On the uniqueness problem for meromorphic mappings with truncated multiplicities

by Feng Lü (Qingdao)

Abstract

The purpose of this paper is twofold. The first is to weaken or omit the condition $\operatorname{dim} f^{-1}\left(H_{i} \cap H_{j}\right) \leq m-2$ for $i \neq j$ in some previous uniqueness theorems for meromorphic mappings. The second is to decrease the number q of hyperplanes H_{j} such that $f(z)=g(z)$ on $\bigcup_{j=1}^{q} f^{-1}\left(H_{j}\right)$, where f, g are meromorphic mappings.

1. Introduction and main results. In 1975, the Nevanlinna "5IM" Theorem was generalized to the case of meromorphic mappings of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})$ by H. Fujimoto [3]. From then on, the study of the uniqueness problem for meromorphic mappings from \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})$ intersecting a finite set of hyperplanes has been extended and deepened by many authors. At the same time, many outstanding results were derived (see H. Fujimoto [4], M. Ru [10]).

Suppose that f is a linearly non-degenerate meromorphic mapping of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})$. For each hyperplane H we denote by $v_{(f, H)}$ the map of \mathbb{C}^{m} into \mathbb{N}_{0} such that $v_{(f, H)}(a)\left(a \in \mathbb{C}^{m}\right)$ is the intersection multiplicity of the image of f and H at a. Take q hyperplanes H_{1}, \ldots, H_{q} in $\mathbb{P}^{n}(\mathbb{C})$ in general position and a positive integer l_{0}.

Consider the family $\mathcal{F}\left(\left\{H_{j}\right\}_{j=1}^{q}, f, l_{0}\right)$ of all linearly non-degenerate meromorphic mappings $g: \mathbb{C}^{m} \rightarrow \mathbb{P}^{n}(\mathbb{C})$ satisfying the conditions:
(a) $\min \left\{v_{\left(g, H_{j}\right)}(z), l_{0}\right\}=\min \left\{v_{\left(f, H_{j}\right)}(z), l_{0}\right\}$ for all $j \in\{1, \ldots, q\}$,
(b) $\operatorname{dim}\left(f^{-1}\left(H_{i}\right) \cap f^{-1}\left(H_{j}\right)\right) \leq m-2$ for all $1 \leq i<j \leq q$,
(c) $f(z)=g(z)$ on $\bigcup_{j=1}^{q} f^{-1}\left(H_{j}\right)$.

Denote by $\sharp S$ the cardinality of the set S. We use the standard notations \bar{E} and $\bar{E}_{\left.m_{j}\right)}$ as appearing in [2, 6].

[^0]In 1983, L. Smiley [11] showed that
Theorem A. If $q \geq 3 n+2$, then $g_{1}=g_{2}$ for any $g_{1}, g_{2} \in \mathcal{F}\left(\left\{H_{j}\right\}_{j=1}^{q}, f, 1\right)$.
In 2009, Z. Chen and Q. Yan [1] proved the following theorem, which is an improvement of Theorem A.

Theorem B. $\sharp \mathcal{F}\left(\left\{H_{j}\right\}_{j=1}^{2 n+3}, f, 1\right)=1$.
Recently, Z. Chen and Q. Yan [2] considered the uniqueness of meromorphic mappings partially sharing $2 n+3$ hyperplanes and proved:

Theorem C. Let f and g be linearly non-degenerate meromorphic mappings of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})$, and let $H_{j}(1 \leq j \leq q)$ be q hyperplanes in general position such that $\operatorname{dim} f^{-1}\left(H_{i} \cap H_{j}\right) \leq m-2$ for $i \neq j$. Assume that

$$
\bar{E}\left(H_{j}, f\right) \subseteq \bar{E}\left(H_{j}, g\right), \quad 1 \leq j \leq q,
$$

and $f(z)=g(z)$ on $\bigcup_{j=1}^{q} f^{-1}\left(H_{j}\right)$. If $q=2 n+3$ and

$$
\liminf _{r \rightarrow \infty} \sum_{j=1}^{2 n+3} N_{\left(f, H_{j}\right)}^{1}(r) / \sum_{j=1}^{2 n+3} N_{\left(g, H_{j}\right)}^{1}(r)>\frac{n}{n+1},
$$

then $f=g$.
Remark. In fact, the condition $\bar{E}\left(H_{j}, f\right) \subseteq \bar{E}\left(H_{j}, g\right) \quad(1 \leq j \leq q)$ can be deleted in Theorem C, because it can be easily deduced from the condition $f(z)=g(z)$ on $\bigcup_{j=1}^{q} f^{-1}\left(H_{j}\right)$.

In the previous results on the uniqueness problem with truncated multiplicity, the condition $\operatorname{dim} f^{-1}\left(H_{i} \cap H_{j}\right) \leq m-2$ for $i \neq j$ is always needed. So, it is of interest to omit or weaken this condition. Recently, H. Giang, L. Quynh and S. Quang [5] have done some work in this direction.

The first purpose of this paper is to generalize Theorem C by omitting the condition $\operatorname{dim} f^{-1}\left(H_{i} \cap H_{j}\right) \leq m-2$. In fact, we get a more general result:

Theorem 1.1. Let f and g be linearly non-degenerate meromorphic mappings of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})$, let $m_{j}(\geq n)(1 \leq j \leq q), k(1 \leq k \leq n)$ be integers, and let $H_{j}(1 \leq j \leq q)$ be hyperplanes in general position such that

$$
\begin{equation*}
\operatorname{dim} f^{-1}\left(\bigcap_{j=1}^{k+1} H_{i_{j}}\right) \leq m-2 \quad \text { for all } 1 \leq i_{1}<\cdots<i_{k+1} \leq q \tag{1.1}
\end{equation*}
$$

Assume that $f(z)=g(z)$ on $\bigcup_{j=1}^{q} \bar{E}_{\left.m_{j}\right)}\left(H_{j}, f\right)$. If $q \geq 2(n+1)+\sum_{i=1}^{q} \frac{2 n}{m_{i}+1}$ and
$\liminf _{r \rightarrow \infty} \sum_{j=1}^{q} N_{\left(f, H_{j}\right), \leq m_{j}}^{1}(r) / \sum_{j=1}^{q} N_{\left(g, H_{j}\right), \leq m_{j}}^{1}(r)>\frac{n k}{q-n-k-1-\sum_{i=1}^{q} \frac{n}{m_{i}+1}}$,
then $f=g$.

Remark. Obviously, Theorem C is a special case of the above theorem when $q=2 n+3, k=1$ and $m_{j}=\infty$ for $1 \leq j \leq q$. When $k=1$, Theorem 1.1 becomes [7, Theorem 1.1].

The condition (1.1) is always satisfied when $k=n$, since the family of hyperplanes is assumed to be in general position. So, the following result is a corollary of Theorem 1.1 when $k=n$.

Corollary 1.2. Let f and g be linearly non-degenerate meromorphic mappings of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})$, let $m_{j}(\geq n)(1 \leq j \leq q)$ be integers and H_{j} $(1 \leq j \leq q)$ be hyperplanes in general position. Assume that $f(z)=g(z)$ on $\bigcup_{j=1}^{q} \bar{E}_{\left.m_{j}\right)}\left(H_{j}, f\right)$. If $q \geq 2(n+1)+\sum_{i=1}^{q} \frac{2 n}{m_{i}+1}$ and

$$
\liminf _{r \rightarrow \infty} \sum_{j=1}^{q} N_{\left(f, H_{j}\right), \leq m_{j}}^{1}(r) / \sum_{j=1}^{q} N_{\left(g, H_{j}\right), \leq m_{j}}^{1}(r)>\frac{n^{2}}{q-2 n-1-\sum_{i=1}^{q} \frac{n}{m_{i}+1}},
$$

then $f=g$.
Remark. In Theorem 1.1 and [7, Theorem 1.1], the condition $q \geq$ $2(n+1)+\sum_{i=1}^{q} \frac{2 n}{m_{i}+1}$ is needed. So, it is natural to ask what will happen if this condition is invalid. However, it seems that the problem is complicated. In the following, we consider the problem for the special case when $m_{j}=l$ for all $1 \leq j \leq q$.

Theorem 1.3. Let f and g be linearly non-degenerate meromorphic mappings of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})$, let $k(1 \leq k \leq n)$ and $l(\geq n)$ be integers and $H_{j}(1 \leq j \leq q)$ be hyperplanes in general position such that

$$
\operatorname{dim} f^{-1}\left(\bigcap_{j=1}^{k+1} H_{i_{j}}\right) \leq m-2 \quad \text { for all } 1 \leq i_{1}<\cdots<i_{k+1} \leq q
$$

Assume that $f(z)=g(z)$ on $\bigcup_{j=1}^{q} \bar{E}_{l)}\left(H_{j}, f\right)$ and

$$
\liminf _{r \rightarrow \infty} \sum_{j=1}^{q} N_{\left(f, H_{j}\right), \leq l}^{1}(r) / \sum_{j=1}^{q} N_{\left(g, H_{j}\right), \leq l}^{1}(r)=A
$$

Then $f=g$ if one of the following conditions holds:
(i) $q \geq 2(n+1)+\frac{2 n(n+1)}{l+1-n}$ and $A>\frac{n k(l+1-n)}{(l+1-n)(q-k)-(l+1)(n+1)}$,
(ii) $q<2(n+1)+\frac{2 n(n+1)}{l+1-n}, A \geq \frac{2 n k}{q-2 k}$ and

$$
q n k(l+1-n)<A[q(l+1-n)(q+n k-2 k)-(q+2 n k-2 k)(l+1)(n+1)] .
$$

Now, we will give an application of the above theorem.
In 2011, S. Quang [9] considered the uniqueness of meromorphic mappings sharing hyperplanes with multiplicities. His result can be described as follows.

TheOrem D. Let f and g be linearly non-degenerate meromorphic mappings of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})$, let l be an integer and $H_{j}(1 \leq j \leq q)$ be $q=2 n+3$ hyperplanes in general position such that $\operatorname{dim} f^{-1}\left(H_{i} \cap H_{j}\right) \leq m-2$ for $i \neq j$. Assume that
(1) $\min \left\{v_{\left(f, H_{j}\right), \leq l}(z), 1\right\}=\min \left\{v_{\left(g, H_{j}\right), \leq l}(z), 1\right\}, \quad 1 \leq j \leq q$,
(2) $f(z)=g(z)$ on $\bigcup_{j=1}^{q} \bar{E}_{l)}\left(H_{j}, f\right)$.

If $l>\frac{n\left(4 n^{2}+11 n+4\right)}{3 n+2}-1$, then $f=g$.
We now apply Theorem 1.3 to prove Theorem D.
From the assumptions of Theorem D , it is obvious that $q=2 n+3, k=1$ and $A=1$.

In order to prove $f=g$, it suffices to show that q, k, A satisfy condition (i) or (ii) in Theorem 1.3 .

If $l+1 \geq 2 n^{2}+3 n$, then a calculation shows that (i) holds.
If $l+1<2 n^{2}+3 n$, then $q<2(n+1)+\frac{2 n(n+1)}{l+1-n}$. It follows from $A=1$ that $1=A \geq \frac{2 n k}{q-2 k}=\frac{2 n}{2 n+1}$. Furthermore, if $l>\frac{n\left(4 n^{2}+8 n+3\right)}{3 n+2}-1$, then $q n k(l+1-n)<A[q(l+1-n)(q+n k-2 k)-(q+2 n k-2 k)(l+1)(n+1)]$. Noting that $l>\frac{n\left(4 n^{2}+11 n+4\right)}{3 n+2}-1$ in Theorem D, we see that (ii) is valid.

This finishes the proof of Theorem D.
In the previous results, such as Theorem A and B, the condition (c) of the introduction is needed, that is, $f(z)=g(z)$ on $\bigcup_{j=1}^{q} f^{-1}\left(H_{j}\right)$. So, it is natural to ask whether this condition can be omitted or the number q can be replaced by a smaller one. The second purpose of the paper is to deal with this problem. Our result is:

Theorem 1.4. Let f and g be linearly non-degenerate meromorphic mappings of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})$, and let $H_{j}(1 \leq j \leq q)$ be $q=2 n+3 h y$ perplanes in general position. Assume that
(1) $v_{\left(f, H_{i}\right)}^{1}(z)=v_{\left(g, H_{i}\right)}^{1}(z)(1 \leq i \leq 2 n+2)$ and $v_{\left(f, H_{2 n+3}\right)}^{n}(z)=v_{\left(g, H_{2 n+3}\right)}^{n}(z)$,
(2) $\operatorname{dim}\left(f^{-1}\left(H_{i}\right) \cap f^{-1}\left(H_{j}\right)\right) \leq m-2$ for all $1 \leq i<j \leq q$,
(3) $f(z)=g(z)$ on $\bigcup_{j=1}^{2 n+2} f^{-1}\left(H_{j}\right)$.

Then $f=g$.
Remark. In Theorem 1.4, condition (3) is weaker than that of the previous theorems such as Theorems A and B, but condition (1) is stronger.

Actually, we obtain a more general result, of which Theorem 1.4 is an immediate consequence when $k=1$.

ThEOREM 1.5. Let f and g be linearly non-degenerate meromorphic mappings of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})$, let $k(1 \leq k \leq n)$ be an integer and H_{j}
$(1 \leq j \leq q)$ be $q=2 k n+2 k+1$ hyperplanes in general position such that

$$
\operatorname{dim} f^{-1}\left(\bigcap_{j=1}^{k+1} H_{i_{j}}\right) \leq m-2 \quad \text { for all } 1 \leq i_{1}<\cdots<i_{k+1} \leq q
$$

Assume that f is linearly non-degenerate and
(1) $v_{\left(f, H_{i}\right)}^{1}(z)=v_{\left(g, H_{i}\right)}^{1}(z)(1 \leq i \leq 2 n+2)$ and $v_{\left(f, H_{i}\right)}^{n}(z)=v_{\left(g, H_{i}\right)}^{n}(z)$ $(2 n+3 \leq i \leq q)$,
(2) $f(z)=g(z)$ on $\bigcup_{j=1}^{2 n+2} f^{-1}\left(H_{j}\right)$.

Then $f=g$.
When $k=n$ in Theorem 1.5, we have the following corollary.
Corollary 1.6. Let f and g be linearly non-degenerate meromorphic mappings of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})$, let $k(1 \leq k \leq n)$ be an integer and $H_{j}(1 \leq$ $j \leq q)$ be $q=2 n^{2}+2 n+1$ hyperplanes in general position. Assume that f is linearly non-degenerate and
(1) $v_{\left(f, H_{i}\right)}^{1}(z)=v_{\left(g, H_{i}\right)}^{1}(z)(1 \leq i \leq 2 n+2)$ and $v_{\left(f, H_{i}\right)}^{n}(z)=v_{\left(g, H_{i}\right)}^{n}(z)$ $(2 n+3 \leq i \leq q)$,
(2) $f(z)=\bar{g}(z)$ on $\bigcup_{j=1}^{2 n+2} f^{-1}\left(H_{j}\right)$.

Then $f=g$.
For a further study of this kind of problems, we pose two questions.
Question 1. In Theorem 1.1 and 1.3 , the condition

$$
\operatorname{dim} f^{-1}\left(\bigcap_{j=1}^{k+1} H_{i_{j}}\right) \leq m-2 \quad \text { for all } 1 \leq i_{1}<\cdots<i_{k+1} \leq q
$$

is needed. We ask whether the results still hold or not if the above condition is weakened to

$$
\operatorname{dim}\left(\bigcap_{j=1}^{k+1} \bar{E}_{\left.m_{i_{j}}\right)}\left(H_{i_{j}}, f\right)\right) \leq m-2 \quad \text { for all } 1 \leq i_{1}<\cdots<i_{k+1} \leq q
$$

Question 2. In Theorems 1.4 and 1.5, we assume that $f(z)=g(z)$ on $\bigcup_{j=1}^{2 n+2} f^{-1}\left(H_{j}\right)$. We wonder whether the number $2 n+2$ can be decreased or not if q does not change.
2. Preliminaries and some lemmas. Set $\|z\|=\left(\left|z_{1}\right|^{2}+\cdots+\left|z_{m}\right|^{2}\right)^{1 / 2}$ for $z=\left(z_{1}, \ldots, z_{m}\right)$ and define

$$
B(r)=\left\{z \in \mathbb{C}^{m}:\|z\|<r\right\}, \quad S(r)=\left\{z \in \mathbb{C}^{m}:\|z\|=r\right\} \quad(0<r<\infty)
$$

and

$$
\begin{aligned}
& \quad v_{m-1}(z)=\left(d d^{c}\|z\|^{2}\right)^{m-1}, \quad \sigma_{m}(z)=d^{c} \log \|z\|^{2} \wedge\left(d d^{c} \log \|z\|^{2}\right)^{m-1} \\
& \text { on } \mathbb{C}^{m} \backslash\{0\} .
\end{aligned}
$$

Let f be a non-constant meromorphic mapping of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})$. We take holomorphic functions f_{0}, \ldots, f_{n} on \mathbb{C}^{m} such that $\mathcal{I}_{f}=\left\{z \in \mathbb{C}^{m}\right.$: $\left.f_{0}(z)=\cdots=f_{n}(z)=0\right\}$ is of dimension at most $m-2$; then $f=\left\{f_{0}, \ldots, f_{n}\right\}$ is called a reduced representation of f. The characteristic function of f is defined as

$$
T_{f}(r)=\int_{S(r)} \log \|f\| \sigma_{m}-\int_{S(1)} \log \|f\| \sigma_{m}
$$

Note that $T_{f}(r)$ is independent of the choice of the reduced representation of f.

For a divisor ν on \mathbb{C}^{m} and positive integers k, p (or $k, p=\infty$), we define some divisors as follows:

$$
\begin{aligned}
\nu^{p}(z) & =\min \{p, \nu(z)\} \\
\nu_{\leq k}^{p}(z) & = \begin{cases}0 & \text { if } \nu(z)>k \\
\nu^{p}(z) & \text { if } \nu(z) \leq k\end{cases} \\
\nu_{>k}^{p}(z) & = \begin{cases}\nu^{p}(z) & \text { if } \nu(z)>k \\
0 & \text { if } \nu(z) \leq k\end{cases}
\end{aligned}
$$

Set

$$
n(t)= \begin{cases}\int_{|\nu| \cap B(t)} \nu(z) v_{m-1} & \text { if } m \geq 2 \\ \sum_{|z| \leq t} \nu(z) & \text { if } m=1\end{cases}
$$

Similarly, define $n^{p}(t), n_{\leq k}^{p}(t), n_{>k}^{p}(t)$. Define the counting function of ν as

$$
N(r, \nu)=\int_{1}^{r} \frac{n(t)}{t^{2 n-1}} d t \quad(1<r<\infty)
$$

Similarly, we also define $N\left(r, \nu^{p}\right), N\left(r, \nu_{\leq k}^{p}\right), N\left(r, \nu_{>k}^{p}\right)$ and denote them by $N^{p}(r, \nu), N_{\leq k}^{p}(r, \nu), N_{>k}^{p}(r, \nu)$, respectively.

Let $\phi: \mathbb{C}^{m} \rightarrow \mathbb{P}^{1}(\mathbb{C})$ be a meromorphic function. Define

$$
\begin{array}{ll}
N_{\phi}(r)=N\left(r, \nu_{\phi}\right), & N_{\phi, \leq k}^{p}(r)=N_{\leq k}^{p}\left(r, \nu_{\phi}\right) \\
N_{\phi}^{p}(r)=N^{p}\left(r, \nu_{\phi}\right), & N_{\phi,>k}^{p}(r)=N_{>k}^{p}\left(r, \nu_{\phi}\right)
\end{array}
$$

In order to prove our results, we recall the second main theorem for meromorphic mappings.

LEMMA $2.1([10])$. Let $f: \mathbb{C}^{m} \rightarrow \mathbb{P}^{n}(\mathbb{C})$ be a linearly non-degenerate meromorphic mapping and H_{1}, \ldots, H_{q} be $q(\geq n+1)$ hyperplanes in general position in $\mathbb{P}^{n}(\mathbb{C})$. Then

$$
\|(q-n-1) T_{f}(r) \leq \sum_{j=1}^{q} N_{\left(f, H_{j}\right)}^{n}(r)+o\left(T_{f}(r)\right)
$$

As usual, the notation " $\| P$ " means that the assertion P holds for all r in $[0, \infty)$ excluding a Borel subset $E \subset[0, \infty)$ with $\int_{E} d r<\infty$.

The following modification of the above lemma is essential to the proof of Theorem 1.3 .

LEMMA $2.2([9])$. Let $f: \mathbb{C}^{m} \rightarrow \mathbb{P}^{n}(\mathbb{C})$ be a linearly non-degenerate meromorphic mapping, let $l \geq n$ be an integer and H_{1}, \ldots, H_{q} be q hyperplanes in general position in $\mathbb{P}^{n}(\mathbb{C})$. Then

$$
\| \frac{(l+1)(q-n-1)-n q}{l+1-n} T_{f}(r) \leq \sum_{j=1}^{q} N_{\left(f, H_{j}\right), \leq l}^{n}(r)+o\left(T_{f}(r)\right)
$$

3. Proof of Theorem 1.1. Suppose that $f \neq g$. From the assumptions, we can easily deduce that

$$
\| T_{f}(r)=O\left(T_{g}(r)\right) \quad \text { and } \quad \| T_{g}(r)=O\left(T_{f}(r)\right)
$$

As in [1], we introduce an equivalence relation on $L:=\{1, \ldots, q\}$ as follows: $i \sim j$ if and only if $\left(f, H_{i}\right) /\left(f, H_{j}\right)-\left(g, H_{i}\right) /\left(g, H_{j}\right)=0$. Let $\left\{L_{1}, \ldots, L_{s}\right\}=L / \sim$. Since $f \neq g$ and $\left\{H_{j}\right\}_{j=1}^{q}$ are in general position, we have $\sharp L_{k} \leq n$ for all $k \in\{1, \ldots, s\}$. Without loss of generality, we assume that $L_{k}:=\left\{i_{k-1}+1, \ldots, i_{k}\right\}(k \in\{1, \ldots, s\})$ where $1=i_{0}<\cdots<i_{s}=q$.

Define $\sigma:\{1, \ldots, q\} \rightarrow\{1, \ldots, q\}$ by

$$
\sigma(i)= \begin{cases}i+n & \text { if } i+n \leq q \\ i+n-q & \text { if } i+n>q\end{cases}
$$

It is easy to see that σ is bijective and $|\sigma(i)-i| \geq n$ (note that $q \geq 2 n$). This implies that i and $\sigma(i)$ belong to distinct sets of $\left\{L_{1}, \ldots, L_{s}\right\}$ and

$$
\frac{\left(f, H_{i}\right)}{\left(f, H_{\sigma(i)}\right)}-\frac{\left(g, H_{i}\right)}{\left(g, H_{\sigma(i)}\right)} \neq 0
$$

Let $P_{i}=\left(f, H_{i}\right)\left(g, H_{\sigma(i)}\right)-\left(g, H_{i}\right)\left(f, H_{\sigma(i)}\right)$. Obviously, $P_{i} \neq 0$. With the Jensen formula, we obtain

$$
N_{P_{i}}(r) \leq T_{f}(r)+T_{g}(r)+O(1)=T(r)+O(1)
$$

where $T(r)=T_{f}(r)+T_{g}(r)$. Then $P=\prod_{i=1}^{q} P_{i} \neq 0$ and $N_{P}(r) \leq q T(r)$ $+O(1)$. Let

$$
S=\bigcup_{1 \leq i_{1}<\cdots<i_{k+1} \leq q} f^{-1}\left(\bigcap_{j=1}^{k+1} H_{i_{j}}\right)
$$

Then S is an analytic set of codimension at least 2 . Take a point z not in $I(f) \cup I(g) \cup S$. We claim that

$$
v_{P}(z) \geq 2 \sum_{i=1}^{q} \min \left\{v_{\left(f, H_{i}\right)}(z), v_{\left(g, H_{i}\right)}(z)\right\}+\frac{q-2 k}{k} \sum_{i=1}^{q} v_{\left(f, H_{i}\right), \leq m_{i}}^{1}(z)
$$

Suppose that z is a zero of some function $\left(f, H_{i}\right)(1 \leq i \leq q)$. Let

$$
I=\left\{1 \leq i \leq q:\left(f, H_{i}\right)(z)=0\right\}, \quad t=\sharp I .
$$

It is clear that $t \leq k$. We now prove the claim by considering two cases.
Case 1: There exists $l \in I$ such that $v_{\left(f, H_{l}\right)}(z) \leq m_{l}$. Assume that $j \in\{1, \ldots, q\} \backslash\left(I \cup \sigma^{-1}(I)\right)$. Noting that $f(\zeta)=g(\zeta)$ on $\bigcup_{j=1}^{q}\left\{\zeta \in \mathbb{C}^{m}:\right.$ $\left.0<v_{\left(f, H_{j}\right)}(\zeta) \leq m_{j}\right\}$, we see that z is a zero of P_{j} of multiplicity at least 1 . So $v_{P_{j}}(z) \geq 1$. Therefore,

$$
\begin{aligned}
v_{p}(z) & \geq 2 \sum_{i \in I} \min \left\{v_{\left(f, H_{i}\right)}(z), v_{\left(g, H_{i}\right)}(z)\right\}+q-2 t \\
& \geq 2 \sum_{i \in I} \min \left\{v_{\left(f, H_{i}\right)}(z), v_{\left(g, H_{i}\right)}(z)\right\}+q-2 k \\
& \geq 2 \sum_{i=1}^{q} \min \left\{v_{\left(f, H_{i}\right)}(z), v_{\left(g, H_{i}\right)}(z)\right\}+\frac{q-2 k}{k} \sum_{i=1}^{q} v_{\left(f, H_{i}\right), \leq m_{i}}^{1}(z) .
\end{aligned}
$$

Thus, the claim holds.
CASE 2: $v_{\left(f, H_{l}\right)}(z) \leq m_{l}$ for no $l \in I$. Then $\sum_{i=1}^{q} v_{\left(f, H_{i}\right), \leq m_{i}}^{1}(z)=0$. Thus,

$$
\begin{aligned}
v_{p}(z) & \geq 2 \sum_{i \in I} \min \left\{v_{\left(f, H_{i}\right)}(z), v_{\left(g, H_{i}\right)}(z)\right\} \\
& \geq 2 \sum_{i=1}^{q} \min \left\{v_{\left(f, H_{i}\right)}(z), v_{\left(g, H_{i}\right)}(z)\right\}+\frac{q-2 k}{k} \sum_{i=1}^{q} v_{\left(f, H_{i}\right), \leq m_{i}}^{1}(z)
\end{aligned}
$$

So, the claim is also valid.
Since $f(z)=g(z)$ on $\bigcup_{j=1}^{q}\left\{z \in \mathbb{C}^{m}: 0<v_{\left(f, H_{j}\right)}(z) \leq m_{j}\right\}$, for $1 \leq i \leq q$ we get $v_{\left(g, H_{i}\right)}(z)>0$ if $0<v_{\left(f, H_{i}\right)}(z) \leq m_{i}$.

Furthermore, we have $\min \left\{v_{\left(f, H_{i}\right)}(z), v_{\left(g, H_{i}\right)}(z)\right\} \geq v_{\left(f, H_{i}\right), \leq m_{i}}^{n}(z)+v_{\left(g, H_{i}\right), \leq m_{i}}^{n}(z)-n v_{\left(g, H_{i}\right), \leq m_{i}}^{1}(z)$.

The claim and the above inequality yield

$$
\begin{align*}
v_{p}(z) \geq & 2 \sum_{i=1}^{q}\left[v_{\left(f, H_{i}\right), \leq m_{i}}^{n}(z)+v_{\left(g, H_{i}\right), \leq m_{i}}^{n}(z)-n v_{\left(g, H_{i}\right), \leq m_{i}}^{1}(z)\right] \tag{3.1}\\
& +\frac{q-2 k}{k} \sum_{i=1}^{q} v_{\left(f, H_{i}\right), \leq m_{i}}^{1}(z) .
\end{align*}
$$

Moreover, it follows from Lemma 2.1 that

$$
\begin{aligned}
& \|(q-n-1) T_{f}(r) \leq \sum_{j=1}^{q} N_{\left(f, H_{j}\right)}^{n}(r)+o\left(T_{f}(r)\right) \\
&=\sum_{j=1}^{q}\left[N_{\left(f, H_{j}\right), \leq m_{j}}^{n}(r)+N_{\left(f, H_{j}\right),>m_{j}}^{n}(r)\right]+o\left(T_{f}(r)\right) \\
& \leq \sum_{j=1}^{q}\left[N_{\left(f, H_{j}\right), \leq m_{j}}^{n}(r)+\frac{n}{m_{j}+1} N_{\left(f, H_{j}\right),>m_{j}}(r)\right]+o\left(T_{f}(r)\right) \\
& \leq \sum_{j=1}^{q}\left[N_{\left(f, H_{j}\right), \leq m_{j}}^{n}(r)+\frac{n}{m_{j}+1} T_{f}(r)\right]+o\left(T_{f}(r)\right)
\end{aligned}
$$

which implies that

$$
\|\left(q-n-1-\sum_{j=1}^{q} \frac{n}{m_{j}+1}\right) T_{f}(r) \leq \sum_{j=1}^{q} N_{\left(f, H_{j}\right), \leq m_{j}}^{n}(r)+o\left(T_{f}(r)\right) .
$$

Integrating both sides of (3.1), we deduce

$$
\begin{aligned}
q T(r) \geq & N_{P}(r) \\
\geq & 2 \sum_{i=1}^{q}\left[N_{\left(f, H_{i}\right), \leq m_{i}}^{n}(r)+N_{\left(g, H_{i}\right), \leq m_{i}}^{n}(r)-n N_{\left(g, H_{i}\right), \leq m_{i}}^{1}(r)\right] \\
& +\frac{q-2 k}{k} \sum_{i=1}^{q} N_{\left(f, H_{i}\right), \leq m_{i}}^{1}(r) \\
\geq & 2\left(q-n-1-\sum_{j=1}^{q} \frac{n}{m_{j}+1}\right) T(r) \\
& +\frac{q-2 k}{k} \sum_{i=1}^{q} N_{\left(f, H_{i}\right), \leq m_{i}}^{1}(r)-2 n \sum_{i=1}^{q} N_{\left(g, H_{i}\right), \leq m_{i}}^{1}(r)+o\left(T_{f}(r)\right),
\end{aligned}
$$

which leads to

$$
\begin{align*}
& \left(q-2 n-2-\sum_{j=1}^{q} \frac{2 n}{m_{j}+1}\right) T(r) \tag{3.2}\\
& \quad \leq-\frac{q-2 k}{k} \sum_{i=1}^{q} N_{\left(f, H_{i}\right), \leq m_{i}}^{1}(r)+2 n \sum_{i=1}^{q} N_{\left(g, H_{i}\right), \leq m_{i}}^{1}(r)+o\left(T_{f}(r)\right)
\end{align*}
$$

We know that, for some $1 \leq j \leq q$, there exists $c \in \mathbb{C}^{n+1} \backslash\{0\}$ such that

$$
F_{f}^{H_{j}, c}-F_{g}^{H_{j}, c}=\frac{\left(f, H_{j}\right)}{(f, c)}-\frac{\left(g, H_{j}\right)}{(g, c)} \neq 0
$$

Since $f(z)=g(z)$ on $\bigcup_{j=1}^{q}\left\{z \in \mathbb{C}^{m}: 0<v_{\left(f, H_{j}\right)}(z) \leq m_{j}\right\}$, we have

$$
F_{f}^{H_{j}, c}-F_{g}^{H_{j}, c}=0
$$

on $\bigcup_{j=1}^{q}\left\{z \in \mathbb{C}^{m}: 0<v_{\left(f, H_{j}\right)}(z) \leq m_{j}\right\}$. Then

$$
\begin{align*}
\| \sum_{i=1}^{q} N_{\left(f, H_{i}\right), \leq m_{i}}^{1}(r) & \leq k N_{F_{f}^{H_{j}, c}-F_{g}^{H_{j}, c}}^{1}(r) \tag{3.3}\\
& \leq k T\left(r, F_{f}^{H_{j}, c}-F_{g}^{H_{j}, c}\right)+O(1) \\
& \leq k T(r)+O(1)
\end{align*}
$$

Combining (3.2) and (3.3) yields

$$
\begin{aligned}
\| \frac{1}{k}\left[q-2 n-2-\sum_{j=1}^{q} \frac{2 n}{m_{j}+1}+q\right. & -2 k] \sum_{i=1}^{q} N_{\left(f, H_{i}\right), \leq m_{i}}^{1}(r) \\
& \leq 2 n \sum_{i=1}^{q} N_{\left(g, H_{i}\right), \leq m_{i}}^{1}(r)+o\left(T_{f}(r)\right)
\end{aligned}
$$

This can be rewritten as
$\liminf _{r \rightarrow \infty} \sum_{j=1}^{q} N_{\left(f, H_{j}\right), \leq m_{j}}^{1}(r) / \sum_{j=1}^{q} N_{\left(g, H_{j}\right), \leq m_{j}}^{1}(r) \leq \frac{n k}{q-n-k-1-\sum_{i=1}^{q} \frac{n}{m_{i}+1}}$,
which contradicts the assumption.
4. The proof of Theorem 1.3. Suppose that $f \neq g$. Then, with the same discussion as in Theorem 1.1, we can deduce that

$$
\begin{align*}
v_{p}(z) \geq & 2 \sum_{i=1}^{q}\left[v_{\left(f, H_{i}\right), \leq l}^{n}(z)+v_{\left(g, H_{i}\right), \leq l}^{n}(z)-n v_{\left(g, H_{i}\right), \leq l}^{1}(z)\right] \tag{4.1}\\
& +\frac{q-2 k}{k} \sum_{i=1}^{q} v_{\left(f, H_{i}\right), \leq l}^{1}(z)
\end{align*}
$$

By Lemma 2.2 integrating both sides of 4.1), we have
(4.2) $\quad q T(r) \geq 2 \sum_{i=1}^{q}\left[N_{\left(f, H_{i}\right), \leq l}^{n}(r)+N_{\left(g, H_{i}\right), \leq l}^{n}(r)-n N_{\left(g, H_{i}\right), \leq l}^{1}(r)\right]$

$$
\begin{aligned}
& +\frac{q-2 k}{k} \sum_{i=1}^{q} N_{\left(f, H_{i}\right), \leq l}^{1}(r) \\
\geq & 2 \sum_{i=1}^{q}\left[N_{\left(f, H_{i}\right), \leq l}^{n}(r)+N_{\left(g, H_{i}\right), \leq l}^{n}(r)\right]+\frac{q-2 k}{k} \sum_{i=1}^{q} N_{\left(f, H_{i}\right), \leq l}^{1}(r) \\
& -2 n \sum_{i=1}^{q} N_{\left(g, H_{i}\right), \leq l}^{1}(r)
\end{aligned}
$$

$$
\begin{aligned}
\geq & 2 \frac{(l+1)(q-n-1)-n q}{l+1-n} T(r)+\frac{q-2 k}{k} \sum_{i=1}^{q} N_{\left(f, H_{i}\right), \leq l}^{1}(r) \\
& -2 n \sum_{i=1}^{q} N_{\left(g, H_{i}\right), \leq l}^{1}(r)+o\left(T_{f}(r)\right)
\end{aligned}
$$

We consider two cases.
CASE 1: $q \leq 2 \frac{(l+1)(q-n-1)-n q}{l+1-n}$. This is equivalent to

$$
q>\frac{2(l+1)(n+1)}{l+1-n}=2(n+1)+\frac{2 n(n+1)}{l+1-n}
$$

Then it follows from (4.2) that

$$
\begin{align*}
& \frac{(l+1-n) q-2(l+1)(n+1)}{l+1-n} T(r) \tag{4.3}\\
& \quad \leq-\frac{q-2 k}{k} \sum_{i=1}^{q} N_{\left(f, H_{i}\right), \leq l}^{1}(r)+2 n \sum_{i=1}^{q} N_{\left(g, H_{i}\right), \leq l}^{1}(r)
\end{align*}
$$

As in the proof in Theorem 1.1, we have

$$
\begin{equation*}
\| \sum_{i=1}^{q} N_{\left(f, H_{i}\right), \leq l}^{1}(r) \leq k T(r)+O(1) \tag{4.4}
\end{equation*}
$$

Combining (4.3) and (4.4) yields

$$
\begin{aligned}
\|\left[\frac{(l+1-n) q-2(l+1)(n+1)}{l+1-n}+q-2 k\right] & \sum_{i=1}^{q} N_{\left(f, H_{i}\right), \leq l}^{1}(r) \\
& \leq 2 n k \sum_{i=1}^{q} N_{\left(g, H_{i}\right), \leq l}^{1}(r) .
\end{aligned}
$$

From the above inequality, we derive that

$$
\begin{aligned}
& \liminf _{r \rightarrow \infty} \sum_{j=1}^{q} N_{\left(f, H_{j}\right), \leq l}^{1}(r) / \sum_{j=1}^{q} N_{\left(g, H_{j}\right), \leq l}^{1}(r) \\
& \leq \frac{n k(l+1-n)}{(l+1-n)(q-k)-(l+1)(n+1)}
\end{aligned}
$$

which contradicts the assumption.
CASE 2: $q<\frac{2(l+1)(n+1)}{l+1-n}=2(n+1)+\frac{2 n(n+1)}{l+1-n}$. Since

$$
\liminf _{r \rightarrow \infty} \sum_{j=1}^{q} N_{\left(f, H_{j}\right), \leq l}^{1}(r) / \sum_{j=1}^{q} N_{\left(g, H_{j}\right), \leq l}^{1}(r)=A
$$

for any positive constant ε there exists a positive constant r_{0} such that $\sum_{j=1}^{n+1} N_{\left(f, H_{j}\right), \leq l}^{1}(r) \geq(A-\varepsilon) \sum_{j=1}^{n+1} N_{\left(g, H_{j}\right), \leq l}^{1}(r)$ for $r \geq r_{0}$.

Using (4.2), we can deduce that

$$
\begin{aligned}
q T(r) \geq & 2 \sum_{i=1}^{q}\left[N_{\left(f, H_{i}\right), \leq l}^{n}(r)+N_{\left(g, H_{i}\right), \leq l}^{n}(r)\right]-\frac{q-2 k+2 n k}{(1+A) k} \varepsilon \sum_{i=1}^{q} N_{\left(g, H_{i}\right), \leq l}^{1}(r) \\
& \left.+\frac{(q-2 k) A-2 n k}{(1+A) n k} \sum_{i=1}^{q} N_{\left(f, H_{i}\right), \leq l}^{n}(r)+N_{\left(g, H_{i}\right), \leq l}^{n}(r)\right] \\
\geq & {\left[2+\frac{(q-2 k) A-2 n k}{(1+A) n k}\right] \frac{(l+1)(q-n-1)-n q}{l+1-n} T(r)+o\left(T_{f}(r)\right) } \\
& -\frac{q-2 k+2 n k}{(1+A) n k} \varepsilon \sum_{i=1}^{q} N_{\left(g, H_{i}\right), \leq l}^{1}(r)
\end{aligned}
$$

which indicates that

$$
\begin{aligned}
& q \frac{q-2 k+2 n k}{(1+A) k} \varepsilon T(r) \geq \frac{q-2 k+2 n k}{(1+A) k} \varepsilon \sum_{i=1}^{q} N_{\left(g, H_{i}\right), \leq l}^{1}(r) \\
& \quad \geq\left\{\left[2+\frac{(q-2 k) A-2 n k}{(1+A) n k}\right] \frac{(l+1)(q-n-1)-n q}{l+1-n}-q\right\} T(r)+o\left(T_{f}(r)\right) \\
& \quad \geq \frac{B}{(l+1-n)(1+A) n k} T(r)+o\left(T_{f}(r)\right)
\end{aligned}
$$

where $B=A[q(l+1-n)(q+n k-2 k)-(q+2 n k-2 k)(l+1)(n+1)]-$ $q n k(l+1-n)$.

Choosing ε small enough, we can easily obtain a contradiction from the above inequality.
5. The proof of Theorem 1.5. Suppose that $f \neq g$. We repeat verbatim the proof of Theorem 1.1 until the definition of the set S, which is again an analytic set of codimension at least 2 .

Take a point $z \notin I(f) \cup I(g) \cup S$. We now claim that

$$
\begin{align*}
v_{P}(z) \geq & 2 \sum_{i=1}^{2 n+2}\left[v_{\left(f, H_{i}\right)}^{n}(z)+v_{\left(g, H_{i}\right)}^{n}(z)-n v_{\left(f, H_{i}\right)}^{1}(z)\right] \tag{5.1}\\
& +\sum_{i=2 n+3}^{q}\left[v_{\left(f, H_{i}\right)}^{n}(z)+v_{\left(g, H_{i}\right)}^{n}(z)\right]+\frac{q-2 k}{k} \sum_{i=1}^{2 n+2} v_{\left(f, H_{i}\right)}^{1}(z)
\end{align*}
$$

Assume that z is a zero of some function $\left(f, H_{i}\right)(1 \leq i \leq q)$. Let

$$
\begin{array}{ll}
I=\left\{1 \leq i \leq 2 n+2:\left(f, H_{i}\right)(z)=0\right\}, & t=\sharp I \\
J=\left\{2 n+3 \leq i \leq q:\left(f, H_{i}\right)(z)=0\right\}, & s=\sharp J .
\end{array}
$$

Clearly, $1 \leq t+s \leq k$. We now prove the claim by distinguishing two cases.

Case 1: $I=\emptyset$. Then

$$
\sum_{i=1}^{2 n+2} v_{\left(f, H_{i}\right)}^{1}(z)=0, \quad 2 \sum_{i=1}^{2 n+2}\left[v_{\left(f, H_{i}\right)}^{n}(z)+v_{\left(g, H_{i}\right)}^{n}(z)-n v_{\left(f, H_{i}\right)}^{1}(z)\right]=0
$$

Furthermore, we have

$$
v_{p}(z) \geq 2 \sum_{i \in J} v_{\left(f, H_{i}\right)}^{n}(z)=\sum_{i=2 n+3}^{q}\left[v_{\left(f, H_{i}\right)}^{n}(z)+v_{\left(g, H_{i}\right)}^{n}(z)\right]
$$

Thus, the claim holds.
CASE 2: $I \neq \emptyset$. Suppose that $j \in\{1, \ldots, q\} \backslash\left[I \cup J \cup \sigma^{-1}(I \cup J)\right]$. Since $f(\zeta)=g(\zeta)$ on $\bigcup_{j=1}^{2 n+2} f^{-1}\left(H_{j}\right), z$ is a zero point of P_{j} with multiplicity at least 1 . So $v_{P_{j}}(z) \geq 1$.

If $i \in\{1, \ldots, 2 n+2\}$, then

$$
\min \left\{v_{\left(f, H_{i}\right)}(z), v_{\left(g, H_{i}\right)}(z)\right\} \geq v_{\left(f, H_{i}\right)}^{n}(z)+v_{\left(g, H_{i}\right)}^{n}(z)-n v_{\left(f, H_{i}\right)}^{1}(z)
$$

If $i \in\{2 n+3, \ldots, q\}$, then

$$
\min \left\{v_{\left(f, H_{i}\right)}(z), v_{\left(g, H_{i}\right)}(z)\right\} \geq v_{\left(f, H_{i}\right)}^{n}(z)
$$

It follows that

$$
\begin{aligned}
v_{p}(z) \geq & 2 \sum_{i \in I} \min \left\{v_{\left(f, H_{i}\right)}(z), v_{\left(g, H_{i}\right)}(z)\right\}+2 \sum_{i \in J} \min \left\{v_{\left(f, H_{i}\right)}(z), v_{\left(g, H_{i}\right)}(z)\right\} \\
& +q-2(l+s) \\
\geq & 2 \sum_{i=1}^{2 n+2}\left[v_{\left(f, H_{i}\right)}^{n}(z)+v_{\left(g, H_{i}\right)}^{n}(z)-n v_{\left(f, H_{i}\right)}^{1}(z)\right]+2 \sum_{i \in J} v_{\left(f, H_{i}\right)}^{n}(z)+q-2 k \\
\geq & 2 \sum_{i=1}^{2 n+2}\left[v_{\left(f, H_{i}\right)}^{n}(z)+v_{\left(g, H_{i}\right)}^{n}(z)-n v_{\left(f, H_{i}\right)}^{1}(z)\right] \\
& +\sum_{i=2 n+3}^{q}\left[v_{\left(f, H_{i}\right)}^{n}(z)+v_{\left(g, H_{i}\right)}^{n}(z)\right]+\frac{q-2 k}{k} \sum_{i=1}^{2 n+2} v_{\left(f, H_{i}\right)}^{1}(z)
\end{aligned}
$$

Thus, the claim holds.
By the claim, we have

$$
\begin{aligned}
v_{P}(z) \geq & \sum_{i=1}^{q}\left[v_{\left(f, H_{i}\right)}^{n}(z)+v_{\left(g, H_{i}\right)}^{n}(z)\right]+\sum_{i=1}^{2 n+2}\left[v_{\left(f, H_{i}\right)}^{n}(z)+v_{\left(g, H_{i}\right)}^{n}(z)\right] \\
& +\frac{q-2 k-2 n k}{k} \sum_{i=1}^{2 n+2} v_{\left(f, H_{i}\right)}^{1}(z)
\end{aligned}
$$

By integrating both sides of the above inequality, we get

$$
\begin{aligned}
q T(r) \geq & N_{p}(r) \\
\geq & \sum_{i=1}^{q}\left[N_{\left(f, H_{i}\right)}^{n}(r)+N_{\left(g, H_{i}\right)}^{n}(r)\right]+\sum_{i=1}^{2 n+2}\left[N_{\left(f, H_{i}\right)}^{n}(r)+N_{\left(g, H_{i}\right)}^{n}(r)\right] \\
& +\frac{q-2 k-2 k n}{k} \sum_{i=1}^{2 n+2} N_{\left(f, H_{i}\right)}^{1}(r) \\
\geq & (q-n-1) T(r)+(2 n+2-n-1) T(r) \\
& +\frac{q-2 k-2 k n}{k} \sum_{i=1}^{2 n+2} N_{\left(f, H_{i}\right)}^{1}(r)+o\left(T_{f}(r)\right)
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\sum_{i=1}^{2 n+2} N_{\left(f, H_{i}\right)}^{1}(r)=o\left(T_{f}(r)\right) \tag{5.2}
\end{equation*}
$$

By combining (5.2) and Lemma 2.1, we can easily deduce a contradiction.
Acknowledgements. We are grateful to the reviewers for their helpful comments and suggestions. The paper was supported by the Natural Science Foundation of Shandong Province Youth Fund Project (ZR2012AQ021) and the Fundamental Research Funds for the Central Universities (12CX04080A).

References

[1] Z. Chen and Q. Yan, Uniqueness theorem of meromorphic mappings into $\mathbb{P}^{N}(\mathbb{C})$ sharing $2 N+3$ hyperplanes regardless of multiplicities, Int. J. Math. 20 (2009), 717-726.
[2] Z. Chen and Q. Yan, A note on uniqueness problem for meromorphic mappings with $2 N+3$ hyperplanes, Sci. China Math. 53 (2010), 2657-2663.
[3] H. Fujimoto, The uniqueness problem of meromorphic maps into the complex projective space, Nagoya Math. J. 58 (1975), 1-23.
[4] H. Fujimoto, Uniqueness problem with truncated multiplicities in value distribution theory, Nagoya Math. J. 152 (1998), 131-152.
[5] H. Giang, L. Quynh and S. Quang, Uniqueness theorems for meromorphic mappings sharing few hyperplanes, J. Math. Anal. Appl. 393 (2012), 445-456.
[6] S. Ji, Uniqueness problem without multiplicities in value distribution theory, Pacific J. Math. 135 (1988), 323-348.
[7] F. Lü, The uniqueness problem of meromorphic mappings with truncated multiplicities, Chin. Ann. Math. (Ser A) 33 (2012), 1-6.
[8] R. Nevanlinna, Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen, Acta Math. 48 (1926), 367-391.
[9] S. Quang, Unicity of meromorphic mappings sharing few hyperplanes, Ann. Polon. Math. 102 (2011), 255-270.
[10] M. Ru, Nevanlinna Theory and its Relation to Diophantine Approximation, World Sci., Singapore, 2001.
[11] L. Smiley, Geometric conditions for unicity of holomorphic curves, in: Contemp. Math. 25, Amer. Math. Soc., 1983, 149-154.

Feng Lü
College of Science
China University of Petroleum
Qingdao, Shandong, 266580, P.R. China
E-mail: lvfeng18@gmail.com

Received 27.7.2013
and in final form 3.10.2013

[^0]: 2010 Mathematics Subject Classification: Primary 32H30.
 Key words and phrases: meromorphic mapping, truncated multiplicities, uniqueness theorem, hyperplane, Nevanlinna theory.

