Finiteness problem for meromorphic mappings sharing $n+3$ hyperplanes of $\mathbb{P}^{n}(\mathbb{C})$

by Si Duc Quang (Hanoi)

Abstract

We prove some finiteness theorems for differential nondegenerate meromorphic mappings of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})$ which share $n+3$ hyperplanes.

1. Introduction. Using the Second Main Theorem of Value Distribution Theory and Borel's lemma, R. Nevanlinna [N] proved that for two nonconstant meromorphic functions f and g on the complex plane \mathbb{C}, if they have the same inverse images for five distinct values then $f \equiv g$, and that g is a special type of linear fractional transformation of f if they have the same inverse images, counted with multiplicities, for four distinct values.

In 1981, Drouilhet considered the results of Nevanlinna for higher dimensions and differential nondegenerate meromorphic mappings. He proved the following uniqueness theorem.

Theorem $1.1\left(\left[\mathbb{D}\right.\right.$, Theorem 4.2]). Let $f, g: \mathbb{C}^{m} \rightarrow \mathbb{P}^{n}(\mathbb{C})$ be differential nondegenerate meromorphic maps with $m \geq n$. Let A be a hypersurface of degree at least $n+4$ in $\mathbb{P}^{n}(\mathbb{C})$ having normal crossings. Suppose $f^{-1}(A)=$ $g^{-1}(A)$ as point sets and f and g agree at all points of $f^{-1}(A)$ lying in their common domain of determinacy. Suppose either $M=\mathbb{C}^{m}$ or f and g are transcendental. Then $f=g$.

Then a question arises naturally: What about the case where the degree of A is $n+3$?

We emphasize that for the case of linearly nondegenerate meromorphic mappings, in the best results available at present, given by Chen-Yan CY] and Quang [Q], the authors just considered the case where the hypersurface A is a union of $2 n+3$ hyperplanes in general position. Also their techniques of proof do not work for less than $2 n+3$ hyperplanes.

[^0]The purpose of this paper is to give a positive answer to the above question in a particular case where the hypersurface A is a union of $n+3$ hyperplanes.

Let f be a differential nondegenerate meromorphic mapping of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})(m \geq n)$ and let H_{1}, \ldots, H_{q} be q hyperplanes of $\mathbb{P}^{n}(\mathbb{C})$ in general position. Let d be a positive integer. We denote by $\mathcal{G}\left(f,\left\{H_{i}\right\}_{i=1}^{q}, d\right)$ the set of all differential nondegenerate meromorphic mappings g of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})$ which satisfy the following two conditions:
(i) $\min \left\{\nu_{\left(f, H_{i}\right)}^{0}(z), d\right\}=\min \left\{\nu_{\left(g, H_{i}\right)}^{0}(z), d\right\}$ for all $1 \leq i \leq q, z \in \mathbb{C}^{m}$,
(ii) $f=g$ on $\bigcup_{i=1}^{q} f^{-1}\left(H_{i}\right)$.

We will prove the following.
Theorem 1.2. Let f be a differential nondegenerate meromorphic mappings of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})(m \geq n)$ and let H_{1}, \ldots, H_{n+3} be $n+3$ hyperplanes of $\mathbb{P}^{n}(\mathbb{C})$ in general position. Then the set $\mathcal{G}\left(f,\left\{H_{i}\right\}_{i=1}^{n+3}, 2\right)$ contains at most two elements.

Theorem 1.3. Let f and H_{1}, \ldots, H_{n+3} be as in Theorem 1.2. Assume that

$$
\operatorname{dim}\left(f^{-1}\left(H_{i}\right) \cap f^{-1}\left(H_{j}\right)\right) \leq m-2 \quad \text { for all } 1 \leq i<j \leq n+3 .
$$

If $n \geq 2$, then the set $\mathcal{G}\left(f,\left\{H_{i}\right\}_{i=1}^{n+3}, 1\right)$ contains at most two elements.
Theorem 1.4. Let f and H_{1}, \ldots, H_{n+3} be as in Theorem 1.2. Let f_{1}, f_{2}, f_{3} be in $\mathcal{G}\left(f,\left\{H_{i}\right\}_{i=1}^{n+3}, 1\right)$. Assume that $\operatorname{dim} f^{-1}\left(H_{1} \cap \bigcup_{i=2}^{n+3} H_{i}\right) \leq m-2$ and $\min \left\{\nu_{\left(f_{s}, H_{1}\right)}(z), 2\right\}=\min \left\{\nu_{\left(f_{t}, H_{1}\right)}(z), 2\right\}$ for all $1 \leq s, t \leq 3$ and $z \in$ $f^{-1}\left(H_{1}\right)$. Then $f_{1}=f_{2}$ or $f_{2}=f_{3}$ or $f_{3}=f_{1}$.

2. Preliminaries

(a) For $z=\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{C}^{m}$, we set $\|z\|=\left(\sum_{j=1}^{m}\left|z_{j}\right|^{2}\right)^{1 / 2}$ and define

$$
\begin{aligned}
B(r) & =\left\{z \in \mathbb{C}^{m}:\|z\|<r\right\}, \quad \Gamma(r)=\left\{z \in \mathbb{C}^{m}:\|z\|=r\right\}, \\
d^{c} & =\frac{\sqrt{-1}}{4 \pi}(\bar{\partial}-\partial), \quad \sigma=\left(d d^{c}\|z\|^{2}\right)^{m-1}, \\
\eta & =d^{c} \log \|z\|^{2} \wedge\left(d d^{c} \log \|z\|\right)^{m-1} .
\end{aligned}
$$

Denote by $\operatorname{Mer}\left(\mathbb{C}^{m}\right)$ the set of all meromorphic functions on \mathbb{C}^{m}. A divisor E on \mathbb{C}^{m} is given by a formal sum $E=\sum \mu_{\nu} X_{\nu}$, with $\left\{X_{\nu}\right\}$ is a locally family of distinct irreducible analytic hypersurfaces in \mathbb{C}^{m} and $\mu_{\nu} \in \mathbb{Z}$. We define the support of E by $\operatorname{Supp}(E)=\bigcup_{\nu \neq 0} X_{\nu}$. Sometimes we identify the divisor E with the function $E(z)$ from \mathbb{C}^{m} into \mathbb{Z} defined by $E(z):=\sum_{X_{\nu} \ni z} \mu_{\nu}$.

Let k be a positive integer or $+\infty$. We define the divisor $E_{>t}^{[k]}$ by

$$
E_{>t}^{[k]}:=\sum_{\mu_{\nu}>t} \min \left\{\mu_{\nu}, k\right\} X_{\nu}
$$

and the truncated counting function to level k of E by

$$
N_{>t}^{[k]}(r, E):=\int_{1}^{r} \frac{n_{>t}^{[k]}(t, E)}{t^{2 m-1}} d t \quad(1<r<\infty)
$$

where

$$
n_{>t}^{[k]}(t, E):= \begin{cases}\int_{\operatorname{Supp}(E) \cap B(t)} E_{>t}^{[k]} \cdot \sigma & \text { if } m \geq 2 \\ \sum_{|z| \leq t} E_{>t}^{[k]}(z) & \text { if } m=2\end{cases}
$$

We omit ${ }^{[k]}($ resp. $>t)$ if $k=+\infty$ (resp. $\left.t=0\right)$.
An analytic hypersurface E of \mathbb{C}^{m} may be considered as a reduced divisor; we then denote by $N(r, E)$ its counting function.

For two divisors E_{1}, E_{2}, we define the divisor $\min \left\{E_{1}, E_{2}\right\}$ by setting

$$
\min \left\{E_{1}, E_{2}\right\}(z)=\min \left\{E_{1}(z), E_{2}(z)\right\}
$$

(b) Let F be a nonzero holomorphic function on \mathbb{C}^{m}. For a multiindex $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ of nonnegative integers, we set $|\alpha|=\alpha_{1}+\cdots+\alpha_{m}$ and $\mathcal{D}^{\alpha} F=\partial^{|\alpha|} F / \partial^{\alpha_{1}} z_{1} \cdots \partial^{\alpha_{m}} z_{m}$. We define the zero divisor of F as follows:

$$
\nu_{F}^{0}(a)=\max \left\{p: \mathcal{D}^{\alpha} F(a)=0 \text { for all } \alpha \text { with }|\alpha|<p\right\}
$$

Let φ be a nonzero meromorphic function on \mathbb{C}^{m}. For each $a \in \mathbb{C}^{m}$, we choose nonzero holomorphic functions F and G on a neighborhood U of a such that $\varphi=F / G$ on U and $\operatorname{dim}\left(F^{-1}(0) \cap G^{-1}(0)\right) \leq m-2$ and we define the zero (resp. pole) divisor of φ by $\nu_{\varphi}^{0}(a)=\nu_{F}^{0}(a)\left(\operatorname{resp} . \nu_{\varphi}^{\infty}(a)=\nu_{G}^{0}(a)\right)$ and $\nu_{\varphi}(a)=\nu_{\varphi}^{0}(a)-\nu_{\varphi}^{\infty}(a)$.

We have the following Jensen formula:

$$
\begin{equation*}
N\left(r, \nu_{\varphi}^{0}\right)-N\left(r, \nu_{\varphi}^{\infty}\right)=\int_{\Gamma(r)} \log |\varphi| \eta-\int_{\Gamma(1)} \log |\varphi| \eta \tag{2.1}
\end{equation*}
$$

For convenience, we will write $N_{\varphi}(r)$ and $N_{\varphi,>t}^{[k]}(r)$ for $N\left(r, \nu_{\varphi}^{0}\right)$ and $N_{>t}^{[k]}\left(r, \nu_{\varphi}^{0}\right)$ respectively.

We denote by $\mathcal{M}_{\mathbb{C}^{m}}$ the field of all meromorphic functions on \mathbb{C}^{m}.
(c) Let f be a meromorphic mapping of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C}),(m \geq n)$. We say that f is differential nondegenerate if $d f$ has maximal rank. For any homogeneous coordinates $\left(w_{0}: \cdots: w_{n}\right)$ of $\mathbb{P}^{n}(\mathbb{C})$, we take a reduced representation $f=\left(f_{0}: \cdots: f_{n}\right)$, which means that each f_{i} is a holomorphic function on \mathbb{C}^{m} and $f(z)=\left(f_{0}(z): \cdots: f_{n}(z)\right)$ outside the analytic set $I(f):=\left\{z: f_{0}(z)=\cdots=f_{n}(z)=0\right\}$ of codimension ≥ 2.

Denote by Ω the Fubini-Study form of $\mathbb{P}^{n}(\mathbb{C})$. The characteristic function of f (with respect to Ω) is defined by

$$
T_{f}(r):=\int_{1}^{r} \frac{d t}{t^{2 m-1}} \int_{B(t)} f^{*} \Omega \wedge \sigma, \quad 1<r<\infty
$$

By Jensen's formula we have

$$
\begin{equation*}
T_{f}(r)=\int_{\Gamma(r)} \log \|f\| \eta+O(1) \tag{2.2}
\end{equation*}
$$

where $\|f\|=\max \left\{\left|f_{0}\right|, \ldots,\left|f_{n}\right|\right\}$.
(d) For a meromorphic function φ on \mathbb{C}^{m}, the proximity function $m(r, \varphi)$ is defined by

$$
m(r, \varphi)=\int_{\Gamma(r)} \log ^{+}|\varphi| \eta,
$$

where $\log ^{+} x=\max \{\log x, 0\}$ for $x \geq 0$. The Nevanlinna characteristic function is defined by

$$
T(r, \varphi)=N\left(r, \nu_{\varphi}^{\infty}\right)+m(r, \varphi) .
$$

If we regard φ as a meromorphic mapping of \mathbb{C}^{m} into $\mathbb{P}^{1}(\mathbb{C})$, then

$$
T_{\varphi}(r)=T(r, \varphi)+O(1) .
$$

(e) Let H be a hyperplane in $\mathbb{P}^{n}(\mathbb{C})$ given by $H=\left\{a_{0} \omega_{0}+\cdots+a_{n} \omega_{n}=0\right\}$, where $\left(a_{0}, \ldots, a_{n}\right) \neq(0, \ldots, 0)$. We set $(f, H)=\sum_{i=0}^{n} a_{i} f_{i}$. We define the proximity function of f with respect to H by

$$
m_{f}(r, H)=\int_{\Gamma(r)} \log \frac{\|f\| \cdot\|H\|}{|(f, H)|} \eta-\int_{\Gamma(1)} \log \frac{\|f\| \cdot\|H\|}{|(f, H)|} \eta,
$$

where $\|H\|=\left(\sum_{i=0}^{n}\left|a_{i}\right|^{2}\right)^{1 / 2}$.
Theorem 2.1 (The first main theorem). Let $f: \mathbb{C}^{m} \rightarrow \mathbb{P}^{n}(\mathbb{C})$ be a meromorphic mapping and H be a hyperplane in $\mathbb{P}^{n}(\mathbb{C})$. Assume that $f\left(\mathbb{C}^{m}\right) \not \subset H$. Then

$$
\begin{equation*}
T_{f}(r)=N\left(r, \nu_{(f, H)}^{0}\right)+m_{f}(r, H)+O(1) \quad(r>1) . \tag{2.3}
\end{equation*}
$$

Theorem 2.2 (Lemma on logarithmic derivative). Let f be a nonzero meromorphic function on \mathbb{C}^{m}. Then

$$
\begin{equation*}
\| m\left(r, \frac{\mathcal{D}^{\alpha}(f)}{f}\right)=O\left(\log ^{+} T_{f}(r)\right) \quad\left(\alpha \in \mathbb{Z}_{+}^{m}\right) . \tag{2.4}
\end{equation*}
$$

As usual, "\| P " means the assertion P holds for all $r \in(1, \infty)$ off a finite Lebesgue measure subset of $(1, \infty)$.

Let $\left\{H_{i}\right\}_{i=1}^{q}$ be q hyperplanes in $\mathbb{P}^{n}(\mathbb{C})$. They are said to be in general position if $\bigcap_{j=0}^{n} H_{i_{j}}=\emptyset$ for any $1 \leq i_{0}<\cdots<i_{n} \leq q$.

We now state the known result on the Second Main Theorem for differential nondegenerate meromorphic mappings.

Theorem 2.3 (Carlson-Griffiths [CG], Shiffman [Sh], Noguchi Ng, Drouilhet [D]). Let f be a differential nondegenerate meromorphic mapping of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})(m \geq n)$. Let $\left\{H_{i}\right\}_{i=1}^{q}$ be q hyperplanes in $\mathbb{P}^{n}(\mathbb{C})$ in general position. Then

$$
\|(q-n-1) T_{f}(r) \leq N^{[1]}\left(r, f^{*} A\right)+o\left(T_{f}(r)\right),
$$

where A is the divisor $\sum_{i=1}^{q} H_{i}$.
3. Some lemmas. Let f be a differential nondegenerate meromorphic mapping of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})(m \geq n)$ and let H_{1}, \ldots, H_{q} be q hyperplanes in $\mathbb{P}^{n}(\mathbb{C})$ in general position. For each $g \in \mathcal{G}\left(f,\left\{H_{i}\right\}_{i=1}^{q}, 1\right)$, it is easy to see that if $q \geq n+2$ then

$$
I(g)=\bigcap_{i=1}^{q} g^{-1}\left(H_{i}\right)=\bigcap_{i=1}^{q} f^{-1}\left(H_{i}\right)=I(f) .
$$

Let $f_{1}, f_{2}, f_{3} \in \mathcal{G}\left(f,\left\{H_{i}\right\}_{i=1}^{q}, 1\right)$. Assume that each f_{k} has a reduced representation

$$
f_{k}:=\left(f_{k 0}: \cdots: f_{k n}\right) \quad(1 \leq k \leq 3) .
$$

We now introduce some notations which will be used throughout this paper.

We denote by $A_{i j}, B_{i j}$ the hypersurfaces in \mathbb{C}^{m} defined by

$$
\begin{aligned}
& A_{i j}=\bigcup\left\{\alpha: \text { irreducible hypersurface } \subset f^{-1}\left(H_{i}\right) \cap f^{-1}\left(H_{j}\right)\right\}, \\
& B_{i j}=\bigcup\left\{\alpha: \text { irreducible hypersurface } \subset \overline{\left.f^{-1}\left(H_{i}\right) \backslash f^{-1}\left(H_{j}\right)\right\}} .\right.
\end{aligned}
$$

We set $T(r):=\sum_{k=1}^{3} T_{f_{k}}(r)$.
For each $c=\left(c_{0}, \ldots, c_{n}\right) \in \mathbb{C}^{n+1} \backslash\{0\}$, we denote by H_{c} the hyperplane $\left\{c_{0} \omega_{0}+\cdots+c_{n} \omega_{n}=0\right\}$ and put

$$
\left(f_{k}, H_{c}\right):=\sum_{i=0}^{n} c_{i} f_{k i} \quad(1 \leq k \leq 3)
$$

For $i \in\{1, \ldots, q\}$, let

$$
V_{i}=\left(\left(f_{1}, H_{i}\right),\left(f_{2}, H_{i}\right),\left(f_{3}, H_{i}\right)\right) \in \mathcal{M}_{\mathbb{C}^{m}}^{3} .
$$

We write

- $V_{i} \approx V_{j}$ if $\frac{\left(f_{1}, H_{i}\right)}{\left(f_{1}, H_{j}\right)}=\frac{\left(f_{2}, H_{i}\right)}{\left(f_{2}, H_{j}\right)}=\frac{\left(f_{3}, H_{i}\right)}{\left(f_{3}, H_{j}\right)}$,
otherwise we write $V_{i} \not \approx V_{j}$,
- $V_{i} \sim V_{j}$ if there exists a permutation $\{k, t, s\}$ of $\{1,2,3\}$ so that $\frac{\left(f_{k}, H_{i}\right)}{\left(f_{k}, H_{j}\right)}=\frac{\left(f_{t}, H_{i}\right)}{\left(f_{t}, H_{j}\right)} \neq \frac{\left(f_{s}, H_{i}\right)}{\left(f_{s}, H_{j}\right)}$,
- $V_{i} \nsim V_{j}$ if $\frac{\left(f_{1}, H_{i}\right)}{\left(f_{1}, H_{j}\right)} \neq \frac{\left(f_{2}, H_{i}\right)}{\left(f_{2}, H_{j}\right)} \neq \frac{\left(f_{3}, H_{i}\right)}{\left(f_{3}, H_{j}\right)} \neq \frac{\left(f_{1}, H_{i}\right)}{\left(f_{1}, H_{j}\right)}$.

We decompose the set of indices $\{1, \ldots, q\}$ into disjoint sets as follows:
(i) $\{1, \ldots, q\}=I_{1} \cup \cdots \cup I_{k}$,
(ii) $V_{i} \approx V_{j}$ for all $i, j \in I_{t}(1 \leq t \leq k)$,
(iii) $V_{i} \not \approx V_{j}$ for all $i \in I_{t}, j \in I_{s}(1 \leq t<s \leq k)$.

We set $I\left(\left\{H_{i}\right\}_{i=1}^{q} ; f_{1}, f_{2}, f_{3}\right)=k$, the number of sets in the above partition of $\{1, \ldots, q\}$.

LEMMA 3.1. If $q \geq n+2$ and $I\left(f_{1}, f_{2}, f_{3}\right) \leq 2$ then $f_{1}=f_{2}=f_{3}$.
Proof. If $I\left(f_{1}, f_{2}, f_{3}\right)=1$, then the conclusion is clear. Now suppose that $I\left(f_{1}, f_{2}, f_{3}\right)=2$ and $f_{1} \neq f_{2}$.

Let I_{1}, I_{2} be two disjoint sets in the partition of $\{1, \ldots, q\}$ as in 3.1. By changing the indices if necessary, we may assume that $I_{1}=\{1, \ldots, l\}$ and $I_{2}=\{l+1, \ldots, q\}$, where $l \leq q-1$. If $\sharp I_{1}=l \geq n+1$ then $f_{1}=f_{2}$, contrary to assumption. Therefore $l \leq n$.

Without loss of generality, we may assume that the hyperplanes $H_{i}(1 \leq$ $i \leq n+2)$ are given by $H_{i}=\left\{\omega_{i-1}=0\right\}(1 \leq i \leq n+1)$ and $H_{n+2}=$ $\left\{-\omega_{0}-\cdots-\omega_{n}=0\right\}$. Then

$$
\begin{equation*}
\sum_{i=1}^{n+2}\left(f_{s}, H_{i}\right)=0 \quad(s=1,2) \tag{3.2}
\end{equation*}
$$

We set

$$
h=\frac{\left(f_{1}, H_{1}\right)}{\left(f_{2}, H_{1}\right)} \quad \text { and } \quad g=\frac{\left(f_{1}, H_{l+1}\right)}{\left(f_{2}, H_{l+1}\right)}
$$

Since $f_{1} \neq f_{2}$, we have $h \neq g$. From (3.2), it follows that

$$
h\left(f_{2}, H_{1}\right)+\cdots+h\left(f_{2}, H_{l}\right)+g\left(f_{2}, H_{l+1}\right)+\cdots+g\left(f_{2}, H_{n+2}\right)=0
$$

Thus

$$
(h-g)\left(\left(f_{2}, H_{1}\right)+\cdots+\left(f_{2}, H_{l}\right)\right)=0
$$

and so

$$
f_{20}+f_{21}+\cdots+f_{2(l-1)}=0
$$

This contradicts the differential nondegeneracy of f_{2}. Hence $f_{1}=f_{2}$.
Similarly, we have $f_{1}=f_{2}=f_{3}$.

Denote by \mathcal{C} the set of all $c \in \mathbb{C}^{n+1} \backslash\{0\}$ such that
(i) $\operatorname{dim}\left\{z \in \mathbb{C}^{m}:\left(f_{k}, H_{i}\right)(z)=\left(f_{k}, H_{c}\right)(z)=0\right\} \leq m-2(1 \leq i \leq q$, $1 \leq k \leq 3$),
(ii) $\left\{H_{1}, \ldots, H_{q}, H_{c}\right\}$ are in general position.

Lemma 3.2. \mathcal{C} is dense in \mathbb{C}^{n+1}.
Proof. Denote by \mathcal{C}_{1} the set of all $c \in \mathbb{C}^{n+1} \backslash\{0\}$ which satisfy (i). Then, by [J, Lemma 5.1], \mathcal{C}_{1} is dense in \mathbb{C}^{n+1}.

For $I=\left\{i_{1}, \ldots, i_{n}\right\} \subset\{1, \ldots, q\}$ with $\sharp I=n$, define a holomorphic function T_{I} on \mathbb{C}^{n+1} by setting $T_{I}(c):=\operatorname{det}\left(a_{i_{j} k}, c_{k}\right)$, where $1 \leq j \leq n, 0 \leq$ $k \leq n$. It is easy to see that $T_{I} \not \equiv 0$. Thus, $S=\bigcap_{I} T_{I}^{-1}\{0\}$ is an analytic set of codimension one in \mathbb{C}^{n+1}.

Therefore, $\mathcal{C}=\mathcal{C}_{1} \backslash S$ is dense in \mathbb{C}^{n+1}. -
Lemma 3.3 (see Fu98]). For each $c \in \mathbb{C}^{n} \backslash\{0\}$, set $F_{c}^{i s}=\left(f_{s}, H_{i}\right) /\left(f_{s}, c\right)$ (we will write $F_{j}^{i s}$ for $F_{c}^{i s}$ if $H_{c}=H_{j}$). Then $T_{F_{c}^{i s}}(r) \leq T_{f_{s}}(r)+o(T(r))$.

Lemma 3.4. Let $q=n+3$ and let f_{1}, f_{2} be as above. Suppose that $f_{1} \neq f_{2}$. Then:
(i) $\| N_{\left(f, H_{i}\right)}^{[1]}(r)=N\left(r, \min \left\{\nu_{\left(f_{1}, H_{i}\right)}^{0}, \nu_{\left(f_{2}, H_{i}\right)}^{0}\right\}\right)+o(T(r))(1 \leq i \leq n+3)$,
(ii) $\| T_{f_{1}}(r)=T_{f_{2}}(r)+o(T(r))=\frac{1}{2} N^{[1]}\left(r, f^{*} A\right)+o(T(r))$, where $A=$ $H_{1}+\cdots+H_{q}$,
(iii) if $\| \frac{\left(f_{1}, H_{i}\right)}{\left(f_{1}, H_{j}\right)}=\frac{\left(f_{2}, H_{i}\right)}{\left(f_{2}, H_{j}\right)}$ then $\| N^{[1]}\left(r, B_{i j}\right)=N^{[1]}\left(r, B_{j i}\right)+o(T(r))=$ $o(T(r))$,
(iv) if $\| \frac{\left(f_{1}, H_{i}\right)}{\left(f_{1}, H_{j}\right)} \neq \frac{\left(f_{2}, H_{i}\right)}{\left(f_{2}, H_{j}\right)}$ then $\| N^{[1]}\left(r, A_{i j}\right)=o(T(r))$.

Proof. (i)-(iii) Fix $i \in\{1, \ldots, n+3\}$. Since $f \neq g$, there exists $c=$ $\left(c_{0}, \ldots, c_{n}\right) \in \mathcal{C}$ such that

$$
P_{i c}:=\left(f_{1}, H_{i}\right)\left(f_{2}, H_{c}\right)-\left(f_{1}, H_{c}\right)\left(f_{2}, H_{i}\right) \neq 0 .
$$

For $z \in \mathbb{C}^{m} \backslash I(f)$, it is easy to see that

- if $z \in \operatorname{Supp} f^{*} A \backslash f^{-1}\left(H_{i}\right)$ then $\nu_{P_{i c}}^{0}(z) \geq 1$, since $f_{1}(z)=f_{2}(z)$,
- if $z \in f^{-1}\left(H_{i}\right)$ then $\nu_{P_{i c}}^{0}(z) \geq \min \left\{\nu_{\left(f_{1}, H_{i}\right)}^{0}(z), \nu_{\left(f_{2}, H_{i}\right)}^{0}(z)\right\}$.

This yields

$$
\nu_{P_{i c}}^{0}(z) \geq \min \left\{\nu_{\left(f_{1}, H_{i}\right)}^{0}(z), \nu_{\left(f_{2}, H_{i}\right)}^{0}(z)\right\}+\min \left\{f^{*} A(z), 1\right\}-\min \left\{\nu_{\left(f, H_{i}\right)}^{0}(z), 1\right\} .
$$

Integrating, we obtain

$$
\begin{equation*}
N_{P_{i c}}(z) \geq N\left(r, \min \left\{\nu_{\left(f_{1}, H_{i}\right)}^{0}, \nu_{\left(f_{2}, H_{i}\right)}^{0}\right\}\right)+N^{[1]}\left(r, f^{*} A\right)-N_{\left(f, H_{i}\right)}^{[1]}(r) . \tag{3.3}
\end{equation*}
$$

On the other hand, by Jensen's formula and the definition of the characteristic function,

$$
\begin{align*}
& N_{P_{i c}}(r)=\int_{\Gamma(r)} \log \left|P_{i c}\right| \eta+O(1) \tag{3.4}\\
& \leq \int_{\Gamma(r)}\left(\log \left(\left|\left(f_{1}, c\right)\right|^{2}+\left|\left(f_{1}, H_{i}\right)\right|^{2}\right)^{1 / 2}\right. \\
&\left.\quad+\log \left(\left|\left(f_{2}, c\right)\right|^{2}+\left|\left(f_{2}, H_{i}\right)\right|^{2}\right)^{1 / 2}\right) \eta+O(1) \\
& \leq T_{f_{1}(r)+T_{f_{2}}(r)+o(T(r)) .}
\end{align*}
$$

By the Second Main Theorem, we also have

$$
\begin{equation*}
\| T_{f_{s}}(r) \leq \frac{1}{2} N^{[1]}\left(r, f^{*} A\right)+o(T(r)) \quad(1 \leq s \leq 2) \tag{3.5}
\end{equation*}
$$

Combining 3.3-3.5 with $N\left(r, \min \left\{\nu_{\left(f_{1}, H_{i}\right)}^{0}, \nu_{\left(f_{2}, H_{i}\right)}^{0}\right\}\right) \geq N_{\left(f, H_{i}\right)}^{[1]}(r)$, we obtain

$$
\begin{align*}
& \| N\left(r, \min \left\{\nu_{\left(f_{1}, H_{i}\right)}^{0}, \nu_{\left(f_{2}, H_{i}\right)}^{0}\right\}\right)=N_{\left(f, H_{i}\right)}^{[1]}(r)+o(T(r)), \tag{3.6}\\
& \| T_{f_{s}}(r)=\frac{1}{2} N_{P_{i c}}(r)+o(T(r))=\frac{1}{2} N^{[1]}\left(r, f^{*} A\right) \quad(1 \leq s \leq 2) .
\end{align*}
$$

Thus (i) and (ii) are proved.
If there is an index j such that $\| \frac{\left(f_{1}, H_{i}\right)}{\left(f_{1}, H_{j}\right)}=\frac{\left(f_{2}, H_{i}\right)}{\left(f_{2}, H_{j}\right)}$, then we see that:

- If $z \in \operatorname{Supp} f^{*} A \backslash B_{i j}$ then $\nu_{P_{i c}}^{0}(z) \geq 1$, since $f(z)=g(z)$.
- If $z \in B_{i j} \backslash f^{-1}\left(H_{j}\right)$, we rewrite $P_{i c}$ as follows:

$$
P_{i c}=\frac{\left(f_{1}, H_{i}\right)}{\left(f_{1}, H_{j}\right)}\left(\left(f_{1}, H_{j}\right)\left(f_{2}, H_{c}\right)-\left(f_{1}, H_{c}\right)\left(f_{2}, H_{j}\right)\right) .
$$

Then $\nu_{P_{i c}}^{0}(z) \geq 2$.
This yields

$$
\nu_{P_{i c}}^{0}(z) \geq\left(\min \left\{f^{*} A(z), 1\right\}-B_{i j}(z)\right)+2 B_{i j}(z)=\min \left\{f^{*} A(z), 1\right\}+B_{i j}(z) .
$$

Integrating, we get

$$
N_{P_{i c}}(z) \geq N^{[1]}\left(r, f^{*} A\right)+N^{[1]}\left(r, B_{i j}\right) .
$$

Combining this with 3.6, we have $\| N^{[1]}\left(r, B_{i j}\right)=o(T(r))$.
Similarly, \| $N^{[1]}\left(r, B_{i j}\right)=N^{[1]}\left(r, B_{j i}\right)+o(T(r))=o(T(r))$, proving (iii).
(iv) Suppose that $\| \frac{\left(f_{1}, H_{i}\right)}{\left(f_{1}, H_{j}\right)} \neq \frac{\left(f_{2}, H_{j}\right)}{\left(f_{2}, H_{j}\right)}$. We consider the holomorphic function

$$
P_{i j}:=\left(f_{1}, H_{i}\right)\left(f_{2}, H_{j}\right)-\left(f_{1}, H_{j}\right)\left(f_{2}, H_{i}\right) \neq 0 .
$$

Similarly to the argument in (i)-(iii), we see that:

- If $z \in \operatorname{Supp} f^{*} A \backslash A_{i j}$ then $\nu_{P_{i c}}^{0}(z) \geq 1$, since $f(z)=g(z)$.
- If $z \in A_{i j}$, then $\nu_{P_{i c}}^{0}(z) \geq \min \left\{\nu_{\left(f, H_{i}\right)}^{0}(z), 1\right\}+\min \left\{\nu_{\left(f, H_{j}\right)}^{0}(z), 1\right\}=2$.

Hence $\nu_{P_{i c}}^{0}(z) \geq\left(\min \left\{f^{*} A(z), 1\right\}-A_{i j}(z)\right)+2 A_{i j}(z)=\min \left\{f^{*} A(z), 1\right\}+$ $A_{i j}(z)$. It follows that

$$
N_{P_{i j}}(r) \geq N^{[1]}\left(r, f^{*} A\right)+N^{[1]}\left(r, A_{i j}\right)
$$

Combining this with 3.6, we have $\| N^{[1]}\left(r, A_{i j}\right)=o(T(r))$, and (iv) is proved.

REMARK 3.5. 1) Lemma 3.4 is also valid for any distinct maps h, g in $\mathcal{G}\left(f,\left\{H_{i}\right\}_{i=1}^{n+3}, 1\right)$.
2) If $q=n+3$ and f_{1}, f_{2}, f_{3} are distinct maps in $\mathcal{G}\left(f,\left\{H_{i}\right\}_{i=1}^{n+3}, 1\right)$, then:
(a) For $i, j \in\{1, \ldots, n+3\}$ with $V_{i} \sim V_{j}$, we have $\| N\left(r, A_{i j}\right)=o(T(r))$ and $\| N\left(r, B_{i j}\right)=N\left(r, B_{j i}\right)+o(T(r))=o(T(r))$. From Lemma 3.4(iii)-(iv), it follows that

$$
\begin{aligned}
\| N_{\left(f, H_{i}\right)}^{[1]}(r) & =N\left(r, A_{i j}\right)+N\left(r, B_{i j}\right) \\
\| N_{\left(f, H_{j}\right)}^{[1]}(r) & =N\left(r, A_{i j}\right)+N\left(r, B_{j i}\right)
\end{aligned}=o(T(r)) .
$$

(b) Take a partition $I_{1} \cup \cdots \cup I_{k}$ as in (3.1). Denote by A_{i} the the hypersurface defined by
$A_{i}=\bigcup\left\{\alpha:\right.$ irreducible hypersurface $\left.\subset \overline{\bigcap_{j \in I_{i}} f^{-1}\left(H_{j}\right) \backslash \bigcup_{j \notin I_{i}} f^{-1}\left(H_{j}\right)}\right\}$.
From the above remark, we see that for any irreducible hypersurface $\alpha \subset f^{-1}\left(H_{j}\right)$ in \mathbb{C}^{m} such that $\alpha \not \subset f^{-1}\left(H_{j^{\prime}}\right)$ whenever $V_{j^{\prime}} \approx V_{j}$ or $\alpha \subset f^{-1}\left(H_{j}\right.$,) whenever $V_{j "} \not \not \not \approx V_{j}$ we have $\| N(r, \alpha)=o(T(r))$. Therefore,

- $\operatorname{dim}\left(A_{i_{1}} \cap A_{i_{2}}\right) \leq m-2$ for all $\leq i_{1}<i_{2} \leq k$,
- $A_{i} \subset f^{-1}\left(H_{j}\right)$ and $\| N_{\left(f, H_{j}\right)}^{[1]}(r)=N\left(r, A_{i}\right)+o(T(r))$ for all $j \in I_{i}, 1 \leq i \leq k$,
- $\| T_{f_{s}}(r)=\frac{1}{2} \sum_{i=1}^{k} N\left(r, A_{i}\right)+o(T(r))$.

Definition 3.6 (see [Fu98]). Let F_{0}, F_{1}, F_{2} be meromorphic functions on \mathbb{C}^{m}. Write $\alpha:=\left(\alpha^{1}, \ldots, \alpha^{m}\right)$ where α^{k} are nonnegative integers, and set $|\alpha|=\left|\alpha^{1}\right|+\cdots+\left|\alpha^{m}\right|$. We define Cartan's auxiliary function by

$$
\Phi^{\alpha}\left(F_{0}, F_{1}, F_{2}\right):=F_{0} F_{1} F_{2} \cdot\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 / F_{0} & 1 / F_{1} & 1 / F_{2} \\
\mathcal{D}^{\alpha}\left(1 / F_{0}\right) & \mathcal{D}^{\alpha}\left(1 / F_{1}\right) & \mathcal{D}^{\alpha}\left(1 / F_{2}\right)
\end{array}\right| .
$$

Lemma 3.7 ([Fu98, Proposition 3.4]). If $\Phi^{\alpha}(F, G, H)=0$ and $\Phi^{\alpha}(1 / F, 1 / G, 1 / H)=0$ for all α with $|\alpha| \leq 1$, then one of the following assertions holds:
(i) $F=G, G=H$ or $H=F$.
(ii) There exist $\alpha, \beta \notin\{0,1\}$ with $\alpha \neq \beta$ such that $F=\alpha G=\beta H$.

For $f_{1}, f_{2}, f_{3} \in \mathcal{G}\left(f,\left\{H_{i}\right\}_{i=1}^{q}, 1\right)$ and each $j(1 \leq j \leq q)$, we define a divisor D_{j} by

$$
D_{j}(z)= \begin{cases}\nu_{\left(f_{1}, H_{j}\right)}^{0}(z) & \text { if } \nu_{\left(f_{1}, H_{j}\right)}^{0}(z)=\nu_{\left(f_{2}, H_{j}\right)}^{0}(z)=\nu_{\left(f_{3}, H_{j}\right)}^{0}(z) \\ 0 & \text { otherwise }\end{cases}
$$

We now prove the following lemma, which is an improvement of the lemma on Cartan's auxiliary function of Fujimoto [Fu98].

Lemma 3.8. Let $f_{1}, f_{2}, f_{3} \in \mathcal{G}\left(f,\left\{H_{i}\right\}_{i=1}^{q}, 1\right)$. Assume that $\Phi^{\alpha}:=$ $\Phi^{\alpha}\left(F_{c}^{i_{0} 1}, F_{c}^{i_{0} 2}, F_{c}^{i_{0} 3}\right) \neq 0$ for some $c \in \mathcal{C}$ and α with $|\alpha|=1$. Then:
(i) $\| N\left(r, D_{i_{0}}\right)+2\left(N^{[1]}\left(r, f^{*} A\right)-N_{\left(f, H_{i_{0}}\right)}^{[1]}(r)\right) \leq N_{\Phi^{\alpha}}(r) \leq T(r)+$ $o(T(r))$, where A is the divisor $\sum_{i=1}^{q} H_{i}$ on $\mathbb{P}^{n}(\mathbb{C})$.
(ii) If $q=n+3$ then $\| 2 N_{\left(f, H_{i_{0}}\right)}^{[1]}(r) \geq N\left(r, D_{i_{0}}\right)+T_{f_{s}}(r)+o(T(r))$ $(1 \leq s \leq 3)$.
Proof. Set $I:=I(f) \cup \bigcup_{1 \leq i \leq n+3}\left(f^{-1}\left(H_{i}\right) \cap f^{-1}\left(H_{c}\right)\right)$. Then I is either an analytic subset of codimension at least two in \mathbb{C}^{m} or an empty set.

Assume that a is a zero of some $\left(f, H_{i}\right), i \neq i_{0}$, such that $a \notin I$ and $a \notin\left(f, H_{i_{0}}\right)^{-1}\{0\}$. Let Γ be an irreducible component of the zero divisor of the function $\left(f, H_{i}\right)$ which contains a. We take a holomorphic function h on \mathbb{C}^{m} satisfying $\nu_{h}^{0}=\nu(L)$, where $\nu(L)$ denotes the reduced divisor with support L.

The function

$$
\varphi_{s}:=\frac{1}{h F_{c}^{i_{0} s}}-\frac{1}{h F_{c}^{j_{0} 3}}
$$

is holomorphic on a neighbourhood U of a for all $1 \leq s \leq 2$. Since $|\alpha|=1$, we have

$$
\Phi^{\alpha}:=h^{2} F_{c}^{i_{0} 1} F_{c}^{i_{0} 2} F_{c}^{i_{0} 3} \cdot\left|\begin{array}{cc}
\varphi_{1} & \varphi_{2} \\
\mathcal{D}^{\alpha} \varphi_{1} & \mathcal{D}^{\alpha} \varphi_{2}
\end{array}\right|
$$

This implies that

$$
\begin{equation*}
\nu_{\Phi^{\alpha}}^{0}(a) \geq 2 \tag{3.7}
\end{equation*}
$$

Assume that b is a zero of $\left(f, H_{i_{0}}\right)$ such that $b \notin I$. We write

$$
\Phi^{\alpha}=\sum_{\sigma \in S_{3}} \operatorname{sign}(\sigma) F_{c}^{i_{0} 1} F_{c}^{i_{0} 2} F_{c}^{i_{0} 3} \cdot \frac{1}{F_{c}^{i_{0} \sigma(2)}} \cdot \mathcal{D}^{\alpha}\left(\frac{1}{F_{c}^{i_{0} \sigma(3)}}\right)
$$

This implies that

$$
\begin{align*}
\nu_{\Phi^{\alpha}}(b) & \geq \min _{\sigma \in S_{3}}\left(\sum_{s=1}^{3} \nu_{F_{c}^{i_{0} s}}(b)-\nu_{F_{c}^{i_{0} \sigma(2)}}^{0}(b)-\nu_{F_{c}^{i_{0} \sigma(3)}}^{0}(b)-1\right) \tag{3.8}\\
& =\min _{\sigma \in S_{3}}\left(\nu_{F_{c}^{i_{0} \sigma(1)}}^{0}(b)-1\right) \geq 0
\end{align*}
$$

If $b \in \operatorname{Supp} D_{i_{0}}$ then $\nu_{\left(f_{1}, H_{i_{0}}\right)}(b)=\nu_{\left(f_{2}, H_{i_{0}}\right)}(b)=\nu_{\left(f_{3}, H_{i_{0}}\right)}(b)=D_{i_{0}}(b)$. There exists a holomorphic function h on an open neighbourhood U of b such that $\nu_{h}=D_{\left.i_{0}\right|_{U}}$. We write

$$
\begin{aligned}
& \Phi^{\alpha}=h^{-2} F_{c}^{i_{0} 1} F_{c}^{i_{0} 2} F_{c}^{i_{0} 3} \\
& \quad \cdot\left|\begin{array}{cc}
h / F_{c}^{i_{0} 1}-h / F_{c}^{i_{0} 3} & h / F_{c}^{i_{0} 2}-h / F_{c}^{i_{0} 3} \\
\mathcal{D}^{\alpha}\left(h / F_{c}^{i_{0} 1}\right)-D^{\alpha}\left(h / F_{c}^{i_{0} 3}\right) & \mathcal{D}^{\alpha}\left(h / F_{c}^{i_{0} 2}\right)-D^{\alpha}\left(h / F_{c}^{i_{0} 3}\right)
\end{array}\right| .
\end{aligned}
$$

Then

$$
\begin{equation*}
\nu_{\Phi^{\alpha}}(b) \geq \nu_{h}(b)=D_{i_{0}}(b) \tag{3.9}
\end{equation*}
$$

From (3.7)-(3.9), we have

$$
D_{i_{0}}(z)+2\left(\min \left\{f^{*}(A)(z), 1\right\}-\min \left\{\nu_{\left(f, H_{i_{0}}\right)}^{0}(z)\right\}\right) \leq \nu_{\Phi^{\alpha}}^{0}(z)
$$

for all z outside an analytic subset of codimension at least two. This immediately implies the first inequality of (i).

It is easy to see that a pole of Φ^{α} is either a zero or a pole of some $F_{c}^{i_{0} s}$. By (3.7-3.9) we see that Φ^{α} is holomorphic at all zeros of $F_{c}^{i_{0} s}(1 \leq s \leq 3)$. Then

$$
N_{1 / \Phi^{\alpha}}(r) \leq \sum_{s=1}^{3} N_{1 / F_{c}^{i_{0} s}}(r)
$$

On the other hand, it is easy to see that

$$
\begin{aligned}
m\left(r, \Phi^{\alpha}\right) & \leq \sum_{s=1}^{3} m\left(r, F_{c}^{i_{0} s}\right)+O\left(\sum m\left(r, \frac{\mathcal{D}^{\alpha}\left(\varphi_{c}^{i_{0} s}\right)}{\varphi_{c}^{i_{0} s}}\right)\right)+O(1) \\
& \leq \sum_{s=1}^{3} m\left(r, F_{c}^{i_{0} s}\right)+o(T(r))
\end{aligned}
$$

where $\varphi_{c}^{i_{0} s}=1 / F_{c}^{i_{0} s}$. Hence,

$$
\begin{aligned}
N_{\Phi^{\alpha}}(r) & \leq T_{\Phi^{\alpha}}(r)+O(1) \leq m\left(r, \Phi^{\alpha}\right)+N_{1 / \Phi^{\alpha}}(r)+O(1) \\
& \leq \sum_{s=1}^{3}\left(N_{1 / F_{c}^{i_{0} s}}(r)+m\left(r, F_{c}^{i_{0} s}\right)\right)+o(T(r)) \\
& =\sum_{s=1}^{3} T_{F_{c}^{i_{0} s}}(r)+o(T(r)) \leq T(r)+o(T(r))
\end{aligned}
$$

proving the second inequality of (i).
Finally, the second assertion of the lemma immediately follows from the first assertion and Lemma 3.4(ii).

From now on, we will denote by $Q\left(\left\{H_{i}\right\}_{i=1}^{q} ; f_{1}, f_{2}, f_{3}\right)$ the set of all indices $j \in\{1, \ldots, q\}$ such that $\Phi^{\alpha}\left(F_{c}^{j 1}, F_{c}^{j 2}, F_{c}^{j 3}\right)=0$ for all $c \in \mathcal{C}$ and α with $|\alpha|=1$.

Lemma 3.9. Let $f_{1}, f_{2}, f_{3} \in \mathcal{G}\left(f,\left\{H_{i}\right\}_{i=1}^{n+3}, 1\right)$. Then there do not exist $i_{0}, j_{0} \in\{1, \ldots, n+3\}$ and $\alpha, \beta \notin\{0,1\}, \alpha \neq \beta$, such that

$$
\begin{equation*}
\frac{\left(f_{1}, H_{i_{0}}\right)}{\left(f_{1}, H_{j_{0}}\right)}=\alpha \frac{\left(f_{2}, H_{i_{0}}\right)}{\left(f_{2}, H_{j_{0}}\right)}=\beta \frac{\left(f_{3}, H_{i_{0}}\right)}{\left(f_{3}, H_{j_{0}}\right)} . \tag{3.10}
\end{equation*}
$$

Proof. Suppose that such i_{0}, j_{0} and α, β exist. Then f_{1}, f_{2}, f_{3} must be pairwise distinct. Take a partition $I_{1} \cup \cdots \cup I_{k}$ of $\{1, \ldots, n+3\}$ as in (3.1). By Lemma 3.1, we see that $k=I\left(\left\{H_{i}\right\}_{i=1}^{n+3} ; f_{1}, f_{2}, f_{3}\right) \geq 3$. Without loss of generality, we may assume that $i_{0} \in I_{1}$ and $j_{0} \in I_{2}$.

For each $3 \leq t \leq k$, if there exists $z \in A_{t}$, then $\frac{\left(f_{1}, H_{i_{0}}\right)(z)}{\left(f_{1}, H_{j_{0}}\right)(z)}=\alpha \frac{\left(f_{2}, H_{i_{0}}\right)(z)}{\left(f_{2}, H_{j_{0}}\right)(z)}$ and hence $1=\alpha$, since $f_{1}(z)=f_{2}(z)$. This is a contradiction. Therefore, $A_{t}=\emptyset$ for all $3 \leq t \leq k$. By Remark $3.5(2 \mathrm{~b})$, we have

$$
\begin{equation*}
\| N_{\left(f, H_{j}\right)}^{[1]}=o(T(r)) \quad \forall j \in I_{t}, i \geq 3 \tag{3.11}
\end{equation*}
$$

Then from Lemma 3.8 (ii) and 3.11 , we see that $j \in \mathcal{G}\left(f,\left\{H_{i}\right\}_{i=1}^{n+3}, 1\right)$ for all $j \in I_{t}$ and $i \geq 3$.

By Remark 3.5 (2b), for $1 \leq s \leq 3$ we have

$$
\begin{aligned}
\| T_{f_{s}}(r) & =\frac{1}{2} \sum_{i=1}^{k} N\left(r, A_{i}\right)+o(T(r))=\frac{1}{2}\left(N\left(r, A_{1}\right)+N\left(r, A_{2}\right)\right)+o(T(r)) \\
& =\frac{1}{2}\left(N_{\left(f_{s}, H_{i_{0}}\right)}^{[1]}(r)+N_{\left(f_{s}, H_{j_{0}}\right)}^{[1]}(r)\right)+o(T(r))
\end{aligned}
$$

This easily implies that

$$
\begin{equation*}
\| T_{f_{s}}(r)=N_{\left(f_{s}, H_{i_{0}}\right)}(r)+o(T(r))=N_{\left(f_{s}, H_{i_{0}}\right)}^{[1]}(r)+o(T(r)) \tag{3.12}
\end{equation*}
$$

Then

$$
\| N_{\left(f_{s}, H_{i_{0}}\right)}^{[1]}(r)=N_{\left(f_{s}, H_{i_{0}}\right)}(r)+o(T(r)) \geq N_{\left(f_{s}, H_{i_{0}}\right)}^{[1]}(r)+\frac{1}{2} N_{\left(f_{s}, H_{i_{0}}\right),>1}^{[1]}(r) .
$$

Therefore, $\| N_{\left(f_{s}, H_{i_{0}}\right),>1}^{[1]}(r)=o(T(r))$. Similarly,

$$
\begin{equation*}
\| T_{f_{s}}(r)=N_{\left(f_{s}, H_{j_{0}}\right)}^{[1]}(r)+o(T(r)) \quad \text { and } \quad \| N_{\left(f_{s}, H_{j_{0}}\right),>1}^{[1]}(r)=o(T(r)) \tag{3.13}
\end{equation*}
$$

From (3.11)-3.13) and Remark 3.5 (2a), we see that $V_{i} \nsim V_{i_{0}}$ and $V_{i} \nsim V_{j_{0}}$ for all $i \in I_{t}$ and $t \geq 3$.

Taking $i_{1} \in I_{3}$, by the density of \mathcal{C}, we have

$$
\Phi^{\alpha}\left(F_{c}^{i_{1} 1}, F_{c}^{i_{1} 2}, F_{c}^{i_{1} 3}\right)=0
$$

for all $c \in \mathbb{C}^{n}$ and α with $|\alpha|=1$. In particular,

$$
\Phi^{\alpha}\left(F_{i_{0}}^{i_{1} 1}, F_{i_{0}}^{i_{1} 2}, F_{i_{0}}^{i_{1} 3}\right)=0
$$

i.e.,

$$
\left|\begin{array}{cc}
F_{i_{1}}^{i_{0} 1}-F_{i_{1}}^{i_{0} 2} & F_{i_{1}}^{i_{0} 1}-F_{i_{1}}^{i_{0} 3} \\
\mathcal{D}^{\alpha}\left(F_{i_{1}}^{i_{0}}-F_{i_{1}}^{i_{0} 2}\right) & \mathcal{D}^{\alpha}\left(F_{i_{1}}^{i_{0} 1}-F_{i_{1}}^{i_{0} 3}\right)
\end{array}\right|=0
$$

for all α with $|\alpha|=1$. Since the last determinant is a Wronskian, there exist constants α_{1} and β_{1}, not both zero, such that

$$
\alpha_{1}\left(F_{i_{1}}^{i_{0} 1}-F_{i_{1}}^{i_{0} 2}\right)=\beta_{1}\left(F_{i_{1}}^{i_{0} 1}-F_{i_{1}}^{i_{0} 3}\right)
$$

Thus

$$
\begin{equation*}
\left(\alpha_{1}-\beta_{1}\right) F_{i_{1}}^{i_{0} 1}-\alpha_{1} F_{i_{1}}^{i_{0} 2}+\beta_{1} F_{i_{1}}^{i_{0} 3}=0 \tag{3.14}
\end{equation*}
$$

Because $V_{i} \nsim V_{i_{0}}$, we have $\alpha_{1}, \beta_{1} \notin\{0,1\}$ and $\alpha_{1} \neq \beta_{1}$. We consider the meromorphic mapping $F: \mathbb{C}^{m} \rightarrow \mathbb{P}^{1}(\mathbb{C})$ with reduced representation $F=$ $\left(h F_{i_{1}}^{i_{0} 1}: h F_{i_{1}}^{i_{0} 2}\right.$), where h is a meromorphic function on \mathbb{C}^{m}. We distinguish the following two cases.

Case 1: $F=$ const. Then there exist constants α_{2} and β_{2} such that

$$
\begin{equation*}
F_{i_{1}}^{i_{0} 1}=\alpha_{2} F_{i_{1}}^{i_{0} 1}=\beta_{2} F_{i_{1}}^{i_{0} 1} \tag{3.15}
\end{equation*}
$$

Since $V_{i} \nsim V_{i_{0}}$, we have $\alpha_{2}, \beta_{2} \notin\{0,1\}$ and $\alpha_{2} \neq \beta_{2}$. Repeating the same argument as above, we get the following estimate, similar to (3.11):

$$
N_{\left(f_{s}, H_{j_{0}}\right)}^{[1]}(r)=o(T(r))
$$

This contradicts (3.13).
Case 2: $F \neq$ constant. We see that a zero of some $h F_{i_{1}}^{i_{0} s}(1 \leq s \leq 3)$ must be a zero of $\left(f, H_{i_{0}}\right)$ or a zero of $\left(f, H_{i_{1}}\right)$.

Take a regular point z_{0} of $A_{i_{1}}$ with $z_{0} \notin A_{i_{0}}$. From (3.15), there exists a permutation $\left\{s_{1}, s_{2}, s_{3}\right\}$ of $\{1,2,3\}$ such that $\nu_{\left(f_{s_{1}}, H_{i_{1}}\right)}^{0}\left(z_{0}\right) \leq \nu_{\left(f_{s_{2}}, H_{i_{1}}\right)}^{0}\left(z_{0}\right)=$ $\nu_{\left(f_{s_{3}}, H_{i_{1}}\right)}^{0}\left(z_{0}\right)$. This yields $\nu_{h}^{0}\left(z_{0}\right)=\nu_{\left(f_{s_{2}}, H_{i_{1}}\right)}^{0}\left(z_{0}\right)$. Thus

$$
\begin{align*}
\sum_{s=1}^{3} \min \{ & \left.\nu_{h F_{i_{1}}^{0}}^{0} i_{0}\left(z_{0}\right), 1\right\} \tag{3.16}\\
& =\nu_{\left(f_{s_{2}}, H_{i_{1}}\right)}^{0}\left(z_{0}\right)-\nu_{\left(f_{s_{1}}, H_{i_{1}}\right)}^{0}\left(z_{0}\right) \\
& =\min \left\{\nu_{\left(f_{s_{2}}, H_{i_{1}}\right)}^{0}\left(z_{0}\right), \nu_{\left(f_{s_{3}}, H_{i_{1}}\right)}^{0}\left(z_{0}\right)\right\}-\min \left\{\nu_{\left(f, H_{i_{1}}\right)}^{0}\left(z_{0}\right), 1\right\} \\
& \leq \sum_{1 \leq s<t \leq 3}\left(\min \left\{\nu_{\left(f_{s}, H_{i_{1}}\right)}^{0}\left(z_{0}\right), \nu_{\left(f_{t}, H_{i_{1}}\right)}^{0}\left(z_{0}\right)\right\}-\nu_{\left(f, H_{i_{1}}\right)}^{0}\left(z_{0}\right)\right)
\end{align*}
$$

Now take a regular point z_{0} of $A_{i_{0}}$ with $z_{0} \notin A_{i_{1}}$. Again by (3.15), there exists a permutation $\left\{s_{1}, s_{2}, s_{3}\right\}$ of $\{1,2,3\}$ such that $\nu_{\left(f_{s_{1}}, H_{\left.i_{0}\right)}\right)}^{\left(z_{0}\right)=}$ $\nu_{\left(f_{s_{2}}, H_{i_{0}}\right)}^{0}\left(z_{0}\right) \leq \nu_{\left(f_{s_{3}}, H_{i_{0}}\right)}^{0}\left(z_{0}\right)$. This yields $\nu_{h}^{\infty}\left(z_{0}\right)=\nu_{\left(f_{s_{1}}, H_{i_{1}}\right)}^{0}\left(z_{0}\right)$. Thus

$$
\begin{align*}
\sum_{s=1}^{3} \min \left\{\nu_{h F_{i_{1}}^{i_{0}}}^{0}\left(z_{0}\right), 1\right\} & =\min \left\{\nu_{\left(f_{s_{3}}, H_{i_{0}}\right)}^{0}\left(z_{0}\right)-\nu_{\left(f_{s_{1}}, H_{i_{0}}\right)}^{0}\left(z_{0}\right), 1\right\} \tag{3.17}\\
& \leq 1-D_{i_{0}}^{[1]}\left(z_{0}\right)
\end{align*}
$$

Combining (3.16), 3.17) and Lemma 3.4(i), we obtain

$$
\begin{aligned}
\| \sum_{s=1}^{3} N_{h F_{i_{1}}^{i_{0} s}}^{[1]}(r) \leq & \sum_{1 \leq s<t \leq 3}\left(N\left(r, \min \left\{\nu_{\left(f_{s}, H_{i_{1}}\right)}^{0}, \nu_{\left(f_{t}, H_{i_{1}}\right)}^{0}\right\}\right)-N_{\left(f, H_{i_{1}}\right)}^{[1]}(r)\right) \\
& +N_{\left(f, H_{i_{0}}\right)}^{[1]}-N^{[1]}\left(r, D_{i_{0}}\right)+o(T(r)) \\
= & N_{\left(f, H_{i_{0}}\right)}^{[1]}-N^{[1]}\left(r, D_{i_{0}}\right)+o(T(r)) .
\end{aligned}
$$

Since $f(z)=g(z)$ for all $z \in A_{2}$ we obtain $\left(h F_{i_{1}}^{i_{0} 1}-h F_{i_{1}}^{i_{0} 2}\right)(z)=0$ for all $z \in A_{2} \backslash\left(A_{1} \cup A_{3}\right)$. Then we have

$$
\begin{align*}
& \| N_{\left(f, H_{j_{0}}\right)}^{[1]}(r) \tag{3.18}\\
& \quad=N\left(r, A_{2}\right)+o(T(r)) \leq N_{h F_{i_{1}}^{i_{0} 1}-h F_{i_{1}}^{i_{0} 2}}^{[1]}(r)+o(T(r)) \\
& \quad \leq T_{F}(r)+o(T(r)) \\
& \quad \leq \sum_{s=1}^{3} N_{h F_{i_{1}}^{i_{0} s}}^{[1]}(r)+o(T(r)) \leq N_{\left(f, H_{i_{0}}\right)}^{[1]}-N^{[1]}\left(r, D_{i_{0}}\right)+o(T(r)) \\
& \quad \leq \sum_{s=1}^{2} N_{\left(f_{s}, H_{i_{0}}\right),>1}^{[1]}+o(T(r))=o(T(r))
\end{align*}
$$

This contradicts $N_{\left(f, H_{j_{0}}\right)}^{[1]}(r)=T_{f_{s}}(r)+o(T(r))(1 \leq s \leq 3)$.
From Lemmas 3.7 and 3.9, we immediately get
Lemma 3.10. Let $f_{1}, f_{2}, f_{3} \in \mathcal{G}\left(f,\left\{H_{i}\right\}_{i=1}^{n+3}, 1\right)$. Suppose that $i_{0}, j_{0} \in$ $Q\left(\left\{H_{i}\right\}_{i=1}^{3} ; f_{1}, f_{2}, f_{3}\right)$. Then $V_{i_{0}} \approx V_{j_{0}}$ or $V_{i_{0}} \sim V_{j_{0}}$.

Proof. By the density of \mathcal{C}, we have

$$
\Phi^{\alpha}\left(F_{c}^{i_{0} 1}, F_{c}^{i_{0} 2}, F_{c}^{i_{0} 3}\right)=\Phi^{\alpha}\left(F_{c}^{j_{0} 1}, F_{c}^{j_{0} 2}, F_{c}^{j_{0} 3}\right)=0
$$

for all $c \in \mathcal{C}$ and α with $|\alpha|=1$. In particular,

$$
\Phi^{\alpha}\left(F_{j_{0}}^{i_{0} 1}, F_{j_{0}}^{i_{0} 2}, F_{j_{0}}^{i_{0} 3}\right)=\Phi^{\alpha}\left(F_{i_{0}}^{j_{0} 1}, F_{i_{0}}^{j_{0} 2}, F_{i_{0}}^{j_{0} 3}\right)=0
$$

By Lemma 3.7, one of the following two assertions holds:

- $F_{j_{0}}^{i_{0} 1}=F_{j_{0}}^{i_{0} 2}$ or $F_{j_{0}}^{i_{0} 2}=F_{j_{0}}^{i_{0} 3}$ or $F_{j_{0}}^{i_{0} 3}=F_{j_{0}}^{i_{0} 1}$,
- there exist $\alpha, \beta \notin\{0,1\}, \alpha \neq \beta$, such that $F_{j_{0}}^{i_{0} 1}=\alpha F_{j_{0}}^{i_{0} 2}=\beta F_{j_{0}}^{i_{0} 3}$.

Lemma 3.9 shows that the second assertion cannot be true. Thus the first must hold. Hence $V_{i_{0}} \approx V_{j_{0}}$ or $V_{i_{0}} \sim V_{j_{0}}$.
4. Proofs of main theorems. We need the following lemma.

LEMMA 4.1. Let $f_{1}, f_{2}, f_{3} \in \mathcal{G}\left(f,\left\{H_{i}\right\}_{i=1}^{n+3}, 1\right)$ be distinct and $i_{0} \in$ $Q\left(\left\{H_{i}\right\}_{i=1}^{n+3} ; f_{1}, f_{2}, f_{3}\right)$. Then there is a partition $I_{1} \cup I_{2} \cup I_{3}$ of $\{1, \ldots, n+3\}$ as in (3.1) satisfying:
(i) $i \in Q\left(\left\{H_{i}\right\}_{i=1}^{n+3} ; f_{1}, f_{2}, f_{3}\right)$ if and only if $i \in I_{1}$,
(ii) $\| N\left(r, A_{2}\right)=N\left(r, A_{3}\right)+o(T(r))$ and $\| N\left(r, D_{i}\right)=o(T(r))$ for all $i \in I_{2} \cup I_{3}$.

Proof. Since f_{1}, f_{2}, f_{3} are distinct, $I\left(\left\{H_{i}\right\}_{i=1}^{n+3} ; f_{1}, f_{2}, f_{3}\right) \geq 3$. We take a partition $I_{1} \cup \cdots \cup I_{l} \cup I_{l+1} \cup \cdots \cup I_{l+t}$ (changing the indices if necessary) of $\{1, \ldots, n+3\}$ as in (3.1), where $l+t \geq 3$, so that

$$
i_{0} \in I_{1}, \quad V_{i} \sim V_{i_{0}} \quad \forall i \in \bigcup_{1<i \leq l} I_{i}, \quad V_{i} \nsim V_{i_{0}} \quad \forall i \in \bigcup_{l<i \leq t+l} I_{i}
$$

(i) If $V_{i} \nsim V_{i_{0}} \Leftrightarrow i \in I_{l+1} \cup \cdots \cup I_{l+t}$ then $i \notin Q\left(\left\{H_{i}\right\}_{i=1}^{n+3} ; f_{1}, f_{2}, f_{3}\right)$, by Lemma 3.10. Therefore, to prove (i), it is sufficient to show that $l=1$ and $t=2$.

Indeed, suppose that $t>2$. For each $i \in\{l+1, \ldots, l+t\}$ we pick $j_{i} \in I_{i}$. By Lemma 3.8(ii),

$$
\begin{equation*}
\| 2 N_{\left(f, H_{j_{i}}\right)}^{[1]}(r) \geq N\left(r, D_{j_{i}}\right)+T_{f_{s}}(r)+o(T(r)) \tag{4.1}
\end{equation*}
$$

Since $i_{0} \in Q\left(\left\{H_{i}\right\}_{i=1}^{n+3} ; f_{1}, f_{2}, f_{3}\right)$, we have $\Phi^{\alpha}\left(F_{i_{0}}^{i}, F_{i_{0}}^{i}, F_{i_{0}}^{i}\right)=0$ for all $|\alpha|=1$. Repeating the same argument in the proof of Lemma 3.9, similarly to (3.14), there exist $\alpha_{1}, \beta_{1} \notin\{0,1\}, \alpha_{1} \neq \beta_{1}$, such that

$$
\left(\alpha_{1}-\beta_{1}\right) F_{j_{i}}^{i_{0} 1}-\alpha_{1} F_{j_{i}}^{i_{0} 2}+\beta_{1} F_{j_{i}}^{i_{0} 3}=0
$$

We consider the meromorphic mapping $F: \mathbb{C}^{m} \rightarrow \mathbb{P}^{1}(\mathbb{C})$ with representation $F=\left(F_{i_{1}}^{i_{0} 1}: F_{i_{1}}^{i_{0} 2}\right)$.

If $F=$ const, then there exist constants α_{2} and β_{2} such that

$$
F_{j_{i}}^{i_{0} 1}=\alpha_{2} F_{j_{i}}^{i_{0} 1}=\beta_{2} F_{j_{i}}^{i_{0} 1}
$$

Since $V_{j_{i}} \nsim V_{i_{0}}$, we have $\alpha_{2}, \beta_{2} \notin\{0,1\}$ and $\alpha_{2} \neq \beta_{2}$. Since $F_{i_{1}}^{i_{0} 1}(z)=$ $F_{i_{1}}^{i_{0} 1}(z) \notin\{1, \infty\}$ for all $z \in A_{v} \backslash\left(A_{i} \cup A_{1}\right)$ with $v \notin\{1, i\}$, it follows that $A_{v}=\emptyset$ for all $v \notin\{1, i\}$. In particular,

$$
\begin{aligned}
\| T_{f_{s}}(r) \leq N\left(r, A_{v}\right)+o(T(r))= & o(T(r)) \\
& \forall 1 \leq s \leq 3, l+1 \leq v \leq l+t, v \neq i
\end{aligned}
$$

This contradicts 4.1.
Thus $F \neq$ const. Repeating the same argument as in Case 2 of Lemma 3.9, we have the following inequality, similar to (3.18):

$$
\begin{align*}
\| \sum_{\substack{v \neq i \\
v=l+1}}^{l+t} N\left(r, A_{v}\right) & \leq N_{\left(F_{j_{i}}^{i_{0} 1} / F_{j_{i}}^{i_{0} 2}\right)-1}^{[1]}(r)+o(T(r)) \leq T_{F}(r)+o(T(r)) \tag{4.2}\\
& \leq N_{\left(f, H_{i_{0}}\right)}^{[1]}-N^{[1]}\left(r, D_{j_{i}}\right)+o(T(r))
\end{align*}
$$

Summing over all $i=l+1, \ldots, l+t$, we get

$$
\begin{equation*}
(t-2) \sum_{i=l+1}^{l+t} N\left(r, A_{i}\right)+\sum_{i=l+1}^{l+t} N\left(r, A_{i}\right) N^{[1]}\left(r, D_{j_{i}}\right) \leq o(T(r)) \tag{4.3}
\end{equation*}
$$

This is a contradiction.
Therefore, $t \leq 2$.
Suppose that $t=1$. We have $l+t \geq 3 \Leftrightarrow l \geq 2$, so by Remark 3.5(2a), $\| N\left(r, A_{i}\right)=o(T(r))$ for all $1 \leq i \leq l$. Therefore, from Remark $3.5(2 \mathrm{~b})$ it follows that

$$
\begin{aligned}
\| T_{f_{s}}(r) & \leq \frac{1}{2} \sum_{i=1}^{l+1} N\left(r, A_{i}\right)+o(T(r)) \leq \frac{1}{2} N\left(r, A_{l+1}\right)+o(T(r)) \\
& \leq \frac{1}{2} T_{f_{s}}(r)+o(T(r))
\end{aligned}
$$

a contradiction. Hence $t=2$.
We now prove $l=1$. Suppose that $l \geq 2$. Similarly to the above, we have $\| N\left(r, A_{i}\right)=o(T(r))$ for all $1 \leq i \leq l$ and

$$
\begin{aligned}
\| T_{f_{s}}(r) & \leq \frac{1}{2} \sum_{i=1}^{l+2} N\left(r, A_{i}\right)+o(T(r)) \\
& \leq \frac{1}{2}\left(N\left(r, A_{l+1}\right)+N\left(r, A_{l+2}\right)\right)+o(T(r)) \\
& \leq T_{f_{s}}(r)+o(T(r))
\end{aligned}
$$

This yields

$$
\begin{align*}
\| T_{f_{s}}(r) & =N\left(r, A_{l+1}\right)+o(T(r)) \tag{4.4}\\
& =N\left(r, A_{l+2}\right)+o(T(r)) \quad(1 \leq s \leq 3)
\end{align*}
$$

Then for $l+1 \leq i \leq l+2$, we have

$$
\begin{aligned}
\| N_{\left(f_{s}, H_{j_{i}}\right),>2}^{[1]}(r) & \leq N_{\left(f_{s}, H_{j_{i}}\right)}(r)-N_{\left(f_{s}, H_{j_{i}}\right)}^{[1]}(r) \\
& \leq T_{f_{s}}(r)-N_{\left(f_{s}, H_{j_{i}}\right)}^{[1]}(r)+o(T(r)) \\
& =T_{f_{s}}(r)-N\left(r, A_{i}\right)(r)+o(T(r))=o(T(r))
\end{aligned}
$$

This implies that

$$
\begin{aligned}
\| N\left(r, D_{j_{i}}\right) & \geq N_{\left(f, H_{j_{i}}\right)}^{[1]}(r)-\sum_{v=1}^{3} N_{\left(f_{v}, H_{j_{i}}\right),>2}^{[1]}(r) \\
& =N\left(r, A_{i}\right)+o(T(r))=T_{f_{s}}(r)+o(T(r)) \quad(1 \leq s \leq 3, i>l)
\end{aligned}
$$

contradicting (4.3). Therefore, $l=1$. The first assertion of the lemma is proved.
(ii) On the other hand, the inequality (4.3) implies that

$$
\begin{array}{ll}
\| N\left(r, A_{2}\right) \leq N\left(r, A_{3}\right)-N\left(r, D_{i}\right)+o(T(r)) & \forall i \in I_{3} \\
\| N\left(r, A_{3}\right) \leq N\left(r, A_{2}\right)-N\left(r, D_{i}\right)+o(T(r)) & \forall i \in I_{2}
\end{array}
$$

Thus \| $N\left(r, A_{2}\right)=N\left(r, A_{3}\right)+o(T(r))$ and $N\left(r, D_{i}\right)=o(T(r))$ for all $i \in$ $I_{2} \cup I_{3}$. The second assertion of the lemma is proved.

Proof of Theorem 1.2. Suppose that there exist three distinct mappings $f^{0}, f^{1}, f^{2} \in \mathcal{G}\left(f,\left\{H_{i}\right\}_{i=1}^{n+3}, 2\right)$. Then, by Lemma 3.4 (i),

$$
\begin{align*}
\| N_{\left(f_{s}, H_{i}\right),>2}^{[1]}(r) & =N_{\left(f_{s}, H_{i}\right)}^{[2]}(r)-N_{\left(f_{s}, H_{i}\right)}^{[1]}(r) \tag{4.5}\\
& \leq N\left(r, \min \left\{\nu_{\left(f_{s}, H_{i}\right)}^{0}, \nu_{\left(f_{t}, H_{i}\right)}^{0}\right\}\right)-N_{\left(f_{s}, H_{i}\right)}^{[1]}(r) \\
& =o(T(r)) \quad(1 \leq s \neq t \leq 3) .
\end{align*}
$$

Suppose that there exists $i_{0} \in Q\left(\left\{H_{i}\right\}_{i=1}^{n+3} ; f_{1}, f_{2}, f_{3}\right)$. We take a partition $I_{1} \cup I_{2} \cup I_{3}$ as in Lemma 4.1 with $i_{0} \in I_{1}$.

Then for each $i \in I_{2} \cup I_{3}$, we have $\Perp N\left(r, D_{i}\right)=o(T(r))$. Since $i \notin$ $Q\left(\left\{H_{i}\right\}_{i=1}^{n+3} ; f_{1}, f_{2}, f_{3}\right)$, combining Lemma 3.8 (ii) and 4.5), we also have

$$
\begin{align*}
\| N\left(r, D_{i}\right) & \geq N_{\left(f, H_{i}\right)}^{[1]}(r)-\sum_{s=1}^{3} N_{\left(f_{s}, H_{i}\right),>2}^{[1]}(r)=N_{\left(f, H_{i}\right)}^{[1]}(r)+o(T(r)) \tag{4.6}\\
& \geq \frac{1}{2}\left(N\left(r, D_{i}\right)+T_{f_{s}}(r)\right)+o(T(r)) \quad(1 \leq s \leq 3) .
\end{align*}
$$

It follows that $\| N\left(r, D_{i}\right)=T_{f_{s}}(r)+o(T(r))$. This contradicts $\| N\left(r, D_{i}\right)=$ $o(T(r))$.

Hence $i \notin Q\left(\left\{H_{i}\right\}_{i=1}^{n+3} ; f_{1}, f_{2}, f_{3}\right)$ for all $1 \leq i \leq n+3$. Similarly to 4.6), we have $\| N\left(r, D_{i}\right)=T_{f_{s}}(r)+o(T(r))$. By Lemma 3.8 (ii), it follows that

$$
\| 2 N_{\left(f_{s}, H_{i}\right)}^{[1]}(r) \geq N\left(r, D_{i}\right)+T_{f_{s}}(r)+o(T(r))=2 T_{f_{s}}(r)+o(T(r)) .
$$

Take a partition $I_{1} \cup \cdots \cup I_{k}$ of $\{1, \ldots, n+3\}$ as in (3.1). Then

$$
k=I\left(\left\{H_{i}\right\}_{i=1}^{n+3} ; f_{1}, f_{2}, f_{3}\right) \geq 3 .
$$

From Remark 3.5(2b), we have

$$
\begin{aligned}
\| T_{f_{s}}(r) & =\frac{1}{2} \sum_{i=1}^{k} N\left(r, A_{i}\right)+o(T(r)) \\
& =\frac{1}{2} \sum_{i=1}^{k} T_{f_{s}}(r)+o(T(r))=\frac{k}{2} T_{f_{s}}(r)+o(T(r)) .
\end{aligned}
$$

Letting $r \rightarrow \infty$, we get $1=k / 2$, a contradiction.
Proof of Theorem 1.3. Suppose that there exist three distinct mappings $f^{0}, f^{1}, f^{2} \in \mathcal{G}\left(f,\left\{H_{i}\right\}_{i=1}^{n+3}, 1\right)$. Firstly, we notice that for $i \neq j, \operatorname{dim} A_{i j} \leq$
$\operatorname{dim}\left(f^{-1} H_{i} \cap H_{1}\right) \leq m-2$ (by the assumption of the theorem), and hence $A_{i j}=\emptyset$ and $\| N\left(r, A_{i j}\right)=0$. Therefore if $V_{i} \approx V_{j}$, then

$$
\begin{equation*}
\| N_{\left(f, H_{i}\right)}^{[1]}(r)=N_{\left(f, H_{i}\right)}^{[1]}(r)+o(T(r))=o(T(r)) . \tag{4.7}
\end{equation*}
$$

Suppose that there exists $i_{0} \in Q\left(\left\{H_{i}\right\}_{i=1}^{n+3} ; f_{1}, f_{2}, f_{3}\right)$. We take a partition $I_{1} \cup I_{2} \cup I_{3}$ as in Lemma 4.1 with $i_{0} \in I_{1}$.

Then for each $i \in I_{2} \cup I_{3}$, by Lemma 3.8 (ii) we have

$$
\left.N_{\left(f_{s}, H_{i}\right)}^{[1]}(r) \geq \frac{1}{2} T_{f_{s}}(r)\right)+o(T(r)) \quad(1 \leq s \leq 3) .
$$

From this and (4.7), it is easy to see that $\sharp I_{2}=\sharp I_{3}=1$. Then $\sharp I_{1}=n+1$. It follows that $f_{1}=f_{2}=f_{3}$, a contradiction.

Therefore, $i \notin Q\left(\left\{H_{i}\right\}_{i=1}^{n+3} ; f_{1}, f_{2}, f_{3}\right)$ for all $1 \leq i \leq n+3$. By Lemma 3.8(ii), we have

$$
\begin{equation*}
\| N_{\left(f_{s}, H_{i}\right)}^{[1]}(r) \geq \frac{1}{2} T_{f_{s}}(r)+o(T(r)) . \tag{4.8}
\end{equation*}
$$

Take a partition $I_{1} \cup \cdots \cup I_{k}$ of $\{1, \ldots, n+3\}$ as in (3.1). As above, by (4.7) and (4.8) we easily see that $\sharp I_{i}=1$ for $1 \leq i \leq k$. Therefore $k=n+3$.

From Remark 3.5(2b), we have

$$
\begin{aligned}
\| T_{f_{s}}(r) & =\frac{1}{2} \sum_{i=1}^{n+3} N\left(r, A_{i}\right)+o(T(r)) \\
& \geq \frac{1}{4} \sum_{i=1}^{n+3} T_{f_{s}}(r)+o(T(r))=\frac{n+3}{4} T_{f_{s}}(r)+o(T(r)) .
\end{aligned}
$$

Letting $r \rightarrow \infty$, we get $1 \geq(n+3) / 4$, a contradiction.
Proof of Theorem 1.4. Suppose that f^{0}, f^{1}, f^{2} are distinct. By Lemma 3.4 (i),

$$
\begin{align*}
\| N_{\left(f_{s}, H_{1}\right),>2}^{[1]}(r) & =N_{\left(f_{s}, H_{1}\right)}^{[2]}(r)-N_{\left(f_{s}, H_{1}\right)}^{[1]}(r) \tag{4.9}\\
& \leq N\left(r, \min \left\{\nu_{\left(f_{s}, H_{1}\right)}^{0}, \nu_{\left(f_{t}, H_{1}\right)}^{0}\right\}\right)-N_{\left(f_{s}, H_{1}\right)}^{[1]}(r) \\
& =o(T(r)) \quad(1 \leq s \neq t \leq 3)
\end{align*}
$$

We also notice that for $i \neq 1, \operatorname{dim} A_{i 1} \leq \operatorname{dim}\left(f^{-1} H_{i} \cap H_{1}\right) \leq m-2$ (by assumption), so $A_{i 1}=\emptyset$ and $\| N\left(r, A_{i 1}\right)=0$. This shows that if $V_{i} \approx V_{1}$ then

$$
\begin{equation*}
\| N_{\left(f, H_{1}\right)}^{[1]}(r)=N_{\left(f, H_{i}\right)}^{[1]}(r)+o(T(r))=o(T(r)) . \tag{4.10}
\end{equation*}
$$

Suppose that there exists $i_{0} \in Q\left(\left\{H_{i}\right\}_{i=1}^{n+3} ; f_{1}, f_{2}, f_{3}\right)$. We take a partition $I_{1} \cup I_{2} \cup I_{3}$ as in Lemma 4.1 with $i_{0} \in I_{1}$.

If $\sharp I_{1}=1$ then $I\left(\left\{H_{i}\right\}_{i=2}^{n+3} ; f_{1}, f_{2}, f_{3}\right)=2$. By Lemma 3.1, we have $f_{1}=$ $f_{2}=f_{3}$, a contradiction. Therefore $\sharp I_{1} \geq 2$.

We distinguish the following two cases.
Case 1: $1 \in I_{1}$. There exists $v \in I_{1}, v \neq 1$. By 4.10, one gets

$$
N\left(r, A_{i}\right)=N_{\left(f, H_{1}\right)}^{[1]}(r)+o(T(r))=o(T(r)) \quad\left(\text { because } V_{v} \approx V_{1}\right)
$$

Therefore,

$$
\begin{aligned}
T_{f_{s}}(r) & =\frac{1}{2}\left(N\left(r, A_{1}\right)+N\left(r, A_{2}\right)+N\left(r, A_{3}\right)\right)+o(T(r)) \\
& =\frac{1}{2}\left(N\left(r, A_{2}\right)+N\left(r, A_{3}\right)\right)+o(T(r))
\end{aligned}
$$

This yields \| $N\left(r, A_{2}\right)=N\left(r, A_{3}\right)+o(T(r))=T_{f_{s}}(r)+o(T(r))$.
Taking $i \in I_{2}$, we have

$$
\begin{aligned}
\| N_{\left(f_{s}, H_{i}\right),>2}^{[1]}(r) & \leq N_{\left(f_{s}, H_{i}\right)}^{[2]}(r)-N_{\left(f_{s}, H_{i}\right)}^{[1]}(r) \\
& \leq T_{f_{s}}(r)-N_{\left(f_{s}, H_{i}\right)}^{[1]}(r)+o(T(r))=o(T(r)) \quad(1 \leq s \leq 3)
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\| N\left(r, D_{i}\right) & \geq N_{\left(f, H_{i}\right)}^{[1]}(r)-\sum_{s=1}^{3} N_{\left(f_{s}, H_{i}\right),>2}^{[1]}(r) \\
& =N\left(r, A_{2}\right)+o(T(r))=T_{f_{s}}(r)+o(T(r))
\end{aligned}
$$

This contradicts $\| N\left(r, D_{i}\right)=o(T(r))$ (because $i \in I_{2}$).
Case 2: $1 \notin I_{1}$. We may assume that $1 \in I_{2}$. By Lemma 3.8(ii), we have $\| N_{\left(f, H_{1}\right)}^{[1]}(r) \geq \frac{1}{2} T_{f_{s}}(r)+o(T(r))$. Suppose that there exists $i \in I_{2} \backslash\{1\}$. Then $V_{i} \approx V_{1}$ and 4.10 implies that $\| N_{\left(f, H_{1}\right)}^{[1]}(r)=o(T(r))$, a contradiction.

Therefore $I_{2}=\{1\}$. Hence $I\left(\left\{H_{i}\right\}_{i=2}^{n+3} ; f_{2}, f_{2}, f_{3}\right)=2$. Then $f_{1}=f_{2}=f_{3}$, by Lemma 3.1, a contradiction.

Therefore, $Q\left(\left\{H_{i}\right\}_{i=1}^{n+3} ; f_{1}, f_{2}, f_{3}\right)=\emptyset$. Now Lemma 3.8(ii) yields

$$
\begin{equation*}
\| N_{\left(f_{s}, H_{i}\right)}^{[1]}(r) \geq \frac{1}{2} T_{f_{s}}(r)+o(T(r)) \quad(1 \leq s \leq 3) \tag{4.11}
\end{equation*}
$$

We take a partition $I_{1} \cup \cdots \cup I_{k}$ as in (3.1). We may assume that $1 \in I_{1}$. By repeating the same argument as in Case 2, we have $I_{1}=\{1\}$. Then $k-1=I\left(\left\{H_{i}\right\}_{i=2}^{n+3} ; f_{1}, f_{2}, f_{3}\right) \geq 3 \Leftrightarrow k \geq 4$, by Lemma 3.1.

On the other hand, it follows from Lemma 3.8(ii) that

$$
\begin{aligned}
\| 2 N_{\left(f_{s}, H_{1}\right)}^{[1]}(r) & \geq N\left(r, D_{1}\right)+T_{f_{s}}(r)+o(T(r)) \\
& \geq N_{\left(f_{s}, H_{1}\right)}^{[1]}(r)-\sum_{v=1}^{3} N_{\left(f_{s}, H_{1}\right),>2}^{[1]}(r)+T_{f_{s}}(r)+o(T(r)) \\
& =N_{\left(f_{s}, H_{1}\right)}^{[1]}(r)+T_{f_{s}}(r)+o(T(r)) \quad(1 \leq s \leq 3)
\end{aligned}
$$

Thus

$$
\begin{equation*}
N_{\left(f_{s}, H_{1}\right)}^{[1]}(r)=T_{f_{s}}(r)+o(T(r)) \quad(1 \leq s \leq 3) \tag{4.12}
\end{equation*}
$$

Combining Remark 3.5(2b), 4.11) and 4.12 we get

$$
\begin{aligned}
2 T_{f_{s}}(r) & =\sum_{i=1}^{k} N\left(r, A_{i}\right)+o(T(r)) \\
& \geq T_{f_{s}}(r)+\sum_{i=2}^{k} \frac{1}{2} T_{f_{s}}(r)+o(T(r)) \\
& =\frac{k+1}{2} T_{f_{s}}(r)+o(T(r))
\end{aligned}
$$

Letting $r \rightarrow \infty$, we get $2 \geq(k+1) / 2$, that is, $k \leq 3$. This contradicts $k \geq 4$.

Acknowledgements. This work was supported in part by a NAFOSTED grant of Vietnam.

References

[A] Y. Aihara, Finiteness theorem for meromorphic mappings, Osaka J. Math. 35 (1998), 593-61.
[CG] J. Carlson and P. Griffiths, A defect relation for equidimensional holomorphic mappings between algebraic varieties, Ann. of Math. 95 (1972), 557-584.
$[\mathrm{CY}] \quad$ Z. Chen and Q. Yan, Uniqueness theorem of meromorphic mappings into $\mathbb{P}^{N}(\mathbb{C})$ sharing $2 N+3$ hyperplanes regardless of multiplicities, Int. J. Math. 20 (2009), 717-726.
[D] S. J. Drouilhet, A unicity theorem for meromorphic mappings between algebraic varieties, Trans. Amer. Math. Soc. 265 (1981), 349-358.
[Fu98] H. Fujimoto, Uniqueness problem with truncated multiplicities in value distribution theory, Nagoya Math. J. 152 (1998), 131-152.
[Fu99] H. Fujimoto, Uniqueness problem with truncated multiplicities in value distribution theory, II, Nagoya Math. J. 155 (1999), 161-188.
[J] S. Ji, Uniqueness problem without multiplicities in value distribution theory, Pacific J. Math. 135 (1988), 323-348.
[N] R. Nevanlinna, Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen, Acta Math. 48 (1926), 367-391.
$[\mathrm{Ng}] \quad$ J. Noguchi, Meromorphic mappings of a covering surface over \mathbb{C}^{m} into a projective variety and defect relations, Hiroshima Math. J. 6 (1976), 281-291.
[NO] J. Noguchi and T. Ochiai, Introduction to Geometric Function Theory in Several Complex Variables, Transl. Math. Monogr. 80, Amer. Math. Soc., Providence, RI, 1990.
[Q] S. D. Quang, Unicity of meromorphic mappings with few hyperplanes, Ann. Polon. Math. 102 (2011), 255-270.
[Sh] B. Shiffman, Nevanlinna defect relations for singular divisors, Invent. Math. 31 (1975), 155-182.

Si Duc Quang
Department of Mathematics
Hanoi National University of Education
136-Xuan Thuy, Cau Giay
Hanoi, Vietnam
E-mail: quangsd@hnue.edu.vn

Received 6.2.2013
and in final form 22.11.2013

[^0]: 2010 Mathematics Subject Classification: Primary 32H30, 32A22; Secondary 30D35. Key words and phrases: differential nondegenerate, finiteness, meromorphic mapping.

