t) > 0 for all
t ∈ [t0, t1). It follows from (1.1) that

(2.2)
x′(t)

x(t)
= a(t)− b(t)x(t)− c(t)x(t− τ(t)).

For any ε ∈ (0, t1 − t0), integrating (2.2) from t0 to t1 − ε produces

x(t1 − ε) = x(t0) exp

t1−ε�

t0

[a(s)− b(s)x(s)− c(s)x(s− τ(s))] ds.

Then

x(t1) = lim
ε→0+

x(t1 − ε)

= ϕ(0) exp

t1�

t0

[a(s)− b(s)x(s)− c(s)x(s− τ(s))] ds > 0,
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which contradicts the assumption that x(t1) = 0. Therefore, x(t) is positive
on [t0, η(ϕ)).

We next show that x(t) is bounded on [t0, η(ϕ)). For each t ∈ [t0, η(ϕ)),
define

M∗(t) = max
{
ξ ≤ t : x(ξ) = max

t0−τ+≤s≤t
x(s)

}
.

Suppose that x(t) is unbounded on [t0, η(ϕ)). Then obviously M∗(t)→ η(ϕ)
as t→ η(ϕ) and

(2.3) lim
t→η(ϕ)

x(M∗(t)) =∞.

It follows from x(M∗(t)) = maxt0−τ+≤s≤t x(s) that x′(M∗(t)) ≥ 0 if M∗(t)
≥ t0. Then, for t with M∗(t) ≥ t0, we have

0 ≤ x′(M∗(t))
= x(M∗(t))

[
a(M∗(t))− b(M∗(t))x(M∗(t))

− c(M∗(t))x(M∗(t)− τ(M∗(t)))
]

≤ x(M∗(t))[a(M∗(t))− b(M∗(t))x(M∗(t))].

With the help of (1.2) and (2.3), we get

0 ≤ lim
t→η(ϕ)

x(M∗(t))[a(M∗(t))− b(M∗(t))x(M∗(t))] = −∞,

which is a contradiction. As a result, x(t) is bounded on [t0, η(ϕ)).

Finally, as x(t) is bounded on [t0, η(ϕ)), we easily see that η(ϕ) =∞ by
applying [HVL, Theorem 2.3.1].

Lemma 2.2. For every solution x(t; t0, ϕ) of (1.1) and (1.5), there exists
tϕ > t0 such that

κ ≤ x(t; t0, ϕ) ≤M for all t ≥ tϕ.

Proof. Again, let x(t) = x(t; t0, ϕ) and denote

L = lim sup
t→∞

x(t) and l = lim inf
t→∞

x(t).

The proof is divided into three steps.

Step 1. We show that there exists T1 > t0 + τ+ such that

(2.4) x(t) ≤M for all t ≥ T1.

This is achieved by distinguishing two cases.

Case 1: x′(t) < 0 for all t ≥ t0 + τ+. In this case, x is eventually
decreasing and hence

(2.5) L = lim sup
t→∞

x(t) = lim
t→∞

x(t) = lim
t→∞

x(t− τ(t)).
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By the fluctuation lemma [S2, Lemma A.1], there exists a sequence {tp}
such that

tp →∞, x(tp)→ L, x′(tp)→ 0, as p→∞.

Since {xtp} is bounded and equicontinuous, by the Ascoli–Arzelà theorem,
it has a convergent subsequence (not relabelled), say

xtp → ϕ as p→∞ for some ϕ̄ ∈ C+.

From (2.5), we get

ϕ(0) = L = ϕ(θ) for all θ ∈ [−τ+, 0).

By almost periodicity, without loss of generality, we can also assume that
the sequences {a(tp)}, {b(tp)}, {c(tp)}, and {τ(tp)} converge to a, b, c, and τ ,
respectively. As L = ϕ(−τ) and −τ ∈ [−τ+, 0], it follows from

x′(tp) = x(tp)[a(tp)− b(tp)x(tp)− c(tp)x(tp − τ(tp))]

that (taking limits)

0 = L[a− bL− c ϕ(−τ)] = L(a− bL− cL),

which yields

L ≤ max

{
0,

a

b+ c

}
≤
(

a(t)

b(t) + c(t)

)+

≤M,

and hence (2.4) holds.

Case 2: x′(ρ) ≥ 0 for some ρ ≥ t0 + τ+. Then by (1.1) we have

0 ≤ x′(ρ) = x(ρ)[a(ρ)− b(ρ)x(ρ)− c(ρ)x(ρ− τ(ρ))]

≤ x(ρ)[a(ρ)− c(ρ)x(ρ− τ(ρ))],

which implies that x(ρ− τ(ρ)) ≤ a(ρ)
c(ρ) ≤

(a(t)
c(t)

)+
. Moreover,

x′(t) = x(t)[a(t)− b(t)x(t)− c(t)x(t− τ(t))] ≤ x(t)a(t).

Integrating the above inequality from ρ− τ(ρ) to ρ gives

x(ρ) ≤ x(ρ− τ(ρ)) exp

ρ�

ρ−τ(ρ)

a(s) ds

≤
(
a(t)

c(t)

)+

exp
( t�

t−τ(t)

a(s) ds
)+
≤M.

Similarly, one can show that x(t) ≤M if x′(t) ≥ 0 and t > ρ. Now, suppose
that t > ρ and x′(t) < 0. Then we can choose t̄ ∈ [ρ, t) such that x′(t̄) = 0
and x′(s) < 0 for all s ∈ (t̄, t]. It follows that x(t) < x(t̄) ≤ M . Thus (2.4)
holds with T1 = ρ. This completes the discussion of Step 1.
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Step 2. We prove that l > 0. Otherwise, from Lemma 2.1, we have l = 0
and x(t) > 0 for all t ≥ t0. For each t ≥ t0, we define

m(t) = max
{
ξ ≤ t : x(ξ) = min

t0≤s≤t
x(s)

}
.

Noting that m(t) → ∞ as t → ∞, we obtain limt→∞ x(m(t)) = 0. On the
other hand, x′(m(t)) ≤ 0 for m(t) ≥ t0 as x(m(t)) = mint0≤s≤t x(s). Then,
for t with m(t) ≥ t0, we have

0 ≥ x′(m(t)) = x(m(t))
[
a(m(t))− b(m(t))x(m(t))

− c(m(t))x(m(t)− τ(m(t)))
]

≥ x(m(t))[a(m(t))− 2c(m(t))x(m(t)− τ(m(t)))],

and hence x(m(t) − τ(m(t))) ≥ a(m(t))
2c(m(t)) ≥

( a(t)
2c(t)

)−
> 0. This, combined

with (1.1), (1.2), and (2.4), produces

x(m(t)) = x(m(t)− τ(m(t))) exp

m(t)�

m(t)−τ(m(t))

[
a(s)− b(s)x(s)

− c(s)x(s− τ(s))
]
ds

≥
(
a(t)

2c(t)

)−
exp
( t�

t−τ(t)

[a(s)− 2Mc(s)] ds
)−

for m(t) ≥ T1 + τ+. Taking limits gives

lim
t→∞

x(m(t)) ≥
(
a(t)

2c(t)

)−
exp
( t�

t−τ(t)

[a(s)− 2Mc(s)] ds
)−

> 0,

contradicting limt→∞ x(m(t)) = 0. This proves that l > 0.

Step 3. We show that there exists T2 > T1 + τ+ such that

x(t) ≥ κ for all t ≥ T2.
First suppose that x′(t) > 0 for all t ≥ T1 + τ+. Then l > 0. Again, by the
fluctuation lemma [S2, Lemma A.1], there exists a sequence {tq} such that
tq → ∞, x(tq) → l, and x′(tq) → 0, as q → ∞. Similar arguments to those
in Case 1 of Step 1 tell us that we can assume that xtq → l, a(tq) → a∗,
b(tq)→ b∗, c(tq)→ c∗, and τ(tq)→ τ∗, as q →∞. Then taking limits in

x′(tq) = x(tq)[a(tq)− b(tq)x(tq)− c(tq)x(tq − τ(tq))]

gives
0 = l[a∗ − b∗l − c∗ϕ∗(−τ∗)] = l(a∗ − b∗l − c∗l).

This implies

l =
a∗

b∗ + c∗
≥
(

a(t)

b(t) + c(t)

)−
> κ.
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Now, suppose that there exists ρ∗ ≥ T1 + τ+ such that x′(ρ∗) ≤ 0. Using
(1.2), we deduce

0 ≥ x′(ρ∗) = x(ρ∗)[a(ρ∗)− b(ρ∗)x(ρ∗)− c(ρ∗)x(ρ∗ − τ(ρ∗))](2.6)

≥ x(ρ∗)[a(ρ∗)− c(ρ∗)(x(ρ∗) + x(ρ∗ − τ(ρ∗)))].

If x(ρ∗) ≥ x(ρ∗ − τ(ρ∗)), then (2.6) leads to

x(ρ∗) ≥ a(ρ∗)

2c(ρ∗)
≥
(
a(t)

2c(t)

)−
≥ κ.

Otherwise,

x(ρ∗ − τ(ρ∗)) ≥ a(ρ∗)

2c(ρ∗)
≥
(
a(t)

2c(t)

)−
,

which together with (1.1) and (2.4) implies that

x′(t) = x(t)[a(t)− b(t)x(t)− c(t)x(t− τ(t))] ≥ x(t)[a(t)− 2c(t)M ]

for all t ≥ T1 + τ+. This gives

x(ρ∗) ≥ x(ρ∗ − τ(ρ∗)) exp

ρ∗�

ρ∗−τ(ρ∗)

[a(s)− 2Mc(s)] ds

≥
(
a(t)

2c(t)

)−
exp
( t�

t−τ(t)

[a(s)− 2Mc(s)] ds
)−
≥ κ.

In summary, we have proved that x(ρ∗) ≥ κ. Now, for t > ρ∗, if x′(t) ≤ 0
then the arguments above give x(t) ≥ κ. Suppose that x′(t) > 0. Then we
can choose ρ∗ ≤ t̂ < t such that x′( t̂ ) = 0 and x′(s) > 0 for all s ∈ ( t̂, t]. It
follows that x(t) > x( t̂ ) ≥ κ. This finishes Step 3 and hence completes the
proof.

Lemma 2.3. Let

sup
t∈R
{−2κ[b(t) + c(t)] + c(t)Mτ(t)[2(b+ + c+)M + a+] + a+} < 0.

Moreover, assume that x(t) = x(t; t0, ϕ) is a solution of equation (1.1) with
initial condition (1.5), and ϕ′ is bounded and continuous on [−τ+, 0]. Then,
for any ε > 0, there exists l = l(ε) > 0 such that every interval [α, α + l]
contains at least one number δ for which there exists N > 0 satisfying

|x(t+ δ)− x(t)| ≤ ε for all t > N.

Proof. Define a continuous function Γ on [0, 1] by

(2.1) Γ (µ) = sup
t∈R

{
−[2κ(b(t) + c(t))− µ] + c(t)Mτ(t)

[
(2b+ + c+)Meµτ

+

+ c+Me2µτ
+

+ a+eµτ
+]

+ a+
}
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for all µ ∈ [0, 1]. Then Γ (0) < 0. It follows that there exist two constants
η > 0 and λ ∈ (0, 1] such that

(2.7) Γ (λ) < −η < 0.

We trivially extend x(t) to R by letting x(t) = x(t0 − τ+) for t in
(−∞, t0 − τ+]. Set

ε(δ, t) = −[b(t+ δ)− b(t)]x2(t+ δ)

− [c(t+ δ)− c(t)]x(t+ δ − τ(t+ δ))x(t+ δ)

− c(t)[x(t+ δ − τ(t+ δ))− x(t+ δ − τ(t))]x(t+ δ)

+ [a(t+ δ)− a(t)]x(t+ δ).

By Lemma 2.2, the solution x(t) is bounded and κ ≤ x(t) ≤ M for all
t ≥ tϕ, which implies that the right-hand side of (1.1) is also bounded, and
x′(t) is a bounded function on [t0 − τ+,∞). Thus, in view of the fact that
x(t) ≡ x(t0 − τ+) for t ∈ (−∞, t0 − τ+], we deduce that x(t) is uniformly
continuous on R. From (2.1), for any ε > 0, there exists l = l(ε) > 0 such
that every interval [α, α+ l] contains a δ for which

(2.8) |ε(δ, t)| ≤ 1

2

ηε

1 + τ+
for all t ∈ R.

Pick N0 ≥ max{t0, t0 − δ, tϕ + τ+, tϕ + τ+ − δ}. For t ∈ R, denote u(t) =
x(t+ δ)− x(t). Then, for all t ≥ N0, we get

u′(t) = −b(t)[x2(t+ δ)− x2(t)]− c(t)x(t+ δ)[x(t+ δ − τ(t))− x(t− τ(t))]

− c(t)x(t− τ(t))[x(t+ δ)− x(t)] + a(t)[x(t+ δ)− x(t)] + ε(δ, t)

= −b(t)[x(t+ δ) + x(t)]u(t)− c(t)x(t+ δ)u(t− τ(t))

− c(t)x(t− τ(t))u(t) + a(t)u(t) + ε(δ, t)

= −[b(t)(x(t+ δ) + x(t)) + c(t)x(t+ δ) + c(t)x(t− τ(t))]u(t)

+ c(t)x(t+ δ)

t�

t−τ(t)

u′(s) ds+ a(t)u(t) + ε(δ, t)

= −[b(t)(x(t+ δ) + x(t)) + c(t)x(t+ δ) + c(t)x(t− τ(t))]u(t)

+ c(t)x(t+ δ)

t�

t−τ(t)

{
−b(s)[x(s+ δ) + x(s)]u(s)

− c(s)x(s+ δ)u(s− τ(s))− c(s)x(s− τ(s))u(s)

+ a(s)u(s) + ε(δ, s)
}
ds+ a(t)u(t) + ε(δ, t)
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and

(2.9) D−(eλt|u(t)|)

≤ λeλt|u(t)|+ eλt
{
−[b(t)(x(t+ δ) + x(t)) + c(t)x(t+ δ)

+ c(t)x(t− τ(t))]|u(t)|

+ c(t)x(t+ δ)

t�

t−τ(t)

∣∣−b(s)[x(s+ δ) + x(s)]u(s)

− c(s)x(s+ δ)u(s− τ(s))− c(s)x(s− τ(s))u(s) + a(s)u(s) + ε(δ, s)
∣∣ ds

+ a(t)|u(t)|+ |ε(δ, t)|
}

≤ −[(b(t) + c(t))2κ− λ]eλt|u(t)|+ a+eλt|u(t)|

+ c(t)M

t�

t−τ(t)

[
(2b+ + c+)Meλ(t−s)eλs|u(s)|

+ c+Meλ(t−s+τ(s))eλ(s−τ(s))|u(s− τ(s))|

+ a+eλ(t−s)eλ(s)|u(s)|+ eλt|ε(δ, s)|
]
ds+ eλt|ε(δ, t)|

≤ −[(b(t) + c(t))2κ− λ]eλt|u(t)|

+ c(t)M

t�

t−τ(t)

[
(2b+ + c+)Meλ(t−s)eλs|u(s)|

+ c+Meλ(t−s+τ(s))eλ(s−τ(s))|u(s− τ(s))|+ a+eλ(t−s)eλs|u(s)|
]
ds

+ eλtτ+
1

2

ηε

1 + τ+
+ a+eλt|u(t)|+ eλt

1

2

ηε

1 + τ+
.

Set

U(t) = sup
−∞<s≤t

{eλt|u(s)|}.

It is obvious that eλt|u(t)| ≤ U(t) and U(t) is non-decreasing. We distinguish
two cases to finish the proof.

Case 1: U(t) > eλt|u(t)| for all t ≥ N0. We claim that U(t) ≡ U(N0)
for all t ≥ N0. Assume, by way of contradiction, that there exists t1 > N0

such that U(t1) > U(N0). Since eλt|u(t)| ≤ U(N0) for all t ≤ N0, there must
exist β ∈ (N0, t1) such that eλβ|u(β)| = U(t1) ≥ U(β), a contradiction. This
proves the claim. Then there exists t2 > N0 such that

|u(t)| ≤ e−λtU(t) = e−λtU(N0) < ε for all t ≥ t2.
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Case 2: There is a t∗0 ≥ N0 such that U(t∗0) = eλt
∗
0 |u(t∗0)|. Then, in view

of (2.7)–(2.9), we get

0 ≤ D−(eλt|u(t)|)|t=t∗0
≤ −[(b(t∗0) + c(t∗0))2κ− λ]eλt

∗
0 |u(t∗0)|

+ c(t∗0)M

t∗0�

t∗0−τ(t∗0)

[
(2b+ + c+)Meλ(t

∗
0−s)eλs|u(s)|

+ c+Meλ(t
∗
0−s+τ(s))eλ(s−τ(s))|u(s− τ(s))|+ a+eλ(t

∗
0−s)eλs|u(s)|

]
ds

+ eλt
∗
0τ+

1

2

ηε

1 + τ+
+ a+eλt

∗
0 |u(t∗0)|+ eλt

∗
0

1

2

ηε

1 + τ+

≤
{
−[(b(t∗0) + c(t∗0))2κ− λ] + c(t∗0)Mτ(t∗0)

[
(2b+ + c+)Meλτ

+

+ c+Me2λτ
+

+ a+eλτ
+]

+ a+
}
U(t∗0) + eλt

∗
0ηε

≤ −ηU(t∗0) + eλt
∗
0ηε,

which yields

(2.10) eλt
∗
0 |u(t∗0)| = U(t∗0) < εeλt

∗
0 and |u(t∗0)| < ε.

For any t > t∗0, with the same approach as in deriving (2.10), we can
show

(2.11) eλt|u(t)| < εeλt and |u(t)| < ε if U(t) = eλt|u(t)|.
On the other hand, if U(t) > eλt|u(t)| and t > t∗0, then we can choose
t∗0 ≤ t3 < t such that

U(t3) = eλt3 |u(t3)| and U(s) > eλs|u(s)| for all s ∈ (t3, t].

This, together with (2.11), leads to |u(t3)| < ε. With a similar argument to
that in the proof of Case 1, we can show that U(s) ≡ U(t3) for all s ∈ (t3, t],
which implies

|u(t)| < e−λtU(t) = e−λtU(t3) = |u(t3)|e−λ(t−t3) < ε.

In summary, there must exist N > max{t∗0, N0, t2} such that |u(t)| ≤ ε
for all t > N .

3. Main results. In this section, we establish sufficient conditions for
the existence and global exponential stability of almost periodic solutions
of (1.1).

Theorem 3.1. Under the assumptions of Lemma 2.3, equation (1.1)
has at least one positive almost periodic solution x∗(t). Moreover, x∗(t) is
globally exponentially stable, that is, there exist constants Kϕ,x∗ and tϕ,x∗

such that

|x(t; t0, ϕ)− x∗(t)| < Kϕ,x∗e
−λt for all t > tϕ,x∗.
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Proof. Let v(t) = v(t; t0, ϕ
v) be a solution of equation (1.1) with initial

conditions satisfying the assumptions in Lemma 2.3. We also trivially extend
v(t) to R as before. Set

ε̂(k, t) = −[b(t+ tk)− b(t)]v2(t+ tk)

− [c(t+ tk)− c(t)]v(t+ tk − τ(t))v(t+ tk)

− c(t+ tk)[v(t+ tk − τ(t+ tk))− v(t+ tk − τ(t))]v(t+ tk)

+ [a(t+ tk)− a(t)]v(t+ tk),

where {tk} is any sequence of real numbers. By Lemma 2.2, the solution
v(t) is bounded and κ ≤ v(t) ≤ M for all t > tϕv , which implies that the
right-hand side of (1.1) is also bounded and v′(t) is a bounded function on
[t0 − τ+,∞). Thus, since v(t) ≡ v(t0 − τ+) for (−∞, t0 − τ+], we see that
v(t) is uniformly continuous on R. Then, from the almost periodicity of a,
b, c, and τ , we can select a sequence tk →∞ such that

(3.1)

{ |a(t+ tk)− a(t)| ≤ 1/k, |b(t+ tk)− b(t)| ≤ 1/k,

|τ(t+ tk)− τ(t)| < ε, |ε̂(k, t)| ≤ 1/k, |c(t+ tk)− c(t)| ≤ 1/k,

for all t ∈ R. Since {v(t + tk)} is uniformly bounded and equicontinuous,
by the Ascoli–Arzelà theorem and the diagonal selection principle, we can
choose a subsequence of {tk} (not relabelled) such that {v(t+tk)} uniformly
converges to a continuous function x∗(t) on any compact subset of R and
κ ≤ x∗(t) ≤M for all t ∈ R.

To complete the proof, we first prove that x∗(t) is a solution of (1.1). In
fact, for any t ≥ t0 and 4t ∈ R, from (3.1), we have

(3.2) x∗(t+4t)− x∗(t) = lim
k→∞

[v(t+4t+ tk)− v(t+ tk)]

= lim
k→∞

t+4t�

t

v(µ+ tk)
[
a(µ+ tk)− b(µ+ tk)v(µ+ tk)

−c(µ+ tk)v(µ+ tk − τ(µ+ tk))
]
dµ

= lim
k→∞

t+4t�

t

v(µ+ tk)
[
a(µ)− b(µ)v(µ+ tk)

−c(µ)v(µ+ tk − τ(µ))
]
dµ+ lim

k→∞

t+4t�

t

ε̂(k, µ) dµ

=

t+4t�

t

x∗(µ)[a(µ)− b(µ)x∗(µ)− c(µ)x∗(µ− τ(µ))] dµ,

where t+4t ≥ t0. Consequently, (3.2) implies that

d

dt
x∗(t) = x∗(t)[a(t)− b(t)x∗(t)− c(t)x∗(t− τ(t))],

in other words, x∗(t) is a solution of (1.1).
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Next, we show that x∗(t) is almost periodic. From Lemma 2.3, for any
ε > 0, there exists l = l(ε) > 0 such that every interval [α, α + l] contains
at least one number δ for which there exists N > 0 satisfying |v(t + δ) −
v(t)| ≤ ε for all t > N . Then, for any fixed s ∈ R, we can find a sufficiently
large positive integer N1 > N such that for any k > N1, s + tk > N and
|v(s+tk+δ)−v(s+tk)| ≤ ε. Letting k →∞, we obtain |x∗(s+δ)−x∗(t)| ≤ ε.
This tells us that x∗(t) is an almost periodic solution.

Finally, we prove that x∗(t) is globally exponentially stable. For an arbi-
trary solution x(t; t0, ϕ), denote y(t) = x(t)− x∗(t), where t ∈ [t0 − τ+,∞).
Then

y′(t) = −b(t)(x(t) + x∗(t))y(t)− c(t)x∗(t)y(t− τ(t))(3.3)

− c(t)x(t− τ(t))y(t) + a(t)y(t)

= −[b(t)(x(t) + x∗(t)) + c(t)(x∗(t) + x(t− τ(t)))]y(t)

+ a(t)y(t) + c(t)x∗(t)

t�

t−τ(t)

[
−b(s)(x(s) + x∗(s))y(s)

− c(s)x∗(s)y(s− τ(s))− c(s)x(s− τ(s))y(s) + a(s)y(s)
]
ds,

where t ≥ t0+τ+. It follows from Lemma 2.2 that there exists tϕ,x∗ > t0+τ+

such that κ ≤ x(t), x∗(t) ≤ M for all t ∈ [tϕ,x∗ − τ+,∞). Consider the
Lyapunov functional V (t) = |y(t)|eλt. Calculating the upper left derivative
of V (t) along the solution y(t) of (3.3), we obtain

(3.4) D−(V (t))

≤ λeλt|y(t)|+eλt
{
−[b(t)(x(t)+x∗(t))+ c(t)(x∗(t)+x(t−τ(t)))]y(t)

+ c(t)x∗(t)

t�

t−τ(t)

∣∣−b(s)(x(s) + x∗(s))y(s)− c(s)x∗(s)y(s− τ(s))

− c(s)x(s− τ(s))y(s) + a(s)y(s)
∣∣ ds+ a(t)y(t)

}
≤ −[2κ(b(t) + c(t))− λ]|y(t)|eλt + c(t)M

t�

t−τ(t)

[
2Mb+|y(s)|eλseλ(t−s)

+Mc+|y(s− τ(s))|eλ(s−τ(s))eλ(t−s+τ(s)) +Mc+|y(s)|eλseλ(t−s)

+ a+|y(s)|eλseλ(t−s)
]
ds+ a+|y(t)|eλt

for all t > tϕ,x∗ . We claim that

V (t) = |y(t)|eλt < eλtϕ,x∗
(

max
t0−τ+≤t≤tϕ,x∗

|x(t)− x∗(t)|+ 1
)

:= Kϕ,x∗

for all t > tϕ,x∗ . Suppose that the claim is not true. Then there must exist
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t∗ > tϕ,x∗ such that

V (t∗) = Kϕ,x∗ and V (t) < Kϕ,x∗ for all t ∈ [t0 − τ+, t∗).
Combining this with (3.4) gives

0 ≤ D−(V (t))|t=t∗ ≤ −[2κ(b(t∗) + c(t∗))− λ]|y(t∗)|eλt∗

+ c(t∗)M

t∗�

t∗−τ(t∗)

[
2Mb+|y(s)|eλseλ(t∗−s)

+Mc+|y(s− τ(s))|eλ(s−τ(s))eλ(t∗−s+τ(s)) +Mc+|y(s)|eλseλ(t∗−s)

+ a+|y(s)|eλseλ(t∗−s)
]
ds+ a+|y(t∗)|eλt∗

≤
{
−[2κ(b(t∗) + c(t∗))− λ] + c(t∗)Mτ(t∗)

[
(2b+ + c+)Meλτ

+

+ c+Me2λτ
+

+ a+eλτ
+]

+ a+
}
Kϕ,x∗ .

Thus

0 ≤ −[2κ(b(t∗) + c(t∗))− λ]

+ c(t∗)Mτ(t∗)[(2b
+ + c+)Meλτ

+
+ c+Me2λτ

+
+ a+eλτ

+
] + a+,

which contradicts (2.7). This proves the claim. It follows from the claim that
|y(t)| < Kϕ,x∗e

−λt for all t > tϕ,x∗ , and this completes the proof.

4. An example. In this section, we present an example to check the
validity of the main results obtained in Section 3.

Example 4.1. Consider the following single population model with
hereditary effects:

(4.1) x′(t) = x(t)
[
2 + |cos

√
2 t| − 4

5(2 + |cos t|)x(t)

− (2 + |cos
√

2 t|)x
(
t− 1

100 sin2 t
)]
.

Obviously, a(t) = c(t) = 2 + |cos
√

2t|, b(t) = 4
5(2 + |cos t|), and τ(t) = sin2 t

100 .
After a calculation, we see that M ≈ 1.03, κ ≈ 0.47925, and

sup
t∈R
{−2κ[b(t) + c(t)] + c(t)Mτ(t)[2(b+ + c+)M + a+] + a+} < −0.02228 < 0.

Therefore, (4.1) satisfies the assumptions of Theorem 3.1. It follows imme-
diately that equation (4.1) has a unique positive almost periodic solution
x(t), which is globally exponentially stable with exponential convergence
rate λ ≈ 0.001. Figure 1 strongly supports the conclusion.

Remark 4.1. We mention that no results in [XL] and [CL1, CL2, FW, C,
CXC, L2] are applicable to (4.1) with initial values (1.5) to obtain existence
and stability of positive almost periodic solutions.
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Fig. 1. Numerical solutions x(t) of (4.1) for the initial values ϕ(t) ≡ 0.1, 1, 2
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