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Finiteness problem for meromorphic
mappings sharing n+ 3 hyperplanes of Pn(C)

by Si Duc Quang (Hanoi)

Abstract. We prove some finiteness theorems for differential nondegenerate mero-
morphic mappings of Cm into Pn(C) which share n + 3 hyperplanes.

1. Introduction. Using the Second Main Theorem of Value Distribu-
tion Theory and Borel’s lemma, R. Nevanlinna [N] proved that for two non-
constant meromorphic functions f and g on the complex plane C, if they
have the same inverse images for five distinct values then f ≡ g, and that
g is a special type of linear fractional transformation of f if they have the
same inverse images, counted with multiplicities, for four distinct values.

In 1981, Drouilhet considered the results of Nevanlinna for higher di-
mensions and differential nondegenerate meromorphic mappings. He proved
the following uniqueness theorem.

Theorem 1.1 ([D, Theorem 4.2]). Let f, g : Cm → Pn(C) be differential
nondegenerate meromorphic maps with m ≥ n. Let A be a hypersurface of
degree at least n + 4 in Pn(C) having normal crossings. Suppose f−1(A) =
g−1(A) as point sets and f and g agree at all points of f−1(A) lying in their
common domain of determinacy. Suppose either M = Cm or f and g are
transcendental. Then f = g.

Then a question arises naturally: What about the case where the degree
of A is n+ 3?

We emphasize that for the case of linearly nondegenerate meromorphic
mappings, in the best results available at present, given by Chen–Yan [CY]
and Quang [Q], the authors just considered the case where the hypersurface
A is a union of 2n+ 3 hyperplanes in general position. Also their techniques
of proof do not work for less than 2n+ 3 hyperplanes.
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The purpose of this paper is to give a positive answer to the above
question in a particular case where the hypersurface A is a union of n + 3
hyperplanes.

Let f be a differential nondegenerate meromorphic mapping of Cm into
Pn(C) (m ≥ n) and let H1, . . . ,Hq be q hyperplanes of Pn(C) in general
position. Let d be a positive integer. We denote by G(f, {Hi}qi=1, d) the set
of all differential nondegenerate meromorphic mappings g of Cm into Pn(C)
which satisfy the following two conditions:

(i) min{ν0(f,Hi)(z), d} = min{ν0(g,Hi)(z), d} for all 1 ≤ i ≤ q, z ∈ Cm,

(ii) f = g on
⋃q
i=1 f

−1(Hi).

We will prove the following.

Theorem 1.2. Let f be a differential nondegenerate meromorphic map-
pings of Cm into Pn(C) (m ≥ n) and let H1, . . . ,Hn+3 be n+ 3 hyperplanes
of Pn(C) in general position. Then the set G(f, {Hi}n+3

i=1 , 2) contains at most
two elements.

Theorem 1.3. Let f and H1, . . . ,Hn+3 be as in Theorem 1.2. Assume
that

dim
(
f−1(Hi) ∩ f−1(Hj)

)
≤ m− 2 for all 1 ≤ i < j ≤ n+ 3.

If n ≥ 2, then the set G(f, {Hi}n+3
i=1 , 1) contains at most two elements.

Theorem 1.4. Let f and H1, . . . ,Hn+3 be as in Theorem 1.2. Let f1, f2, f3
be in G(f, {Hi}n+3

i=1 , 1). Assume that dim f−1(H1 ∩
⋃n+3
i=2 Hi) ≤ m − 2 and

min{ν(fs,H1)(z), 2} = min{ν(ft,H1)(z), 2} for all 1 ≤ s, t ≤ 3 and z ∈
f−1(H1). Then f1 = f2 or f2 = f3 or f3 = f1.

2. Preliminaries

(a) For z = (z1, . . . , zm) ∈ Cm, we set ‖z‖ = (
∑m

j=1 |zj |2)1/2 and define

B(r) = {z ∈ Cm : ‖z‖ < r}, Γ (r) = {z ∈ Cm : ‖z‖ = r},

dc =

√
−1

4π
(∂ − ∂), σ = (ddc‖z‖2)m−1,

η = dclog‖z‖2 ∧ (ddclog‖z‖)m−1.

Denote by Mer(Cm) the set of all meromorphic functions on Cm. A di-
visor E on Cm is given by a formal sum E =

∑
µνXν , with {Xν} is

a locally family of distinct irreducible analytic hypersurfaces in Cm and
µν ∈ Z. We define the support of E by Supp(E) =

⋃
ν 6=0Xν . Sometimes we

identify the divisor E with the function E(z) from Cm into Z defined by
E(z) :=

∑
Xν3z µν .
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Let k be a positive integer or +∞. We define the divisor E
[k]
>t by

E
[k]
>t :=

∑
µν>t

min{µν , k}Xν .

and the truncated counting function to level k of E by

N
[k]
>t (r, E) :=

r�

1

n
[k]
>t(t, E)

t2m−1
dt (1 < r <∞),

where

n
[k]
>t(t, E) :=


	

Supp(E)∩B(t)

E
[k]
>t · σ if m ≥ 2,∑

|z|≤t
E

[k]
>t(z) if m = 2.

We omit [k] (resp. >t) if k = +∞ (resp. t = 0).
An analytic hypersurface E of Cm may be considered as a reduced divi-

sor; we then denote by N(r, E) its counting function.
For two divisors E1, E2, we define the divisor min{E1, E2} by setting

min{E1, E2}(z) = min{E1(z), E2(z)}.
(b) Let F be a nonzero holomorphic function on Cm. For a multiindex

α = (α1, . . . , αm) of nonnegative integers, we set |α| = α1 + · · · + αm and
DαF = ∂|α|F/∂α1z1 · · · ∂αmzm. We define the zero divisor of F as follows:

ν0F (a) = max{p : DαF (a) = 0 for all α with |α| < p}.
Let ϕ be a nonzero meromorphic function on Cm. For each a ∈ Cm, we

choose nonzero holomorphic functions F and G on a neighborhood U of a
such that ϕ = F/G on U and dim(F−1(0)∩G−1(0)) ≤ m− 2 and we define
the zero (resp. pole) divisor of ϕ by ν0ϕ(a) = ν0F (a) (resp. ν∞ϕ (a) = ν0G(a))

and νϕ(a) = ν0ϕ(a)− ν∞ϕ (a).
We have the following Jensen formula:

N(r, ν0ϕ)−N(r, ν∞ϕ ) =
�

Γ (r)

log|ϕ|η −
�

Γ (1)

log|ϕ|η.(2.1)

For convenience, we will writeNϕ(r) andN
[k]
ϕ,>t(r) forN(r, ν0ϕ) andN

[k]
>t (r, ν

0
ϕ)

respectively.
We denote by MCm the field of all meromorphic functions on Cm.

(c) Let f be a meromorphic mapping of Cm into Pn(C), (m ≥ n). We
say that f is differential nondegenerate if df has maximal rank. For any
homogeneous coordinates (w0 : · · · : wn) of Pn(C), we take a reduced rep-
resentation f = (f0 : · · · : fn), which means that each fi is a holomorphic
function on Cm and f(z) = (f0(z) : · · · : fn(z)) outside the analytic set
I(f) := {z : f0(z) = · · · = fn(z) = 0} of codimension ≥ 2.



198 S. D. Quang

Denote by Ω the Fubini–Study form of Pn(C). The characteristic func-
tion of f (with respect to Ω) is defined by

Tf (r) :=

r�

1

dt

t2m−1

�

B(t)

f∗Ω ∧ σ, 1 < r <∞.

By Jensen’s formula we have

Tf (r) =
�

Γ (r)

log ‖f‖ η +O(1),(2.2)

where ‖f‖ = max{|f0|, . . . , |fn|}.
(d) For a meromorphic function ϕ on Cm, the proximity function m(r, ϕ)

is defined by

m(r, ϕ) =
�

Γ (r)

log+ |ϕ| η,

where log+ x = max{log x, 0} for x ≥ 0. The Nevanlinna characteristic
function is defined by

T (r, ϕ) = N(r, ν∞ϕ ) +m(r, ϕ).

If we regard ϕ as a meromorphic mapping of Cm into P1(C), then

Tϕ(r) = T (r, ϕ) +O(1).

(e) LetH be a hyperplane in Pn(C) given byH={a0ω0 + · · ·+ anωn= 0},
where (a0, . . . , an) 6= (0, . . . , 0). We set (f,H) =

∑n
i=0 aifi. We define the

proximity function of f with respect to H by

mf (r,H) =
�

Γ (r)

log
‖f‖ · ‖H‖
|(f,H)|

η −
�

Γ (1)

log
‖f‖ · ‖H‖
|(f,H)|

η,

where ‖H‖ = (
∑n

i=0 |ai|2)1/2.
Theorem 2.1 (The first main theorem). Let f : Cm → Pn(C) be a mero-

morphic mapping and H be a hyperplane in Pn(C). Assume that f(Cm) 6⊂ H.
Then

Tf (r) = N(r, ν0(f,H)) +mf (r,H) +O(1) (r > 1).(2.3)

Theorem 2.2 (Lemma on logarithmic derivative). Let f be a nonzero
meromorphic function on Cm. Then∥∥∥∥ m(r, Dα(f)

f

)
= O(log+ Tf (r)) (α ∈ Zm+ ).(2.4)

As usual, “‖ P” means the assertion P holds for all r ∈ (1,∞) off a finite
Lebesgue measure subset of (1,∞).

Let {Hi}qi=1 be q hyperplanes in Pn(C). They are said to be in general
position if

⋂n
j=0Hij = ∅ for any 1 ≤ i0 < · · · < in ≤ q.
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We now state the known result on the Second Main Theorem for differ-
ential nondegenerate meromorphic mappings.

Theorem 2.3 (Carlson–Griffiths [CG], Shiffman [Sh], Noguchi [Ng],
Drouilhet [D]). Let f be a differential nondegenerate meromorphic map-
ping of Cm into Pn(C) (m ≥ n). Let {Hi}qi=1 be q hyperplanes in Pn(C) in
general position. Then

‖ (q − n− 1)Tf (r) ≤ N [1](r, f∗A) + o(Tf (r)),

where A is the divisor
∑q

i=1Hi.

3. Some lemmas. Let f be a differential nondegenerate meromorphic
mapping of Cm into Pn(C) (m ≥ n) and let H1, . . . ,Hq be q hyperplanes
in Pn(C) in general position. For each g ∈ G(f, {Hi}qi=1, 1), it is easy to see
that if q ≥ n+ 2 then

I(g) =

q⋂
i=1

g−1(Hi) =

q⋂
i=1

f−1(Hi) = I(f).

Let f1, f2, f3 ∈ G(f, {Hi}qi=1, 1). Assume that each fk has a reduced
representation

fk := (fk0 : · · · : fkn) (1 ≤ k ≤ 3).

We now introduce some notations which will be used throughout this
paper.

We denote by Aij , Bij the hypersurfaces in Cm defined by

Aij =
⋃
{α: irreducible hypersurface ⊂ f−1(Hi) ∩ f−1(Hj)},

Bij =
⋃
{α: irreducible hypersurface ⊂ f−1(Hi) \ f−1(Hj)}.

We set T (r) :=
∑3

k=1 Tfk(r).

For each c = (c0, . . . , cn) ∈ Cn+1 \ {0}, we denote by Hc the hyperplane
{c0ω0 + · · ·+ cnωn = 0} and put

(fk, Hc) :=

n∑
i=0

cifki (1 ≤ k ≤ 3).

For i ∈ {1, . . . , q}, let

Vi = ((f1, Hi), (f2, Hi), (f3, Hi)) ∈M3
Cm .

We write

• Vi ≈ Vj if
(f1, Hi)

(f1, Hj)
=

(f2, Hi)

(f2, Hj)
=

(f3, Hi)

(f3, Hj)
,

otherwise we write Vi 6≈ Vj ,
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• Vi ∼ Vj if there exists a permutation {k, t, s} of {1, 2, 3} so that
(fk, Hi)

(fk, Hj)
=

(ft, Hi)

(ft, Hj)
6= (fs, Hi)

(fs, Hj)
,

• Vi � Vj if
(f1, Hi)

(f1, Hj)
6= (f2, Hi)

(f2, Hj)
6= (f3, Hi)

(f3, Hj)
6= (f1, Hi)

(f1, Hj)
.

We decompose the set of indices {1, . . . , q} into disjoint sets as follows:

(i) {1, . . . , q} = I1 ∪ · · · ∪ Ik,
(ii) Vi ≈ Vj for all i, j ∈ It (1 ≤ t ≤ k),

(iii) Vi 6≈ Vj for all i ∈ It, j ∈ Is (1 ≤ t < s ≤ k).

(3.1)

We set I({Hi}qi=1; f1, f2, f3) = k, the number of sets in the above partition
of {1, . . . , q}.

Lemma 3.1. If q ≥ n+ 2 and I(f1, f2, f3) ≤ 2 then f1 = f2 = f3.

Proof. If I(f1, f2, f3) = 1, then the conclusion is clear. Now suppose that
I(f1, f2, f3) = 2 and f1 6= f2.

Let I1, I2 be two disjoint sets in the partition of {1, . . . , q} as in (3.1).
By changing the indices if necessary, we may assume that I1 = {1, . . . , l}
and I2 = {l + 1, . . . , q}, where l ≤ q − 1. If ]I1 = l ≥ n + 1 then f1 = f2,
contrary to assumption. Therefore l ≤ n.

Without loss of generality, we may assume that the hyperplanes Hi (1 ≤
i ≤ n + 2) are given by Hi = {ωi−1 = 0} (1 ≤ i ≤ n + 1) and Hn+2 =
{−ω0 − · · · − ωn = 0}. Then

n+2∑
i=1

(fs, Hi) = 0 (s = 1, 2).(3.2)

We set

h =
(f1, H1)

(f2, H1)
and g =

(f1, Hl+1)

(f2, Hl+1)
.

Since f1 6= f2, we have h 6= g. From (3.2), it follows that

h(f2, H1) + · · ·+ h(f2, Hl) + g(f2, Hl+1) + · · ·+ g(f2, Hn+2) = 0.

Thus

(h− g)((f2, H1) + · · ·+ (f2, Hl)) = 0,

and so

f20 + f21 + · · ·+ f2(l−1) = 0.

This contradicts the differential nondegeneracy of f2. Hence f1 = f2.

Similarly, we have f1 = f2 = f3.
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Denote by C the set of all c ∈ Cn+1 \ {0} such that

(i) dim{z ∈ Cm : (fk, Hi)(z) = (fk, Hc)(z) = 0} ≤ m − 2 (1 ≤ i ≤ q,
1 ≤ k ≤ 3),

(ii) {H1, . . . ,Hq, Hc} are in general position.

Lemma 3.2. C is dense in Cn+1.

Proof. Denote by C1 the set of all c ∈ Cn+1 \{0} which satisfy (i). Then,
by [J, Lemma 5.1], C1 is dense in Cn+1.

For I = {i1, . . . , in} ⊂ {1, . . . , q} with ]I = n, define a holomorphic
function TI on Cn+1 by setting TI(c) := det(aijk, ck), where 1 ≤ j ≤ n, 0 ≤
k ≤ n. It is easy to see that TI 6≡ 0. Thus, S =

⋂
I T
−1
I {0} is an analytic set

of codimension one in Cn+1.

Therefore, C = C1 \ S is dense in Cn+1.

Lemma 3.3 (see [Fu98]). For each c ∈ Cn\{0}, set F isc = (fs, Hi)/(fs, c)
(we will write F isj for F isc if Hc = Hj). Then TF isc (r) ≤ Tfs(r) + o(T (r)).

Lemma 3.4. Let q = n + 3 and let f1, f2 be as above. Suppose that
f1 6= f2. Then:

(i) ‖ N [1]
(f,Hi)

(r) = N(r,min{ν0(f1,Hi), ν
0
(f2,Hi)

})+o(T (r)) (1 ≤ i ≤ n+3),

(ii) ‖ Tf1(r) = Tf2(r) + o(T (r)) = 1
2N

[1](r, f∗A) + o(T (r)), where A =
H1 + · · ·+Hq,

(iii) if ‖ (f1,Hi)
(f1,Hj)

= (f2,Hi)
(f2,Hj)

then ‖ N [1](r,Bij) = N [1](r,Bji) + o(T (r)) =

o(T (r)),

(iv) if ‖ (f1,Hi)
(f1,Hj)

6= (f2,Hi)
(f2,Hj)

then ‖ N [1](r,Aij) = o(T (r)).

Proof. (i)–(iii) Fix i ∈ {1, . . . , n + 3}. Since f 6= g, there exists c =
(c0, . . . , cn) ∈ C such that

Pic := (f1, Hi)(f2, Hc)− (f1, Hc)(f2, Hi) 6= 0.

For z ∈ Cm \ I(f), it is easy to see that

• if z ∈ Supp f∗A \ f−1(Hi) then ν0Pic(z) ≥ 1, since f1(z) = f2(z),

• if z ∈ f−1(Hi) then ν0Pic(z) ≥ min{ν0(f1,Hi)(z), ν
0
(f2,Hi)

(z)}.

This yields

ν0Pic(z) ≥ min{ν0(f1,Hi)(z), ν
0
(f2,Hi)

(z)}+ min{f∗A(z), 1}−min{ν0(f,Hi)(z), 1}.

Integrating, we obtain

NPic(z) ≥ N(r,min{ν0(f1,Hi), ν
0
(f2,Hi)

}) +N [1](r, f∗A)−N [1]
(f,Hi)

(r).(3.3)
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On the other hand, by Jensen’s formula and the definition of the character-
istic function,

NPic(r) =
�

Γ (r)

log |Pic| η +O(1)(3.4)

≤
�

Γ (r)

(
log(|(f1, c)|2 + |(f1, Hi)|2)1/2

+ log(|(f2, c)|2 + |(f2, Hi)|2)1/2
)
η +O(1)

≤ Tf1(r) + Tf2(r) + o(T (r)).

By the Second Main Theorem, we also have

‖ Tfs(r) ≤ 1
2N

[1](r, f∗A) + o(T (r)) (1 ≤ s ≤ 2).(3.5)

Combining (3.3)–(3.5) with N(r,min{ν0(f1,Hi), ν
0
(f2,Hi)

}) ≥ N [1]
(f,Hi)

(r), we ob-

tain

‖ N(r,min{ν0(f1,Hi), ν
0
(f2,Hi)

}) = N
[1]
(f,Hi)

(r) + o(T (r)),

‖ Tfs(r) = 1
2NPic(r) + o(T (r)) = 1

2N
[1](r, f∗A) (1 ≤ s ≤ 2).

(3.6)

Thus (i) and (ii) are proved.

If there is an index j such that ‖ (f1,Hi)
(f1,Hj)

= (f2,Hi)
(f2,Hj)

, then we see that:

• If z ∈ Supp f∗A \Bij then ν0Pic(z) ≥ 1, since f(z) = g(z).

• If z ∈ Bij \ f−1(Hj), we rewrite Pic as follows:

Pic =
(f1, Hi)

(f1, Hj)

(
(f1, Hj)(f2, Hc)− (f1, Hc)(f2, Hj)

)
.

Then ν0Pic(z) ≥ 2.

This yields

ν0Pic(z) ≥ (min{f∗A(z), 1} −Bij(z)) + 2Bij(z) = min{f∗A(z), 1}+Bij(z).

Integrating, we get

NPic(z) ≥ N [1](r, f∗A) +N [1](r,Bij).

Combining this with (3.6), we have ‖ N [1](r,Bij) = o(T (r)).

Similarly, ‖ N [1](r,Bij) = N [1](r,Bji) + o(T (r)) = o(T (r)), proving (iii).

(iv) Suppose that ‖ (f1,Hi)
(f1,Hj)

6= (f2,Hi)
(f2,Hj)

. We consider the holomorphic func-

tion

Pij := (f1, Hi)(f2, Hj)− (f1, Hj)(f2, Hi) 6= 0.

Similarly to the argument in (i)–(iii), we see that:

• If z ∈ Supp f∗A \Aij then ν0Pic(z) ≥ 1, since f(z) = g(z).

• If z ∈ Aij , then ν0Pic(z) ≥ min{ν0(f,Hi)(z), 1}+ min{ν0(f,Hj)(z), 1} = 2.
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Hence ν0Pic(z) ≥ (min{f∗A(z), 1} − Aij(z)) + 2Aij(z) = min{f∗A(z), 1} +
Aij(z). It follows that

NPij (r) ≥ N [1](r, f∗A) +N [1](r,Aij).

Combining this with (3.6), we have ‖ N [1](r,Aij) = o(T (r)), and (iv) is
proved.

Remark 3.5. 1) Lemma 3.4 is also valid for any distinct maps h, g in
G(f, {Hi}n+3

i=1 , 1).
2) If q = n+ 3 and f1, f2, f3 are distinct maps in G(f, {Hi}n+3

i=1 , 1), then:

(a) For i, j ∈ {1, . . . , n+ 3} with Vi ∼ Vj , we have ‖ N(r,Aij) = o(T (r))
and ‖ N(r,Bij) = N(r,Bji) + o(T (r)) = o(T (r)). From Lemma
3.4(iii)–(iv), it follows that

‖ N [1]
(f,Hi)

(r) = N(r,Aij) +N(r,Bij) = o(T (r)),

‖ N [1]
(f,Hj)

(r) = N(r,Aij) +N(r,Bji) = o(T (r)).

(b) Take a partition I1 ∪ · · · ∪ Ik as in (3.1). Denote by Ai the the
hypersurface defined by

Ai =
⋃ {

α: irreducible hypersurface⊂
⋂
j∈Ii

f−1(Hj)\
⋃
j 6∈Ii

f−1(Hj)
}
.

From the above remark, we see that for any irreducible hypersurface
α ⊂ f−1(Hj) in Cm such that α 6⊂ f−1(Hj′) whenever Vj′ ≈ Vj
or α ⊂ f−1(Hj”) whenever Vj” 6≈ Vj we have ‖ N(r, α) = o(T (r)).
Therefore,

• dim(Ai1 ∩Ai2) ≤ m− 2 for all ≤ i1 < i2 ≤ k,

• Ai ⊂ f−1(Hj) and ‖ N [1]
(f,Hj)

(r) = N(r,Ai) + o(T (r)) for all

j ∈ Ii, 1 ≤ i ≤ k,
• ‖ Tfs(r) = 1

2

∑k
i=1N(r,Ai) + o(T (r)).

Definition 3.6 (see [Fu98]). Let F0, F1, F2 be meromorphic functions
on Cm. Write α := (α1, . . . , αm) where αk are nonnegative integers, and set
|α| = |α1|+ · · ·+ |αm|. We define Cartan’s auxiliary function by

Φα(F0, F1, F2) := F0F1F2 ·

∣∣∣∣∣∣∣
1 1 1

1/F0 1/F1 1/F2

Dα(1/F0) Dα(1/F1) Dα(1/F2)

∣∣∣∣∣∣∣ .
Lemma 3.7 ([Fu98, Proposition 3.4]). If Φα(F,G,H) = 0 and

Φα(1/F , 1/G, 1/H) = 0 for all α with |α| ≤ 1, then one of the following
assertions holds:

(i) F = G, G = H or H = F.
(ii) There exist α, β 6∈ {0, 1} with α 6= β such that F = αG = βH.
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For f1, f2, f3 ∈ G(f, {Hi}qi=1, 1) and each j (1 ≤ j ≤ q), we define a
divisor Dj by

Dj(z) =

{
ν0(f1,Hj)(z) if ν0(f1,Hj)(z) = ν0(f2,Hj)(z) = ν0(f3,Hj)(z),

0 otherwise.
We now prove the following lemma, which is an improvement of the

lemma on Cartan’s auxiliary function of Fujimoto [Fu98].

Lemma 3.8. Let f1, f2, f3 ∈ G(f, {Hi}qi=1, 1). Assume that Φα :=
Φα(F i01c , F i02c , F i03c ) 6= 0 for some c ∈ C and α with |α| = 1. Then:

(i) ‖ N(r,Di0) + 2(N [1](r, f∗A) − N
[1]
(f,Hi0 )

(r)) ≤ NΦα(r) ≤ T (r) +

o(T (r)), where A is the divisor
∑q

i=1Hi on Pn(C).

(ii) If q = n + 3 then ‖ 2N
[1]
(f,Hi0 )

(r) ≥ N(r,Di0) + Tfs(r) + o(T (r))

(1 ≤ s ≤ 3).

Proof. Set I := I(f) ∪
⋃

1≤i≤n+3(f
−1(Hi) ∩ f−1(Hc)). Then I is either

an analytic subset of codimension at least two in Cm or an empty set.
Assume that a is a zero of some (f,Hi), i 6= i0, such that a 6∈ I and

a 6∈ (f,Hi0)−1{0}. Let Γ be an irreducible component of the zero divisor
of the function (f,Hi) which contains a. We take a holomorphic function h
on Cm satisfying ν0h = ν(L), where ν(L) denotes the reduced divisor with
support L.

The function

ϕs :=
1

hF i0sc

− 1

hF j03c

is holomorphic on a neighbourhood U of a for all 1 ≤ s ≤ 2. Since |α| = 1,
we have

Φα := h2F i01c F i02c F i03c ·
∣∣∣∣ ϕ1 ϕ2

Dαϕ1 Dαϕ2

∣∣∣∣.
This implies that

ν0Φα(a) ≥ 2.(3.7)

Assume that b is a zero of (f,Hi0) such that b 6∈ I. We write

Φα =
∑
σ∈S3

sign(σ)F i01c F i02c F i03c · 1

F
i0σ(2)
c

· Dα
(

1

F
i0σ(3)
c

)
.

This implies that

νΦα(b) ≥ min
σ∈S3

( 3∑
s=1

ν
F
i0s
c

(b)− ν0
F
i0σ(2)
c

(b)− ν0
F
i0σ(3)
c

(b)− 1
)

(3.8)

= min
σ∈S3

(ν0
F
i0σ(1)
c

(b)− 1) ≥ 0.
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If b ∈ SuppDi0 then ν(f1,Hi0 )(b) = ν(f2,Hi0 )(b) = ν(f3,Hi0 )(b) = Di0(b). There
exists a holomorphic function h on an open neighbourhood U of b such that
νh = Di0 |U . We write

Φα = h−2F i01c F i02c F i03c

·

∣∣∣∣∣ h/F i01c − h/F i03c h/F i02c − h/F i03c

Dα(h/F i01c )−Dα(h/F i03c ) Dα(h/F i02c )−Dα(h/F i03c )

∣∣∣∣∣ .
Then

νΦα(b) ≥ νh(b) = Di0(b).(3.9)

From (3.7)–(3.9), we have

Di0(z) + 2
(
min{f∗(A)(z), 1} −min{ν0(f,Hi0 )(z)}

)
≤ ν0Φα(z)

for all z outside an analytic subset of codimension at least two. This imme-
diately implies the first inequality of (i).

It is easy to see that a pole of Φα is either a zero or a pole of some F i0sc .
By (3.7)–(3.9) we see that Φα is holomorphic at all zeros of F i0sc (1 ≤ s ≤ 3).
Then

N1/Φα(r) ≤
3∑
s=1

N
1/F

i0s
c

(r).

On the other hand, it is easy to see that

m(r, Φα) ≤
3∑
s=1

m(r, F i0sc ) +O

(∑
m

(
r,
Dα(ϕi0sc )

ϕi0sc

))
+O(1)

≤
3∑
s=1

m(r, F i0sc ) + o(T (r)),

where ϕi0sc = 1/F i0sc . Hence,

NΦα(r) ≤ TΦα(r) +O(1) ≤ m(r, Φα) +N1/Φα(r) +O(1)

≤
3∑
s=1

(N
1/F

i0s
c

(r) +m(r, F i0sc )) + o(T (r))

=
3∑
s=1

T
F
i0s
c

(r) + o(T (r)) ≤ T (r) + o(T (r)),

proving the second inequality of (i).
Finally, the second assertion of the lemma immediately follows from the

first assertion and Lemma 3.4(ii).

From now on, we will denote byQ({Hi}qi=1; f1, f2, f3) the set of all indices

j ∈ {1, . . . , q} such that Φα(F j1c , F
j2
c , F

j3
c ) = 0 for all c ∈ C and α with

|α| = 1.
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Lemma 3.9. Let f1, f2, f3 ∈ G(f, {Hi}n+3
i=1 , 1). Then there do not exist

i0, j0 ∈ {1, . . . , n+ 3} and α, β 6∈ {0, 1}, α 6= β, such that

(f1, Hi0)

(f1, Hj0)
= α

(f2, Hi0)

(f2, Hj0)
= β

(f3, Hi0)

(f3, Hj0)
.(3.10)

Proof. Suppose that such i0, j0 and α, β exist. Then f1, f2, f3 must be
pairwise distinct. Take a partition I1 ∪ · · · ∪ Ik of {1, . . . , n+ 3} as in (3.1).
By Lemma 3.1, we see that k = I({Hi}n+3

i=1 ; f1, f2, f3) ≥ 3. Without loss of
generality, we may assume that i0 ∈ I1 and j0 ∈ I2.

For each 3 ≤ t ≤ k, if there exists z ∈ At, then
(f1,Hi0 )(z)

(f1,Hj0 )(z)
= α

(f2,Hi0 )(z)

(f2,Hj0 )(z)

and hence 1 = α, since f1(z) = f2(z). This is a contradiction. Therefore,
At = ∅ for all 3 ≤ t ≤ k. By Remark 3.5(2b), we have

‖ N [1]
(f,Hj)

= o(T (r)) ∀j ∈ It, i ≥ 3.(3.11)

Then from Lemma 3.8(ii) and (3.11), we see that j ∈ G(f, {Hi}n+3
i=1 , 1) for

all j ∈ It and i ≥ 3.
By Remark 3.5(2b), for 1 ≤ s ≤ 3 we have

‖ Tfs(r) = 1
2

k∑
i=1

N(r,Ai) + o(T (r)) = 1
2(N(r,A1) +N(r,A2)) + o(T (r))

= 1
2(N

[1]
(fs,Hi0 )

(r) +N
[1]
(fs,Hj0 )

(r)) + o(T (r)).

This easily implies that

‖ Tfs(r) = N(fs,Hi0 )
(r) + o(T (r)) = N

[1]
(fs,Hi0 )

(r) + o(T (r)).(3.12)

Then

‖ N [1]
(fs,Hi0 )

(r) = N(fs,Hi0 )
(r) + o(T (r)) ≥ N [1]

(fs,Hi0 )
(r) + 1

2N
[1]
(fs,Hi0 ),>1(r).

Therefore, ‖ N [1]
(fs,Hi0 ),>1(r) = o(T (r)). Similarly,

‖ Tfs(r) = N
[1]
(fs,Hj0 )

(r)+o(T (r)) and ‖ N [1]
(fs,Hj0 ),>1(r) = o(T (r)).(3.13)

From (3.11)–(3.13) and Remark 3.5(2a), we see that Vi � Vi0 and Vi � Vj0
for all i ∈ It and t ≥ 3.

Taking i1 ∈ I3, by the density of C, we have

Φα(F i11c , F i12c , F i13c ) = 0

for all c ∈ Cn and α with |α| = 1. In particular,

Φα(F i11i0
, F i12i0

, F i13i0
) = 0,

i.e., ∣∣∣∣∣ F i01i1
− F i02i1

F i01i1
− F i03i1

Dα(F i01i1
− F i02i1

) Dα(F i01i1
− F i03i1

)

∣∣∣∣∣ = 0
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for all α with |α| = 1. Since the last determinant is a Wronskian, there exist
constants α1 and β1, not both zero, such that

α1(F
i01
i1
− F i02i1

) = β1(F
i01
i1
− F i03i1

).

Thus

(α1 − β1)F i01i1
− α1F

i02
i1

+ β1F
i03
i1

= 0.(3.14)

Because Vi � Vi0 , we have α1, β1 6∈ {0, 1} and α1 6= β1. We consider the
meromorphic mapping F : Cm → P1(C) with reduced representation F =
(hF i01i1

: hF i02i1
), where h is a meromorphic function on Cm. We distinguish

the following two cases.

Case 1: F = const. Then there exist constants α2 and β2 such that

F i01i1
= α2F

i01
i1

= β2F
i01
i1
.(3.15)

Since Vi � Vi0 , we have α2, β2 6∈ {0, 1} and α2 6= β2. Repeating the same
argument as above, we get the following estimate, similar to (3.11):

N
[1]
(fs,Hj0 )

(r) = o(T (r)).

This contradicts (3.13).

Case 2: F 6= constant. We see that a zero of some hF i0si1
(1 ≤ s ≤ 3)

must be a zero of (f,Hi0) or a zero of (f,Hi1).

Take a regular point z0 of Ai1 with z0 6∈ Ai0 . From (3.15), there exists a
permutation {s1, s2, s3} of {1, 2, 3} such that ν0(fs1 ,Hi1 )

(z0) ≤ ν0(fs2 ,Hi1 )(z0) =

ν0(fs3 ,Hi1 )
(z0). This yields ν0h(z0) = ν0(fs2 ,Hi1 )

(z0). Thus

(3.16)

3∑
s=1

min{ν0
hF

i0s
i1

(z0), 1}

= ν0(fs2 ,Hi1 )
(z0)− ν0(fs1 ,Hi1 )(z0)

= min{ν0(fs2 ,Hi1 )(z0), ν
0
(fs3 ,Hi1 )

(z0)} −min{ν0(f,Hi1 )(z0), 1}

≤
∑

1≤s<t≤3

(
min{ν0(fs,Hi1 )(z0), ν

0
(ft,Hi1 )

(z0)} − ν0(f,Hi1 )(z0)
)
.

Now take a regular point z0 of Ai0 with z0 6∈ Ai1 . Again by (3.15),
there exists a permutation {s1, s2, s3} of {1, 2, 3} such that ν0(fs1 ,Hi0 )

(z0) =

ν0(fs2 ,Hi0 )
(z0) ≤ ν0(fs3 ,Hi0 )(z0). This yields ν∞h (z0) = ν0(fs1 ,Hi1 )

(z0). Thus

3∑
s=1

min{ν0
hF

i0s
i1

(z0), 1} = min{ν0(fs3 ,Hi0 )(z0)− ν
0
(fs1 ,Hi0 )

(z0), 1}(3.17)

≤ 1−D[1]
i0

(z0).
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Combining (3.16), (3.17) and Lemma 3.4(i), we obtain∥∥∥ 3∑
s=1

N
[1]

hF
i0s
i1

(r) ≤
∑

1≤s<t≤3

(
N(r,min{ν0(fs,Hi1 ), ν

0
(ft,Hi1 )

})−N [1]
(f,Hi1 )

(r)
)

+N
[1]
(f,Hi0 )

−N [1](r,Di0) + o(T (r))

= N
[1]
(f,Hi0 )

−N [1](r,Di0) + o(T (r)).

Since f(z) = g(z) for all z ∈ A2 we obtain (hF i01i1
− hF i02i1

)(z) = 0 for all
z ∈ A2 \ (A1 ∪A3). Then we have

(3.18) ‖ N [1]
(f,Hj0 )

(r)

= N(r,A2) + o(T (r)) ≤ N [1]

hF
i01
i1
−hF i02i1

(r) + o(T (r))

≤ TF (r) + o(T (r))

≤
3∑
s=1

N
[1]

hF
i0s
i1

(r) + o(T (r)) ≤ N [1]
(f,Hi0 )

−N [1](r,Di0) + o(T (r))

≤
2∑
s=1

N
[1]
(fs,Hi0 ),>1 + o(T (r)) = o(T (r)).

This contradicts N
[1]
(f,Hj0 )

(r) = Tfs(r) + o(T (r)) (1 ≤ s ≤ 3).

From Lemmas 3.7 and 3.9, we immediately get

Lemma 3.10. Let f1, f2, f3 ∈ G(f, {Hi}n+3
i=1 , 1). Suppose that i0, j0 ∈

Q({Hi}3i=1; f1, f2, f3). Then Vi0 ≈ Vj0 or Vi0 ∼ Vj0.

Proof. By the density of C, we have

Φα(F i01c , F i02c , F i03c ) = Φα(F j01c , F j02c , F j03c ) = 0

for all c ∈ C and α with |α| = 1. In particular,

Φα(F i01j0
, F i02j0

, F i03j0
) = Φα(F j01i0

, F j02i0
, F j03i0

) = 0.

By Lemma 3.7, one of the following two assertions holds:

• F i01j0
= F i02j0

or F i02j0
= F i03j0

or F i03j0
= F i01j0

,

• there exist α, β 6∈ {0, 1}, α 6= β, such that F i01j0
= αF i02j0

= βF i03j0
.

Lemma 3.9 shows that the second assertion cannot be true. Thus the first
must hold. Hence Vi0 ≈ Vj0 or Vi0 ∼ Vj0 .

4. Proofs of main theorems. We need the following lemma.

Lemma 4.1. Let f1, f2, f3 ∈ G(f, {Hi}n+3
i=1 , 1) be distinct and i0 ∈

Q({Hi}n+3
i=1 ; f1, f2, f3). Then there is a partition I1∪ I2∪ I3 of {1, . . . , n+ 3}

as in (3.1) satisfying:
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(i) i ∈ Q({Hi}n+3
i=1 ; f1, f2, f3) if and only if i ∈ I1,

(ii) ‖ N(r,A2) = N(r,A3) + o(T (r)) and ‖ N(r,Di) = o(T (r)) for all
i ∈ I2 ∪ I3.

Proof. Since f1, f2, f3 are distinct, I({Hi}n+3
i=1 ; f1, f2, f3) ≥ 3. We take a

partition I1 ∪ · · · ∪ Il ∪ Il+1 ∪ · · · ∪ Il+t (changing the indices if necessary) of
{1, . . . , n+ 3} as in (3.1), where l + t ≥ 3, so that

i0 ∈ I1, Vi ∼ Vi0 ∀i ∈
⋃

1<i≤l
Ii, Vi � Vi0 ∀i ∈

⋃
l<i≤t+l

Ii.

(i) If Vi � Vi0 ⇔ i ∈ Il+1 ∪ · · · ∪ Il+t then i 6∈ Q({Hi}n+3
i=1 ; f1, f2, f3), by

Lemma 3.10. Therefore, to prove (i), it is sufficient to show that l = 1 and
t = 2.

Indeed, suppose that t > 2. For each i ∈ {l+ 1, . . . , l+ t} we pick ji ∈ Ii.
By Lemma 3.8(ii),

‖ 2N
[1]
(f,Hji )

(r) ≥ N(r,Dji) + Tfs(r) + o(T (r)).(4.1)

Since i0 ∈ Q({Hi}n+3
i=1 ; f1, f2, f3), we have Φα(F ii0 , F

i
i0
, F ii0) = 0 for all |α| = 1.

Repeating the same argument in the proof of Lemma 3.9, similarly to (3.14),
there exist α1, β1 6∈ {0, 1}, α1 6= β1, such that

(α1 − β1)F i01ji
− α1F

i02
ji

+ β1F
i03
ji

= 0.

We consider the meromorphic mapping F : Cm → P1(C) with representation
F = (F i01i1

: F i02i1
).

If F = const, then there exist constants α2 and β2 such that

F i01ji
= α2F

i01
ji

= β2F
i01
ji
.

Since Vji � Vi0 , we have α2, β2 6∈ {0, 1} and α2 6= β2. Since F i01i1
(z) =

F i01i1
(z) 6∈ {1,∞} for all z ∈ Av \ (Ai ∪ A1) with v 6∈ {1, i}, it follows that

Av = ∅ for all v 6∈ {1, i}. In particular,

‖ Tfs(r) ≤ N(r,Av) + o(T (r)) = o(T (r)),

∀ 1 ≤ s ≤ 3, l + 1 ≤ v ≤ l + t, v 6= i.

This contradicts (4.1).

Thus F 6= const.Repeating the same argument as in Case 2 of Lemma 3.9,
we have the following inequality, similar to (3.18):∥∥∥ l+t∑

v 6=i
v=l+1

N(r,Av) ≤ N [1]

(F
i01
ji

/F
i02
ji

)−1
(r) + o(T (r)) ≤ TF (r) + o(T (r))(4.2)

≤ N [1]
(f,Hi0 )

−N [1](r,Dji) + o(T (r)).
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Summing over all i = l + 1, . . . , l + t, we get

(t− 2)

l+t∑
i=l+1

N(r,Ai) +

l+t∑
i=l+1

N(r,Ai)N
[1](r,Dji) ≤ o(T (r)).(4.3)

This is a contradiction.

Therefore, t ≤ 2.

Suppose that t = 1. We have l + t ≥ 3 ⇔ l ≥ 2, so by Remark 3.5(2a),
‖ N(r,Ai) = o(T (r)) for all 1 ≤ i ≤ l. Therefore, from Remark 3.5(2b) it
follows that

‖ Tfs(r) ≤ 1
2

l+1∑
i=1

N(r,Ai) + o(T (r)) ≤ 1
2N(r,Al+1) + o(T (r))

≤ 1
2Tfs(r) + o(T (r)),

a contradiction. Hence t = 2.

We now prove l = 1. Suppose that l ≥ 2. Similarly to the above, we have
‖ N(r,Ai) = o(T (r)) for all 1 ≤ i ≤ l and

‖ Tfs(r) ≤ 1
2

l+2∑
i=1

N(r,Ai) + o(T (r))

≤ 1
2(N(r,Al+1) +N(r,Al+2)) + o(T (r))

≤ Tfs(r) + o(T (r)).

This yields

‖ Tfs(r) = N(r,Al+1) + o(T (r))(4.4)

= N(r,Al+2) + o(T (r)) (1 ≤ s ≤ 3).

Then for l + 1 ≤ i ≤ l + 2, we have

‖ N [1]
(fs,Hji ),>2(r) ≤ N(fs,Hji )

(r)−N [1]
(fs,Hji )

(r)

≤ Tfs(r)−N
[1]
(fs,Hji )

(r) + o(T (r))

= Tfs(r)−N(r,Ai)(r) + o(T (r)) = o(T (r)).

This implies that

‖ N(r,Dji) ≥ N
[1]
(f,Hji )

(r)−
3∑
v=1

N
[1]
(fv ,Hji ),>2(r)

= N(r,Ai) + o(T (r)) = Tfs(r) + o(T (r)) (1 ≤ s ≤ 3, i > l),

contradicting (4.3). Therefore, l = 1. The first assertion of the lemma is
proved.
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(ii) On the other hand, the inequality (4.3) implies that

‖ N(r,A2) ≤ N(r,A3)−N(r,Di) + o(T (r)) ∀i ∈ I3,
‖ N(r,A3) ≤ N(r,A2)−N(r,Di) + o(T (r)) ∀i ∈ I2.

Thus ‖ N(r,A2) = N(r,A3) + o(T (r)) and N(r,Di) = o(T (r)) for all i ∈
I2 ∪ I3. The second assertion of the lemma is proved.

Proof of Theorem 1.2. Suppose that there exist three distinct mappings
f0, f1, f2 ∈ G(f, {Hi}n+3

i=1 , 2). Then, by Lemma 3.4(i),

‖ N [1]
(fs,Hi),>2(r) = N

[2]
(fs,Hi)

(r)−N [1]
(fs,Hi)

(r)(4.5)

≤ N(r,min{ν0(fs,Hi), ν
0
(ft,Hi)

})−N [1]
(fs,Hi)

(r)

= o(T (r)) (1 ≤ s 6= t ≤ 3).

Suppose that there exists i0 ∈ Q({Hi}n+3
i=1 ; f1, f2, f3). We take a partition

I1 ∪ I2 ∪ I3 as in Lemma 4.1 with i0 ∈ I1.
Then for each i ∈ I2 ∪ I3, we have ‖ N(r,Di) = o(T (r)). Since i 6∈

Q({Hi}n+3
i=1 ; f1, f2, f3), combining Lemma 3.8(ii) and (4.5), we also have

‖ N(r,Di) ≥ N [1]
(f,Hi)

(r)−
3∑
s=1

N
[1]
(fs,Hi),>2(r) = N

[1]
(f,Hi)

(r) + o(T (r))(4.6)

≥ 1
2(N(r,Di) + Tfs(r)) + o(T (r)) (1 ≤ s ≤ 3).

It follows that ‖ N(r,Di) = Tfs(r) + o(T (r)). This contradicts ‖ N(r,Di) =
o(T (r)).

Hence i 6∈ Q({Hi}n+3
i=1 ; f1, f2, f3) for all 1 ≤ i ≤ n+ 3. Similarly to (4.6),

we have ‖ N(r,Di) = Tfs(r) + o(T (r)). By Lemma 3.8(ii), it follows that

‖ 2N
[1]
(fs,Hi)

(r) ≥ N(r,Di) + Tfs(r) + o(T (r)) = 2Tfs(r) + o(T (r)).

Take a partition I1 ∪ · · · ∪ Ik of {1, . . . , n+ 3} as in (3.1). Then

k = I({Hi}n+3
i=1 ; f1, f2, f3) ≥ 3.

From Remark 3.5(2b), we have

‖ Tfs(r) = 1
2

k∑
i=1

N(r,Ai) + o(T (r))

= 1
2

k∑
i=1

Tfs(r) + o(T (r)) =
k

2
Tfs(r) + o(T (r)).

Letting r →∞, we get 1 = k/2, a contradiction.

Proof of Theorem 1.3. Suppose that there exist three distinct mappings
f0, f1, f2 ∈ G(f, {Hi}n+3

i=1 , 1). Firstly, we notice that for i 6= j, dimAij ≤
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dim(f−1Hi ∩H1) ≤ m − 2 (by the assumption of the theorem), and hence
Aij = ∅ and ‖ N(r,Aij) = 0. Therefore if Vi ≈ Vj , then

‖ N [1]
(f,Hi)

(r) = N
[1]
(f,Hi)

(r) + o(T (r)) = o(T (r)).(4.7)

Suppose that there exists i0 ∈ Q({Hi}n+3
i=1 ; f1, f2, f3). We take a partition

I1 ∪ I2 ∪ I3 as in Lemma 4.1 with i0 ∈ I1.
Then for each i ∈ I2 ∪ I3, by Lemma 3.8(ii) we have

N
[1]
(fs,Hi)

(r) ≥ 1
2Tfs(r)) + o(T (r)) (1 ≤ s ≤ 3).

From this and (4.7), it is easy to see that ]I2 = ]I3 = 1. Then ]I1 = n+ 1.
It follows that f1 = f2 = f3, a contradiction.

Therefore, i 6∈ Q({Hi}n+3
i=1 ; f1, f2, f3) for all 1 ≤ i ≤ n + 3. By Lemma

3.8(ii), we have

‖ N [1]
(fs,Hi)

(r) ≥ 1
2Tfs(r) + o(T (r)).(4.8)

Take a partition I1 ∪ · · · ∪ Ik of {1, . . . , n+ 3} as in (3.1). As above, by (4.7)
and (4.8) we easily see that ]Ii = 1 for 1 ≤ i ≤ k. Therefore k = n+ 3.

From Remark 3.5(2b), we have

‖ Tfs(r) = 1
2

n+3∑
i=1

N(r,Ai) + o(T (r))

≥ 1
4

n+3∑
i=1

Tfs(r) + o(T (r)) =
n+ 3

4
Tfs(r) + o(T (r)).

Letting r →∞, we get 1 ≥ (n+ 3)/4, a contradiction.

Proof of Theorem 1.4. Suppose that f0, f1, f2 are distinct. By Lemma
3.4(i),

‖ N [1]
(fs,H1),>2(r) = N

[2]
(fs,H1)

(r)−N [1]
(fs,H1)

(r)(4.9)

≤ N(r,min{ν0(fs,H1)
, ν0(ft,H1)

})−N [1]
(fs,H1)

(r)

= o(T (r)) (1 ≤ s 6= t ≤ 3).

We also notice that for i 6= 1, dimAi1 ≤ dim(f−1Hi ∩H1) ≤ m − 2 (by
assumption), so Ai1 = ∅ and ‖ N(r,Ai1) = 0. This shows that if Vi ≈ V1
then

‖ N [1]
(f,H1)

(r) = N
[1]
(f,Hi)

(r) + o(T (r)) = o(T (r)).(4.10)

Suppose that there exists i0 ∈ Q({Hi}n+3
i=1 ; f1, f2, f3). We take a partition

I1 ∪ I2 ∪ I3 as in Lemma 4.1 with i0 ∈ I1.
If ]I1 = 1 then I({Hi}n+3

i=2 ; f1, f2, f3) = 2. By Lemma 3.1, we have f1 =
f2 = f3, a contradiction. Therefore ]I1 ≥ 2.
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We distinguish the following two cases.

Case 1: 1 ∈ I1. There exists v ∈ I1, v 6= 1. By (4.10), one gets

N(r,Ai) = N
[1]
(f,H1)

(r) + o(T (r)) = o(T (r)) (because Vv ≈ V1).

Therefore,

Tfs(r) = 1
2(N(r,A1) +N(r,A2) +N(r,A3)) + o(T (r))

= 1
2(N(r,A2) +N(r,A3)) + o(T (r)).

This yields ‖ N(r,A2) = N(r,A3) + o(T (r)) = Tfs(r) + o(T (r)).

Taking i ∈ I2, we have

‖ N [1]
(fs,Hi),>2(r) ≤ N

[2]
(fs,Hi)

(r)−N [1]
(fs,Hi)

(r)

≤ Tfs(r)−N
[1]
(fs,Hi)

(r) + o(T (r)) = o(T (r)) (1 ≤ s ≤ 3).

It follows that

‖ N(r,Di) ≥ N [1]
(f,Hi)

(r)−
3∑
s=1

N
[1]
(fs,Hi),>2(r)

= N(r,A2) + o(T (r)) = Tfs(r) + o(T (r)).

This contradicts ‖ N(r,Di) = o(T (r)) (because i ∈ I2).

Case 2: 1 6∈ I1. We may assume that 1 ∈ I2. By Lemma 3.8(ii), we have

‖ N [1]
(f,H1)

(r) ≥ 1
2Tfs(r)+o(T (r)). Suppose that there exists i ∈ I2\{1}. Then

Vi ≈ V1 and (4.10) implies that ‖ N [1]
(f,H1)

(r) = o(T (r)), a contradiction.

Therefore I2 = {1}. Hence I({Hi}n+3
i=2 ; f2, f2, f3) = 2. Then f1 = f2 = f3,

by Lemma 3.1, a contradiction.

Therefore, Q({Hi}n+3
i=1 ; f1, f2, f3) = ∅. Now Lemma 3.8(ii) yields

‖ N [1]
(fs,Hi)

(r) ≥ 1
2Tfs(r) + o(T (r)) (1 ≤ s ≤ 3).(4.11)

We take a partition I1 ∪ · · · ∪ Ik as in (3.1). We may assume that 1 ∈ I1.
By repeating the same argument as in Case 2, we have I1 = {1}. Then
k − 1 = I({Hi}n+3

i=2 ; f1, f2, f3) ≥ 3⇔ k ≥ 4, by Lemma 3.1.

On the other hand, it follows from Lemma 3.8(ii) that

‖ 2N
[1]
(fs,H1)

(r) ≥ N(r,D1) + Tfs(r) + o(T (r))

≥ N [1]
(fs,H1)

(r)−
3∑
v=1

N
[1]
(fs,H1),>2(r) + Tfs(r) + o(T (r))

= N
[1]
(fs,H1)

(r) + Tfs(r) + o(T (r)) (1 ≤ s ≤ 3).
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Thus

N
[1]
(fs,H1)

(r) = Tfs(r) + o(T (r)) (1 ≤ s ≤ 3).(4.12)

Combining Remark 3.5(2b), (4.11) and (4.12) we get

2Tfs(r) =
k∑
i=1

N(r,Ai) + o(T (r))

≥ Tfs(r) +
k∑
i=2

1
2Tfs(r) + o(T (r))

=
k + 1

2
Tfs(r) + o(T (r)).

Letting r → ∞, we get 2 ≥ (k + 1)/2, that is, k ≤ 3. This contradicts
k ≥ 4.
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