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On the uniqueness problem for meromorphic mappings
with truncated multiplicities

by Feng Lü (Qingdao)

Abstract. The purpose of this paper is twofold. The first is to weaken or omit the
condition dim f−1(Hi ∩Hj) ≤ m− 2 for i 6= j in some previous uniqueness theorems for
meromorphic mappings. The second is to decrease the number q of hyperplanes Hj such
that f(z) = g(z) on

⋃q
j=1 f

−1(Hj), where f, g are meromorphic mappings.

1. Introduction and main results. In 1975, the Nevanlinna “5IM”
Theorem was generalized to the case of meromorphic mappings of Cm into
Pn(C) by H. Fujimoto [3]. From then on, the study of the uniqueness problem
for meromorphic mappings from Cm into Pn(C) intersecting a finite set
of hyperplanes has been extended and deepened by many authors. At the
same time, many outstanding results were derived (see H. Fujimoto [4],
M. Ru [10]).

Suppose that f is a linearly non-degenerate meromorphic mapping of
Cm into Pn(C). For each hyperplane H we denote by v(f,H) the map of Cm
into N0 such that v(f,H)(a) (a ∈ Cm) is the intersection multiplicity of the
image of f and H at a. Take q hyperplanes H1, . . . ,Hq in Pn(C) in general
position and a positive integer l0.

Consider the family F({Hj}qj=1, f, l0) of all linearly non-degenerate
meromorphic mappings g : Cm → Pn(C) satisfying the conditions:

(a) min{v(g,Hj)(z), l0} = min{v(f,Hj)(z), l0} for all j ∈ {1, . . . , q} ,

(b) dim(f−1(Hi) ∩ f−1(Hj)) ≤ m− 2 for all 1 ≤ i < j ≤ q,
(c) f(z) = g(z) on

⋃q
j=1 f

−1(Hj).

Denote by ]S the cardinality of the set S. We use the standard notations
E and Emj) as appearing in [2, 6].
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In 1983, L. Smiley [11] showed that

Theorem A. If q≥3n+2, then g1=g2 for any g1, g2∈F({Hj}qj=1, f, 1).

In 2009, Z. Chen and Q. Yan [1] proved the following theorem, which is
an improvement of Theorem A.

Theorem B. ]F({Hj}2n+3
j=1 , f, 1) = 1.

Recently, Z. Chen and Q. Yan [2] considered the uniqueness of meromor-
phic mappings partially sharing 2n+ 3 hyperplanes and proved:

Theorem C. Let f and g be linearly non-degenerate meromorphic map-
pings of Cm into Pn(C), and let Hj (1 ≤ j ≤ q) be q hyperplanes in general
position such that dim f−1(Hi ∩Hj) ≤ m− 2 for i 6= j. Assume that

E(Hj , f) ⊆ E(Hj , g), 1 ≤ j ≤ q,
and f(z) = g(z) on

⋃q
j=1 f

−1(Hj). If q = 2n+ 3 and

lim inf
r→∞

2n+3∑
j=1

N1
(f,Hj)

(r)/
2n+3∑
j=1

N1
(g,Hj)

(r) >
n

n+ 1
,

then f = g.

Remark. In fact, the condition E(Hj , f) ⊆ E(Hj , g) (1 ≤ j ≤ q)
can be deleted in Theorem C, because it can be easily deduced from the
condition f(z) = g(z) on

⋃q
j=1 f

−1(Hj).

In the previous results on the uniqueness problem with truncated multi-
plicity, the condition dim f−1(Hi ∩Hj) ≤ m− 2 for i 6= j is always needed.
So, it is of interest to omit or weaken this condition. Recently, H. Giang,
L. Quynh and S. Quang [5] have done some work in this direction.

The first purpose of this paper is to generalize Theorem C by omitting
the condition dim f−1(Hi ∩ Hj) ≤ m − 2. In fact, we get a more general
result:

Theorem 1.1. Let f and g be linearly non-degenerate meromorphic
mappings of Cm into Pn(C), let mj (≥ n) (1 ≤ j ≤ q), k (1 ≤ k ≤ n)
be integers, and let Hj (1 ≤ j ≤ q) be hyperplanes in general position such
that

(1.1) dim f−1
(k+1⋂
j=1

Hij

)
≤ m− 2 for all 1 ≤ i1 < · · · < ik+1 ≤ q.

Assume that f(z) = g(z) on
⋃q
j=1Emj)(Hj , f). If q ≥ 2(n+ 1) +

∑q
i=1

2n
mi+1

and

lim inf
r→∞

q∑
j=1

N1
(f,Hj),≤mj

(r)/

q∑
j=1

N1
(g,Hj),≤mj

(r) >
nk

q − n− k − 1−
∑q

i=1
n

mi+1

,

then f = g.
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Remark. Obviously, Theorem C is a special case of the above theorem
when q = 2n+3, k = 1 and mj =∞ for 1 ≤ j ≤ q. When k = 1, Theorem 1.1
becomes [7, Theorem 1.1].

The condition (1.1) is always satisfied when k = n, since the family of
hyperplanes is assumed to be in general position. So, the following result is
a corollary of Theorem 1.1 when k = n.

Corollary 1.2. Let f and g be linearly non-degenerate meromorphic
mappings of Cm into Pn(C), let mj (≥ n) (1 ≤ j ≤ q) be integers and Hj

(1 ≤ j ≤ q) be hyperplanes in general position. Assume that f(z) = g(z) on⋃q
j=1Emj)(Hj , f). If q ≥ 2(n+ 1) +

∑q
i=1

2n
mi+1 and

lim inf
r→∞

q∑
j=1

N1
(f,Hj),≤mj

(r)/

q∑
j=1

N1
(g,Hj),≤mj

(r) >
n2

q − 2n− 1−
∑q

i=1
n

mi+1

,

then f = g.

Remark. In Theorem 1.1 and [7, Theorem 1.1], the condition q ≥
2(n+ 1) +

∑q
i=1

2n
mi+1 is needed. So, it is natural to ask what will happen if

this condition is invalid. However, it seems that the problem is complicated.
In the following, we consider the problem for the special case when mj = l
for all 1 ≤ j ≤ q.

Theorem 1.3. Let f and g be linearly non-degenerate meromorphic
mappings of Cm into Pn(C), let k (1 ≤ k ≤ n) and l (≥ n) be integers
and Hj (1 ≤ j ≤ q) be hyperplanes in general position such that

dim f−1
(k+1⋂
j=1

Hij

)
≤ m− 2 for all 1 ≤ i1 < · · · < ik+1 ≤ q.

Assume that f(z) = g(z) on
⋃q
j=1El)(Hj , f) and

lim inf
r→∞

q∑
j=1

N1
(f,Hj),≤l(r)/

q∑
j=1

N1
(g,Hj),≤l(r) = A.

Then f = g if one of the following conditions holds:

(i) q ≥ 2(n+ 1) + 2n(n+1)
l+1−n and A > nk(l+1−n)

(l+1−n)(q−k)−(l+1)(n+1) ,

(ii) q < 2(n+ 1) + 2n(n+1)
l+1−n , A ≥ 2nk

q−2k and

qnk(l+1−n) < A[q(l+1−n)(q+nk−2k)−(q+2nk−2k)(l+1)(n+1)].

Now, we will give an application of the above theorem.
In 2011, S. Quang [9] considered the uniqueness of meromorphic map-

pings sharing hyperplanes with multiplicities. His result can be described as
follows.
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Theorem D. Let f and g be linearly non-degenerate meromorphic map-
pings of Cm into Pn(C), let l be an integer and Hj (1 ≤ j ≤ q) be q = 2n+3
hyperplanes in general position such that dim f−1(Hi ∩ Hj) ≤ m − 2 for
i 6= j. Assume that

(1) min{v(f,Hj),≤l(z), 1} = min{v(g,Hj),≤l(z), 1}, 1 ≤ j ≤ q,
(2) f(z) = g(z) on

⋃q
j=1El)(Hj , f).

If l > n(4n2+11n+4)
3n+2 − 1, then f = g.

We now apply Theorem 1.3 to prove Theorem D.
From the assumptions of Theorem D, it is obvious that q = 2n+3, k = 1

and A = 1.
In order to prove f = g, it suffices to show that q, k, A satisfy condition

(i) or (ii) in Theorem 1.3.
If l + 1 ≥ 2n2 + 3n, then a calculation shows that (i) holds.

If l + 1 < 2n2 + 3n, then q < 2(n + 1) + 2n(n+1)
l+1−n . It follows from A = 1

that 1 = A ≥ 2nk
q−2k = 2n

2n+1 . Furthermore, if l > n(4n2+8n+3)
3n+2 − 1, then

qnk(l+ 1−n) < A[q(l+ 1−n)(q+nk− 2k)− (q+ 2nk− 2k)(l+ 1)(n+ 1)].

Noting that l > n(4n2+11n+4)
3n+2 − 1 in Theorem D, we see that (ii) is valid.

This finishes the proof of Theorem D.

In the previous results, such as Theorem A and B, the condition (c) of
the introduction is needed, that is, f(z) = g(z) on

⋃q
j=1 f

−1(Hj). So, it is
natural to ask whether this condition can be omitted or the number q can
be replaced by a smaller one. The second purpose of the paper is to deal
with this problem. Our result is:

Theorem 1.4. Let f and g be linearly non-degenerate meromorphic
mappings of Cm into Pn(C), and let Hj (1 ≤ j ≤ q) be q = 2n + 3 hy-
perplanes in general position. Assume that

(1) v1(f,Hi)
(z)=v1(g,Hi)

(z) (1≤ i ≤2n+2) and vn(f,H2n+3)
(z) = vn(g,H2n+3)

(z),

(2) dim(f−1(Hi) ∩ f−1(Hj)) ≤ m− 2 for all 1 ≤ i < j ≤ q,
(3) f(z) = g(z) on

⋃2n+2
j=1 f−1(Hj).

Then f = g.

Remark. In Theorem 1.4, condition (3) is weaker than that of the pre-
vious theorems such as Theorems A and B, but condition (1) is stronger.

Actually, we obtain a more general result, of which Theorem 1.4 is an
immediate consequence when k = 1.

Theorem 1.5. Let f and g be linearly non-degenerate meromorphic
mappings of Cm into Pn(C), let k (1 ≤ k ≤ n) be an integer and Hj
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(1 ≤ j ≤ q) be q = 2kn + 2k + 1 hyperplanes in general position such
that

dim f−1
(k+1⋂
j=1

Hij

)
≤ m− 2 for all 1 ≤ i1 < · · · < ik+1 ≤ q.

Assume that f is linearly non-degenerate and

(1) v1(f,Hi)
(z) = v1(g,Hi)

(z) (1 ≤ i ≤ 2n + 2) and vn(f,Hi)
(z) = vn(g,Hi)

(z)

(2n+ 3 ≤ i ≤ q),
(2) f(z) = g(z) on

⋃2n+2
j=1 f−1(Hj).

Then f = g.

When k = n in Theorem 1.5, we have the following corollary.

Corollary 1.6. Let f and g be linearly non-degenerate meromorphic
mappings of Cm into Pn(C), let k (1 ≤ k ≤ n) be an integer and Hj (1 ≤
j ≤ q) be q = 2n2 + 2n + 1 hyperplanes in general position. Assume that f
is linearly non-degenerate and

(1) v1(f,Hi)
(z) = v1(g,Hi)

(z) (1 ≤ i ≤ 2n + 2) and vn(f,Hi)
(z) = vn(g,Hi)

(z)

(2n+ 3 ≤ i ≤ q),
(2) f(z) = g(z) on

⋃2n+2
j=1 f−1(Hj).

Then f = g.

For a further study of this kind of problems, we pose two questions.

Question 1. In Theorem 1.1 and 1.3, the condition

dim f−1
(k+1⋂
j=1

Hij

)
≤ m− 2 for all 1 ≤ i1 < · · · < ik+1 ≤ q

is needed. We ask whether the results still hold or not if the above condition
is weakened to

dim
(k+1⋂
j=1

Emij
)(Hij , f)

)
≤ m− 2 for all 1 ≤ i1 < · · · < ik+1 ≤ q.

Question 2. In Theorems 1.4 and 1.5, we assume that f(z) = g(z) on⋃2n+2
j=1 f−1(Hj). We wonder whether the number 2n+ 2 can be decreased or

not if q does not change.

2. Preliminaries and some lemmas. Set ‖z‖ = (|z1|2+· · ·+|zm|2)1/2
for z = (z1, . . . , zm) and define

B(r) = {z ∈ Cm : ‖z‖ < r}, S(r) = {z ∈ Cm : ‖z‖ = r} (0 < r <∞),

and

υm−1(z) = (ddc‖z‖2)m−1, σm(z) = dc log ‖z‖2 ∧ (ddc log ‖z‖2)m−1

on Cm \ {0}.
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Let f be a non-constant meromorphic mapping of Cm into Pn(C). We
take holomorphic functions f0, . . . , fn on Cm such that If = {z ∈ Cm :
f0(z) = · · · = fn(z) = 0} is of dimension at mostm−2; then f = {f0, . . . , fn}
is called a reduced representation of f . The characteristic function of f is
defined as

Tf (r) =
�

S(r)

log ‖f‖σm −
�

S(1)

log ‖f‖σm.

Note that Tf (r) is independent of the choice of the reduced representation
of f .

For a divisor ν on Cm and positive integers k, p (or k, p =∞), we define
some divisors as follows:

νp(z) = min{p, ν(z)},

νp≤k(z) =

{
0 if ν(z) > k,

νp(z) if ν(z) ≤ k,

νp>k(z) =

{
νp(z) if ν(z) > k,

0 if ν(z) ≤ k.
Set

n(t) =

{ 	
|ν|∩B(t) ν(z)υm−1 if m ≥ 2,∑
|z|≤t ν(z) if m = 1.

Similarly, define np(t), np≤k(t), n
p
>k(t). Define the counting function of ν as

N(r, ν) =

r�

1

n(t)

t2n−1
dt (1 < r <∞).

Similarly, we also define N(r, νp), N(r, νp≤k), N(r, νp>k) and denote them by

Np(r, ν), Np
≤k(r, ν), Np

>k(r, ν), respectively.

Let φ : Cm → P1(C) be a meromorphic function. Define

Nφ(r) = N(r, νφ), Np
φ,≤k(r) = Np

≤k(r, νφ),

Np
φ(r) = Np(r, νφ), Np

φ,>k(r) = Np
>k(r, νφ).

In order to prove our results, we recall the second main theorem for
meromorphic mappings.

Lemma 2.1 ([10]). Let f : Cm → Pn(C) be a linearly non-degenerate
meromorphic mapping and H1, . . . ,Hq be q (≥ n+1) hyperplanes in general
position in Pn(C). Then

‖ (q − n− 1)Tf (r) ≤
q∑
j=1

Nn
(f,Hj)

(r) + o(Tf (r)).

As usual, the notation “ ‖P” means that the assertion P holds for all r in
[0,∞) excluding a Borel subset E ⊂ [0,∞) with

	
E dr <∞.
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The following modification of the above lemma is essential to the proof
of Theorem 1.3.

Lemma 2.2 ([9]). Let f : Cm → Pn(C) be a linearly non-degenerate
meromorphic mapping, let l ≥ n be an integer and H1, . . . ,Hq be q hyper-
planes in general position in Pn(C). Then∥∥∥∥ (l + 1)(q − n− 1)− nq

l + 1− n
Tf (r) ≤

q∑
j=1

Nn
(f,Hj),≤l(r) + o(Tf (r)).

3. Proof of Theorem 1.1. Suppose that f 6= g. From the assumptions,
we can easily deduce that

‖ Tf (r) = O(Tg(r)) and ‖ Tg(r) = O(Tf (r)).

As in [1], we introduce an equivalence relation on L := {1, . . . , q} as
follows: i ∼ j if and only if (f,Hi)/(f,Hj) − (g,Hi)/(g,Hj) = 0. Let
{L1, . . . , Ls} = L/∼. Since f 6= g and {Hj}qj=1 are in general position, we
have ]Lk ≤ n for all k ∈ {1, . . . , s}. Without loss of generality, we assume
that Lk := {ik−1 + 1, . . . , ik} (k ∈ {1, . . . , s}) where 1 = i0 < · · · < is = q.

Define σ : {1, . . . , q} → {1, . . . , q} by

σ(i) =

{
i+ n if i+ n ≤ q,
i+ n− q if i+ n > q.

It is easy to see that σ is bijective and |σ(i) − i| ≥ n (note that q ≥ 2n).
This implies that i and σ(i) belong to distinct sets of {L1, . . . , Ls} and

(f,Hi)

(f,Hσ(i))
− (g,Hi)

(g,Hσ(i))
6= 0.

Let Pi = (f,Hi)(g,Hσ(i)) − (g,Hi)(f,Hσ(i)). Obviously, Pi 6= 0. With the
Jensen formula, we obtain

NPi(r) ≤ Tf (r) + Tg(r) +O(1) = T (r) +O(1),

where T (r) = Tf (r) + Tg(r). Then P =
∏q
i=1 Pi 6= 0 and NP (r) ≤ qT (r)

+O(1). Let

S =
⋃

1≤i1<···<ik+1≤q
f−1(

k+1⋂
j=1

Hij ).

Then S is an analytic set of codimension at least 2. Take a point z not in
I(f) ∪ I(g) ∪ S. We claim that

vP (z) ≥ 2

q∑
i=1

min{v(f,Hi)(z), v(g,Hi)(z)}+
q − 2k

k

q∑
i=1

v1(f,Hi),≤mi
(z).

Suppose that z is a zero of some function (f,Hi) (1 ≤ i ≤ q). Let

I = {1 ≤ i ≤ q : (f,Hi)(z) = 0}, t = ]I.



172 F. Lü

It is clear that t ≤ k. We now prove the claim by considering two cases.

Case 1: There exists l ∈ I such that v(f,Hl)(z) ≤ ml. Assume that

j ∈ {1, . . . , q}\(I ∪ σ−1(I)). Noting that f(ζ) = g(ζ) on
⋃q
j=1{ζ ∈ Cm :

0 < v(f,Hj)(ζ) ≤ mj}, we see that z is a zero of Pj of multiplicity at least 1.
So vPj (z) ≥ 1. Therefore,

vp(z) ≥ 2
∑
i∈I

min{v(f,Hi)(z), v(g,Hi)(z)}+ q − 2t

≥ 2
∑
i∈I

min{v(f,Hi)(z), v(g,Hi)(z)}+ q − 2k

≥ 2

q∑
i=1

min{v(f,Hi)(z), v(g,Hi)(z)}+
q − 2k

k

q∑
i=1

v1(f,Hi),≤mi
(z).

Thus, the claim holds.

Case 2: v(f,Hl)(z) ≤ ml for no l ∈ I. Then
∑q

i=1 v
1
(f,Hi),≤mi

(z) = 0.

Thus,

vp(z) ≥ 2
∑
i∈I

min{v(f,Hi)(z), v(g,Hi)(z)}

≥ 2

q∑
i=1

min{v(f,Hi)(z), v(g,Hi)(z)}+
q − 2k

k

q∑
i=1

v1(f,Hi),≤mi
(z).

So, the claim is also valid.

Since f(z) = g(z) on
⋃q
j=1{z ∈ Cm : 0 < v(f,Hj)(z) ≤ mj}, for 1 ≤ i ≤ q

we get v(g,Hi)(z) > 0 if 0 < v(f,Hi)(z) ≤ mi.

Furthermore, we have

min{v(f,Hi)(z), v(g,Hi)(z)} ≥ v
n
(f,Hi),≤mi

(z) + vn(g,Hi),≤mi
(z)− nv1(g,Hi),≤mi

(z).

The claim and the above inequality yield

vp(z) ≥ 2

q∑
i=1

[vn(f,Hi),≤mi
(z) + vn(g,Hi),≤mi

(z)− nv1(g,Hi),≤mi
(z)](3.1)

+
q − 2k

k

q∑
i=1

v1(f,Hi),≤mi
(z).

Moreover, it follows from Lemma 2.1 that
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‖ (q − n− 1)Tf (r) ≤
q∑
j=1

Nn
(f,Hj)

(r) + o(Tf (r))

=

q∑
j=1

[Nn
(f,Hj),≤mj

(r) +Nn
(f,Hj),>mj

(r)] + o(Tf (r))

≤
q∑
j=1

[
Nn

(f,Hj),≤mj
(r) +

n

mj + 1
N(f,Hj),>mj

(r)

]
+ o(Tf (r))

≤
q∑
j=1

[
Nn

(f,Hj),≤mj
(r) +

n

mj + 1
Tf (r)

]
+ o(Tf (r)),

which implies that∥∥∥∥ (q − n− 1−
q∑
j=1

n

mj + 1

)
Tf (r) ≤

q∑
j=1

Nn
(f,Hj),≤mj

(r) + o(Tf (r)).

Integrating both sides of (3.1), we deduce

qT (r) ≥ NP (r)

≥ 2

q∑
i=1

[Nn
(f,Hi),≤mi

(r) +Nn
(g,Hi),≤mi

(r)− nN1
(g,Hi),≤mi

(r)]

+
q − 2k

k

q∑
i=1

N1
(f,Hi),≤mi

(r)

≥ 2

(
q − n− 1−

q∑
j=1

n

mj + 1

)
T (r)

+
q − 2k

k

q∑
i=1

N1
(f,Hi),≤mi

(r)− 2n

q∑
i=1

N1
(g,Hi),≤mi

(r) + o(Tf (r)),

which leads to

(3.2)

(
q − 2n− 2−

q∑
j=1

2n

mj + 1

)
T (r)

≤ −q − 2k

k

q∑
i=1

N1
(f,Hi),≤mi

(r) + 2n

q∑
i=1

N1
(g,Hi),≤mi

(r) + o(Tf (r)).

We know that, for some 1 ≤ j ≤ q, there exists c ∈ Cn+1\{0} such that

F
Hj ,c
f − FHj ,c

g =
(f,Hj)

(f, c)
− (g,Hj)

(g, c)
6= 0.

Since f(z) = g(z) on
⋃q
j=1{z ∈ Cm : 0 < v(f,Hj)(z) ≤ mj}, we have

F
Hj ,c
f − FHj ,c

g = 0
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on
⋃q
j=1{z ∈ Cm : 0 < v(f,Hj)(z) ≤ mj}. Then∥∥∥ q∑

i=1

N1
(f,Hi),≤mi

(r) ≤ kN1

F
Hj,c

f −F
Hj,c
g

(r)(3.3)

≤ kT (r, F
Hj ,c
f − FHj ,c

g ) +O(1)

≤ kT (r) +O(1).

Combining (3.2) and (3.3) yields∥∥∥∥ 1

k

[
q − 2n− 2−

q∑
j=1

2n

mj + 1
+ q − 2k

] q∑
i=1

N1
(f,Hi),≤mi

(r)

≤ 2n

q∑
i=1

N1
(g,Hi),≤mi

(r) + o(Tf (r)).

This can be rewritten as

lim inf
r→∞

q∑
j=1

N1
(f,Hj),≤mj

(r)/

q∑
j=1

N1
(g,Hj),≤mj

(r) ≤ nk

q − n− k − 1−
∑q

i=1
n

mi+1

,

which contradicts the assumption.

4. The proof of Theorem 1.3. Suppose that f 6= g. Then, with the
same discussion as in Theorem 1.1, we can deduce that

vp(z) ≥ 2

q∑
i=1

[vn(f,Hi),≤l(z) + vn(g,Hi),≤l(z)− nv
1
(g,Hi),≤l(z)](4.1)

+
q − 2k

k

q∑
i=1

v1(f,Hi),≤l(z).

By Lemma 2.2 integrating both sides of (4.1), we have

qT (r) ≥ 2

q∑
i=1

[Nn
(f,Hi),≤l(r) +Nn

(g,Hi),≤l(r)− nN
1
(g,Hi),≤l(r)](4.2)

+
q − 2k

k

q∑
i=1

N1
(f,Hi),≤l(r)

≥ 2

q∑
i=1

[Nn
(f,Hi),≤l(r) +Nn

(g,Hi),≤l(r)] +
q − 2k

k

q∑
i=1

N1
(f,Hi),≤l(r)

− 2n

q∑
i=1

N1
(g,Hi),≤l(r)
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≥ 2
(l + 1)(q − n− 1)− nq

l + 1− n
T (r) +

q − 2k

k

q∑
i=1

N1
(f,Hi),≤l(r)

− 2n

q∑
i=1

N1
(g,Hi),≤l(r) + o(Tf (r)).

We consider two cases.

Case 1: q ≤ 2 (l+1)(q−n−1)−nq
l+1−n . This is equivalent to

q >
2(l + 1)(n+ 1)

l + 1− n
= 2(n+ 1) +

2n(n+ 1)

l + 1− n
.

Then it follows from (4.2) that

(4.3)
(l + 1− n)q − 2(l + 1)(n+ 1)

l + 1− n
T (r)

≤ −q − 2k

k

q∑
i=1

N1
(f,Hi),≤l(r) + 2n

q∑
i=1

N1
(g,Hi),≤l(r).

As in the proof in Theorem 1.1, we have

(4.4)
∥∥∥ q∑

i=1

N1
(f,Hi),≤l(r) ≤ kT (r) +O(1).

Combining (4.3) and (4.4) yields∥∥∥∥ [(l + 1− n)q − 2(l + 1)(n+ 1)

l + 1− n
+ q − 2k

] q∑
i=1

N1
(f,Hi),≤l(r)

≤ 2nk

q∑
i=1

N1
(g,Hi),≤l(r).

From the above inequality, we derive that

lim inf
r→∞

q∑
j=1

N1
(f,Hj),≤l(r)/

q∑
j=1

N1
(g,Hj),≤l(r)

≤ nk(l + 1− n)

(l + 1− n)(q − k)− (l + 1)(n+ 1)
,

which contradicts the assumption.

Case 2: q < 2(l+1)(n+1)
l+1−n = 2(n+ 1) + 2n(n+1)

l+1−n . Since

lim inf
r→∞

q∑
j=1

N1
(f,Hj),≤l(r)/

q∑
j=1

N1
(g,Hj),≤l(r) = A,
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for any positive constant ε there exists a positive constant r0 such that∑n+1
j=1 N

1
(f,Hj),≤l(r) ≥ (A− ε)

∑n+1
j=1 N

1
(g,Hj),≤l(r) for r ≥ r0.

Using (4.2), we can deduce that

qT (r) ≥ 2

q∑
i=1

[Nn
(f,Hi),≤l(r) +Nn

(g,Hi),≤l(r)]−
q−2k+2nk

(1 +A)k
ε

q∑
i=1

N1
(g,Hi),≤l(r)

+
(q − 2k)A− 2nk

(1 +A)nk

q∑
i=1

Nn
(f,Hi),≤l(r) +Nn

(g,Hi),≤l(r)]

≥
[
2 +

(q − 2k)A− 2nk

(1 +A)nk

]
(l + 1)(q − n− 1)− nq

l + 1− n
T (r) + o(Tf (r))

− q − 2k + 2nk

(1 +A)nk
ε

q∑
i=1

N1
(g,Hi),≤l(r),

which indicates that

q
q − 2k + 2nk

(1 +A)k
εT (r) ≥ q − 2k + 2nk

(1 +A)k
ε

q∑
i=1

N1
(g,Hi),≤l(r)

≥
{[

2 +
(q − 2k)A− 2nk

(1 +A)nk

]
(l + 1)(q − n− 1)− nq

l + 1− n
− q
}
T (r) + o(Tf (r))

≥ B

(l + 1− n)(1 +A)nk
T (r) + o(Tf (r)),

where B = A[q(l + 1 − n)(q + nk − 2k) − (q + 2nk − 2k)(l + 1)(n + 1)] −
qnk(l + 1− n).

Choosing ε small enough, we can easily obtain a contradiction from the
above inequality.

5. The proof of Theorem 1.5. Suppose that f 6= g. We repeat ver-
batim the proof of Theorem 1.1 until the definition of the set S, which is
again an analytic set of codimension at least 2.

Take a point z 6∈ I(f) ∪ I(g) ∪ S. We now claim that

vP (z) ≥ 2

2n+2∑
i=1

[vn(f,Hi)
(z) + vn(g,Hi)

(z)− nv1(f,Hi)
(z)](5.1)

+

q∑
i=2n+3

[vn(f,Hi)
(z) + vn(g,Hi)

(z)] +
q − 2k

k

2n+2∑
i=1

v1(f,Hi)
(z).

Assume that z is a zero of some function (f,Hi) (1 ≤ i ≤ q). Let

I = {1 ≤ i ≤ 2n+ 2 : (f,Hi)(z) = 0}, t = ]I,

J = {2n+ 3 ≤ i ≤ q : (f,Hi)(z) = 0}, s = ]J.

Clearly, 1 ≤ t+ s ≤ k. We now prove the claim by distinguishing two cases.
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Case 1: I = ∅. Then

2n+2∑
i=1

v1(f,Hi)
(z) = 0, 2

2n+2∑
i=1

[vn(f,Hi)
(z) + vn(g,Hi)

(z)− nv1(f,Hi)
(z)] = 0.

Furthermore, we have

vp(z) ≥ 2
∑
i∈J

vn(f,Hi)
(z) =

q∑
i=2n+3

[vn(f,Hi)
(z) + vn(g,Hi)

(z)].

Thus, the claim holds.

Case 2: I 6= ∅. Suppose that j ∈ {1, . . . , q} \ [I ∪ J ∪ σ−1(I ∪ J)]. Since
f(ζ) = g(ζ) on

⋃2n+2
j=1 f−1(Hj), z is a zero point of Pj with multiplicity at

least 1. So vPj (z) ≥ 1.

If i ∈ {1, . . . , 2n+ 2}, then

min{v(f,Hi)(z), v(g,Hi)(z)} ≥ v
n
(f,Hi)

(z) + vn(g,Hi)
(z)− nv1(f,Hi)

(z).

If i ∈ {2n+ 3, . . . , q}, then

min{v(f,Hi)(z), v(g,Hi)(z)} ≥ v
n
(f,Hi)

(z).

It follows that

vp(z) ≥ 2
∑
i∈I

min{v(f,Hi)(z), v(g,Hi)(z)}+ 2
∑
i∈J

min{v(f,Hi)(z), v(g,Hi)(z)}

+ q − 2(l + s)

≥ 2
2n+2∑
i=1

[vn(f,Hi)
(z) + vn(g,Hi)

(z)− nv1(f,Hi)
(z)] + 2

∑
i∈J

vn(f,Hi)
(z) + q − 2k

≥ 2

2n+2∑
i=1

[vn(f,Hi)
(z) + vn(g,Hi)

(z)− nv1(f,Hi)
(z)]

+

q∑
i=2n+3

[vn(f,Hi)
(z) + vn(g,Hi)

(z)] +
q − 2k

k

2n+2∑
i=1

v1(f,Hi)
(z).

Thus, the claim holds.

By the claim, we have

vP (z) ≥
q∑
i=1

[vn(f,Hi)
(z) + vn(g,Hi)

(z)] +

2n+2∑
i=1

[vn(f,Hi)
(z) + vn(g,Hi)

(z)]

+
q − 2k − 2nk

k

2n+2∑
i=1

v1(f,Hi)
(z).
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By integrating both sides of the above inequality, we get

qT (r) ≥ Np(r)

≥
q∑
i=1

[Nn
(f,Hi)

(r) +Nn
(g,Hi)

(r)] +
2n+2∑
i=1

[Nn
(f,Hi)

(r) +Nn
(g,Hi)

(r)]

+
q − 2k − 2kn

k

2n+2∑
i=1

N1
(f,Hi)

(r)

≥ (q − n− 1)T (r) + (2n+ 2− n− 1)T (r)

+
q − 2k − 2kn

k

2n+2∑
i=1

N1
(f,Hi)

(r) + o(Tf (r)),

which implies that

(5.2)

2n+2∑
i=1

N1
(f,Hi)

(r) = o(Tf (r)).

By combining (5.2) and Lemma 2.1, we can easily deduce a contradiction.
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