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L-homology theory of FS()L-manifolds and
the degree of ['S()L-mappings

by A. ABBAsOV (Biga)

Abstract. A homology theory of Banach manifolds of a special form, called FSQL-
manifolds, is developed, and also a homological degree of FSQL-mappings between FSQL-
manifolds is introduced.

1. Introduction. In this article the results of the article [3] are gener-
alized to Banach manifolds of a special form, namely to Fredholm Special
Quasi Linear (FSQL) manifolds. In other words, a homology theory of such
manifolds is devised and also the homological degree of F'SQL-mappings be-
tween them is introduced. Every FSQL-mapping is an F@QL-mapping [10] @
and vice versa. However, F'SQL-mappings are more convenient for the struc-
ture of F'SQL-manifolds.

It is known that the degree of a mapping is a strong tool for proving
the existence of solutions of various mathematical problems. For instance,
various variants of the nonlinear Hilbert problem ([7], [10], etc.) have been
solved with the help of the degree of FQL-mappings. Moreover, the homo-
logical degree of mappings transforms topological problems into algebraic
ones. In this case, the problem of finding the degree of a mapping will be
reduced to a combinatorial problem.

2. Definition of F'SQ)L-manifolds and F'SQ)L-mappings. Let &, =
(Xp, ¢p, Vp) and &y = (Xp, @p,r, Vpr) be affine bundles with identical total
space X, and with base spaces V,,, V},, which are p- and r-manifolds (r > p),
respectively.
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(*) See [I] for the proof that every FQL-mapping is an FSQL-mapping.
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DEFINITION 2.1. &, is called an (r — p)-division of §, if
Vo' €V, Ja €V, gpz;i(o/) C w;l(a) and

codim(cp;,{(a’)) =r—pin goljl(a).
Obviously, in this case V,, is an affine bundle with the base space V),
and with fibers of dimension r — p.
Let 0, = (Yon, ¥m, Bim) also be an affine bundle, the base space of which
is an m-manifold.

DEFINITION 2.2. A continuous mapping fp m : Xp — Yy, is called a Fred-
holm Special Linear (FSL) mapping between the affine bundles &, and 7, if
for some r there exists an (r — p)-division &, , = (X, @pr, Vp,r) of &, and an
(r —m)-division 9y » = (Yo, ¥m,rs Bm,r) of 0 with the same dimension r of
the base spaces, such that f}, ,, induces a bimorphism between &, and 1, .

From this point on, we will denote such f, , as fpm. We will also call
the restriction of an F'SL-mapping to any subset of X, an F'SL-mapping.

Obviously, if f, ., is a bimorphism between &, , and 7, ,, then it is
also a bimorphism between some (v — r)-divisions &,, = (Xp, ¢pv, Vo)
and 7y = (Yon, Ymw, Bm,y) of & and 0y, for any v > r.

For simplicity, let us assume that &, and 7, are embedded in Banach
spaces Ey and Ey with norms ||-||; and || ||2, respectively. Let f,mr : Xp —
Y., be a bimorphism between &, and 7,,, and A, be a bounded domain
in X,. Let

1 fp.mrllla, = supinf{C | || fpm,rar(u)l[2 < C(1+ [ull),
ully < CA+ | fpmrar (Wll2), Yu € Xpor,

where X, o is the fiber of &,, over o € V., fpmra is the restriction
of fpm, onto X, s, and the supremum is taken over all X, ., for which
Xp,o/ N Ap 7'5 (D

DEFINITION 2.3. A continuous mapping fpm : X, — Yy, is called an
FSQL-mapping between the affine bundles £, and 7,, if it can be uniformly
approximated in each bounded domain A, of X, by FSL-mappings fpm,r
so that

[ fpmrlla, < C(Ap),  Vr>r(4yp),

where C(4,) is independent of r for r > r(A,).

Now we shall give definitions of FSQL-manifolds and of F'SQL-mappings
between FSQL-manifolds. Let X be a Banach manifold and {Xp} Xp 1 C

Xp7 p=1,2,..., be a system of open sets covering X, ie X = UX Let
& = (Xp, ©ps Vp) be an affine bundle, A, be a bounded domain in X, and
@p: X, — A, be a homeomorphism. In this case, (@, X,) is called a linear
chart (L-chart) on X. We shall say that a linear structure (L-structure)
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is introduced on Xp if the conditions above are satisfied. If an L-structure
is defined on Xp+1, then obviously it is also defined on Xp (as an induced
structure). If @, : X'p/ — Ay, Gpr - f(pu — Apr, p',p" > p, are two L-
structures on Xp, then the transition functions @~ o 973;,1 : Ay — Ay and
Ppr © (,5;,1 : Apr — Ay arise. Let us suppose that they are FS@QL-mappings
between &, = (Xp/, Op's VZD/) and &, = (Xp//, Oplt s VZD")' In that case, we shall
say that the two L-structures on Xp are equivalent.

DEFINITION 2.4. A class of equivalent L-structures on Xp is called an
FSQL-structure on X,,.

Obviously, an FSQL—structure on Xp+1 induces an FSQL-structure on
X An FSQL—structure on Xp is said to be coordinated with an FSQL-
structure on Xp+1 if it coincides with the induced structure.

DEFINITION 2.5. A collection of FSQL-structures on Xp, p=12...,

which are coordinated with each other is called an FSQL-structure on X.
A Banach manifold X with an FSQL-structure is called an FSQL-manifold.

Let X, Y be FSQL-manifolds,
C=U% %@ Ky ¥, ¥ = T T 9

(gpp, ) (m, Ym) be L-charts on X, Y and cpp( p) =4, Vm(Yim) = 2
be bounded domains in &, = (Xp, ¢p, Vp), 7m = (Y, ¥m, Bm), respectively.

DEFINITION 2.6. A continuous mapping f : X — Y between FSQL-
manifolds X and Y is called an FSQL-mapping if

(@) ¥p 3m, f(%y) C T

(b) fom = Ymo fo @ 1 Ap — 2y is an FSQL-mapping between the
domains of the afﬁne bundles &, and n,.

3. L-homology theory of affine bundles. Singular theory. First,
note that the simplicial theory of (n, k)-simplexes is available in [3], it is
similar to the finite-dimensional case.

Let H be a real Hilbert space, H* be a linear subspace of codimension
k (k> 0) and o, be a Euclidean n-simplex. We will name the Cartesian
product o, x H* a Hilbertian simplez of bi-dimension (n,k) and we will
denote it by o, that is, of = o, x H¥. We will consider ¢ to be oriented
if o, is orlented In this case, the orientation on o, is taken to be the
orientation on ¢*. From this point on, we will consider ¢* to be oriented.

DEFINITION 3.1. A continuous mapping f¥ : 0% — X is called a singu-
lar (n, k)-simplez in &, if there exists a k-division (£,) of &, such that f*
induces a bimorphism between o,, x H* and §pr -
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It follows from this definition that each singular (n, k)-simplex f* induces
some finite-dimensional mapping between the base spaces o, and V,y (p' =
p + k) of these bundles.

DEFINITION 3.2. A finite formal linear combination & = > 9 f;fﬂ of
singular (n, k)-simplexes in &, with coefficients g; € Z, where Z is the ring
of integers, is called a singular (n, k)-chain in &p.

We will denote by CF(X,) the set of all singular chains in &, of bi-
dimension (n, k). Obviously, it is an Abelian group under addition of chains.
It is a free group.

DEFINITION 3.3. We define the differential

I OF(X,) — CF 1(X,) Yn>1,Yk>0
as follows:
Onfn = (=1'(falor_ )
and we extend it to C¥(X,) by additivity. Moreover,

o Ck(X,) —0 Vk>0.

REMARK. Here o_, ; is the (n—1, k)-boundary of the simplex o, which
is located opposite vertex 1.

THEOREM 3.4. The equality
5271 ) 55 =0
is true for eachn > 1 and k.
The proof is similar to the finite-dimensional case.

Analogously to the finite-dimensional case, one can define the groups
Ker 0%, Tm 8T’§+1 and HF, i.e. the groups of (n,k)-cycles, (n, k)-boundaries

no

and the (n, k)-homology group (see [3]). However the theory of relative ho-
mology of &,, which is introduced in the following section, is more interesting.

4. The relative L-homology of an affine bundle
DEFINITION 4.1. An (n, k)-chain & € C¥(X,) is called a relative cycle
of bi-dimension (n, k) if 0kek € C*_ (X, \ 4,).
DEFINITION 4.2. A relative cycle Efl is called homologous to zero if
31 € Chia(Xyp), Onln =@ dy, dy € CR(X,\ 4y).
It follows from this definition that the sum of relative (n, k)-cycles ho-
mologous to zero is also homologous to zero. Therefore the set of relative

(n, k)-cycles homologous to zero forms a subgroup of the group of relative
(n, k)-cycles.
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Now we define the concept of “support” of a singular simplex.

Let fjf be a singular simplex in X,,. By definition, it induces a bimor-
phism between o, x H* and some k-division & = (Xp, @p, V) of &, Then
(f&)=1(¢,) induces an affine bundle (Uﬁ;), which is a (kK — k)-division of
0'7]21 its base space o, is itself an affine bundle with base space o, and
fiber Hy—, n = n+ (k' — k), which is the Euclidean (k' — k)-space. As
oy is convex, one can represent o,  in the form of a Cartesian product:
0, = op X Hypr_ . Therefore the bundle J’n“; is also a Cartesian product, i.e.
aflj = o,y X H¥, where H K is a subspace of H of codimension k’. Now we
divide o, into n'-prisms o, ;, j = 0,+1,+2, ..., with bases oy, Let us
choose the orientation of one (n',k')-prism JE;J = o, j x H¥ arbitrarily
and coordinate orientations of other (n’, k')-prisms with it. Then any two
neighboring prisms will induce opposite orientations on the common edge.
Obviously, it is possible to divide o,/ into n/-prisms so that the restriction
of each of the mappings f* to a unique opj X H k" contains the intersection
of f¥(ck) with A; this is possible because of the linearity of each f¥ on H¥,
the uniform continuity of f¥ in «, and the boundedness of A,. In this case
all the other analogous restrictions will be outside of A,. Thus, we can give

the following

DEFINITION 4.3. The restriction of a singular simplex f¥ to an (n’, k')-

prism 0’1]21 is called an (n/, k')-support of fF if

(a) ' —n=kK —k,
(b) falom) N Ay = fr(oh) N A,

Let us denote the (n’, k’)-support of f* by fT’f,/ . From Deﬁnitionit fol-
lows that there can be different (n’, k')-supports of a singular (n, k)-simplex.
But obviously, the difference of two (n/, k')-supports of f* is homologous to
zero relative to X, \ A,.

Analogously, we shall say that a chain éﬁl, =>9i- & is an (n, K-

n' i
k

i if for each ¢ the simplex f* s an

support of the chain é& = > g; - i
(n', k")-support of fffZ

Obviously with the help of the above construction one can construct an
(n”, k")-support of the chain é& for any n” > n’, k" > k', where n" —n =
k" — k.

(2) For example, in the case of n = 1 and k' — k = 1 the base space 0,7, n’ = 2, can be
represented in the form of an infinite band. The line segment which defines the width of
this band is 0,,. Having divided this band into segments, we will obtain rectangles-prisms
ont,j, J=0,%£1,£2,..., with bases o,.

One can represent each prism o,/ ;, j = 0,%+1,£2,.. ., in the form of oy, X I}/ _j, where
Iy is a (K’ — k)-cube.
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REMARK. In view of the aforementioned construction, from this point
on we will suppose that all simplexes ffhf,i of EZ, are bimorphisms between

Op X _E[]c and fp// = (Xp,gop//7‘/;3//).

Let & be a singular cycle relative to X, \ 4, and &, be its (n',k’)-
support. Let us orient each simplex of 65, so that two simplexes which have
a common edge induce opposite orientations on this common edge. Then
Eﬁ/, is also a singular cycle relative to X, \ A,. Thus the relative cycle 67’2/, is
oriented (in two possible ways).

Obviously, two supports of a relative cycle & of the same bi-dimension

are homologous to each other relative to X, \ 4,.

LEMMA 4.4. If ¢ is a singular cycle relative to X, \ A,, then for ev-
ery l > 0 its (n+ 1,k +1)-support an is also a singular cycle relative to
X, \ 4p, and if an (n+ 1,k +1)-support ckH of & is a singular cycle rela-
tive to X, \ A, for some l > 0, then ek s also a singular cycle relative to
X\ 4y

Indeed, as & is a singular cycle relative to X,\ 4, okt € Ck_ | (X,\4,).
Because of the definition of a support of a chain and the construction of the
prism, the boundary of the (n + [, k 4 [)-support ckH also belongs to X\ 4,
for every [ > 0. For the proof of the second statement of this lemma, it is

enough to apply the construction from the definition of the support of a
function in reverse order.

LEMMA 4.5. If &k ~ 0 (Xp, X, \ Ap), then &t ~ 0 (X, X, \ 4,) for
all 1 > 0, and zf szill ~ 0 (Xp, X, \ 4y) for some I > 0, then & ~ 0
(Xp, Xp \ 4p) (O}

Indeed, if & ~ 0 (X,, X, \ 4,), then

31 € O (Xp),  Opndi = @dy,  dy e CR(X, \A ).
In this case one can construct an (n -+ 1+ 1,k + I)-support &t of &,
such that

ak—+l1 ~k:+l ~k+l Jk+1 Tk+ ~k+1
an—t—l—f—l n+l+1 n+l dn+l7 d +l S Cn+l (X \A )7

+l+

where c"“'H and dﬁill are (n+ [,k + l)-supports of ¢ c and dk, respectively.

For the proof of the second statement of this lemma it is enough to apply the

construction from the definition of support of a function in reverse order.
In view of Lemmas and we can give a new definition of homology

to zero, which is equivalent to the previous one.

(3) Here and in the following, k' = k+1, n’ =n 4 1.
(*) & ~ 0 (Xp, Xp \ 4,) means that & ~ 0 relative to X, \ Ap.
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DEFINITION 4.6 (equivalent to Definition . A relative cycle & is
called homologous to zero if for some | > 0 its (n + [, k + [)-support Eﬁill is
homologous to zero (in the sense of Definition .

5. Calculation of relative L-homology of an affine bundle. In
this section we will assume that the base space V), of the affine bundle
&po = (Xpo» ©po» Vo) does not have boundary, and the bounded domain A,
is of the form Xp, N B1(R), where Bi(R) is the open ball in F; of radius R
with center at zero

THEOREM 5.1. For any pg and k > 0,

it Oa n#pO‘Fkv
HN (X, Xpo \ Ap) 22
n( Po PO\ po) {27 nzpo—i-k.

The proof reduces to calculating Hy, (Vi potks Voo poik \ Wpo.po+k) Where
Waopotk = Ppopotk(Dpo), ©popotk is the projection of the k-division

(Xpos Ppo.po-t+h> Voopo+k) Of (Xpo, ©pos Vio)-
Before proving the theorem we state two relevant lemmas.

Let & = S g; - fF. be an (n, k)-chain in C¥(X,,), ¥ = o, x H* be
a Hilbertian (n, k)-simplex and s : 0, — oF be a continuous section of
on X HF. Let us consider the n-chain ¢, = > Gi+ fniin Vi potk, Where

_ k .
Jni = Ppopo+k © fn,z‘ 081 0n = Vpo,po+k-

k

In other words, ¢, is the projection (by means of ¢, po+%) of the chain &}

onto Vg po-+k-

LEMMA 5.2. & is a cycle relative to Xpo \ Apy if and only if &, is a cycle

relative to Vi po+k \ Whpo,po+k-

Indeed, if & is a cycle relative to X,, \ Ay, then 95k € CF (X, \ Apy)-
As &, is the projection (by means of @p yo1k) Of & onto Vi, potk, then
OnCn € Cne1(Vpypo+k \ Wpopo+k)- The converse implication is self-evident.

LEMMA 5.3. & ~ 0 (X, Xp, \ Ap,) if and only if

Cn ~ 0 (%07p0+k7 V;?omo-i-k \ Wp07po+k)‘

Indeed, if & ~ 0 (Xpy, Xpo \ Apy), it follows that

35];2+1 € C’sﬂ(Xpo), aﬁﬂéﬁﬂ = 57]2 D dlfu dfi € Oif(Xpo \ Apy)-

(°) Recall that the affine bundle &,, is embedded in a Banach space E.
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Therefore
5n+16n+1 =Cp @ d~na d~n € én(‘/}?o,po-l-k \ Wp07p0+k)’

where é,41, ¢, and d,, are the projections (by means of ¢p, ,o+k) of the

chains & 415 & and d¥ onto Vj, o1k, respectively. The converse implication
is self-evident.

Proof of Theorem . Let ¢& € [¢F] e ﬁfjo,Xpo \ Ap,), and &, be

the projection of Eﬁ onto Vjg po+k- By Lemma Cn, is a cycle relative to

mepo-&-k \ WPO,Po-i-k'
1) Let n # po+k. Then, as is known from the theory of finite-dimensional
homology,

Cn ~ 0 (‘/}Jo,po-‘rkv ‘/po,po—i-k \ Wpo,po-‘rk)?

i.e. the n-dimensional singular cycle ¢, in Vj, , 1% is homologous to zero
relative to Vg po+k \ Wpo.po+k- By Lemma

5’2 ~0 (Xpm Xpo \ Apo)-
Hence,

gﬁ(Xponpo \ Ap) =0 for n # po + k.

2) Let n = po + k. If &, 4+ is a cycle relative to Vp, o4k \ Wy po+k- then

[épo—i-k] € Flpo—l-k(v}?o,l’o-i-kv V;?o,Po-i-k \ Wpo,po—i-k)‘
Therefore
3d € Z, [6p0+k] =d- [1P0+k}7

where [1,,4%] is the unit element of Hyy 4% (Vi potks Voopotrk \ Waopotk)- BY
Lemma [5.3]

~k 1k

[Cpo+k] =d- [1p0+k]a

is the unit element of H , (Xp, Xpo \ Apo). By the above-

1k
where [1 otk

. P0+k] . ;
mentioned construction, the mapping

is an isomorphism. Thus,
H}I;oJrk(Xponpo \ Apo) 7. w
REMARK. Actually we proved that

I ~ T ~ O’ n 7& Do + k?
HS(Xponpo\Apo) = n(‘/}m,po-&-k’V}?o,po-i-k\Wpoypo-i-k) - { 7, n=po+k
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As Ppo(Xpy) = Ay, and A, C X,,, the spaces (X, X \ X,,) and
(Xpo> Xpo \ Ap,) are homeomorphic to each other. Therefore
[ v % ~ 07 n 7é Po + k?
AT K = |
Z, n=po+k.
for every integer k > 0 @

6. L-homological degree of an F.SQL-mapping between FSQL-
manifolds. We shall consider a simpler case for the definition of L-homolo-
gical degree of FISQL-mappings between FS@L-manifolds.

We will suppose that

1) The FS@QL-manifolds X, Y are embedded in the Banach spaces Fj,
E, with the norms || - ||, [ - ||y7~ respectively.

2) The mappings Gp, &, ' ¥m, U7

3) f: X — Y is an FSQL-mapping which satisfies an a priori estimate
(6.1) 2lle < B(1F (2)lly),

where @ is some positive monotone function.

are uniformly continuous.

For simplicity, suppose that @ is the identity mapping. Let us consider
the equation

Under condition (6.1)), all the solutions of (6.2) belong to X Ry = XNB,(Ry),

where B, (Rp) is the open ball in E, of radius Ry = ||yo|l, with center at
zero. According to the definition of an FS@QL-manifold,

Elp()v VP 2]00 : XRoXp)
and according to the definition of FSQL-mappings between FSQL-manifolds,

Img, Vm >mg: f(X,) C Y.
Let p and m be numbers for which all the above mentioned conditions
are satisfied. Then to define the degree of f at the point yo € Y we can

consider the restriction of f to X,. As ¢, and 1), are homeomorphisms,
equation (6.2) holds in X R, if and only if the equation

fp,m(u) = Wo, wo = QLm(yO)

holds in ¢,(XRg,), where f,m =m0 fo 4,51;1 t Ay — 2, 0p(XR,) C A4,
According to the definition of F'SQL-manifolds, f, ., is an FiSQL-mapping

between the affine bundles &, and 7,,. Let {f,mr} be a sequence of FSL-

mappings which is uniformly convergent to f;, ,, on A,. Let us consider the

() Recall that po is the dimension of the base space Vj, of the affine bundle &, .
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equation
(6.3) Jpm.r(u) = wp.

We will search for its solutions in @,(X Rry), Where X R, = X N B.(RY),
Rl = |lyolly + 20, 6 > 0.

REMARK. XRG C X, for large enough p, therefore gép(XRé) C A,.

Obviously, f(z) € Y \ By(Ro) at 2 € X \ Bx(Rp), where By(Ry) is the
open ball in E;, of radius Ry with center at zero. Therefore f is a mapping
of pairs (X, X\ B,(Rp)) and (Y, Y\B (Ro)), and [p,m is a mapping of pairs

(A, A \ (X po)t) and (on, 2 \ (Vo)) [
By the definition of FSQL-mapping,

Vu € Ap : ||fp7m<u) - fp,m,r(u)HQ < 517 51 > 0.

for sufficiently large r. As the L-charts ¢, @, L m, 12,71
continuous,

Vo e Xy |If (@) = ¥’ o fome 0 @p(@)lly <O, 8> 0.
for a proper choice of 6;. Therefore f,,,, will be a mapping of pairs (A,
Ap \ ¢p(Xry)) and (i, 2m \ Ym(YR,—s)) for sufficiently large r, where
Yi,—s =Y N By(Ro—6), By(Ry — 6) is the open ball in E,, of radius Ry — 0
with center at zero.

Let [@ r+ki k k(ApaAp\SBP(XR{)))v rtk € @ r+k] rkf+k = Zgi'ferk,i
and for any i, f¥ ki Ortk X HF — & where & = (X, @pr, Vpr), and
fpomyr + Ap — (2, is an FSL-mapping which satisfies the above men-
tioned conditions. One can construct an affine bundle ,,, v > r, which
is a common division of §pr and &,. Let us take an (7 + v, v)-support

Wy = 2.6i+ fip,; of wr+k Then there exists a singular chain ¢/, =

>0 (fomro wa) By Lemma @y, is a relative cycle. As fpmr
is a mapping of the above—mentione pairs, ¢, is also a relative cycle,

ie. &, ] € HY \(2m, Om \ ¥m(Yr,—5)). Obviously, the class @, +k] corre-
sponds to |@y, ] under the natural isomorphism HT+V(AP, Ap\gpp(XR/ ) —

1 are uniformly

Hr—l—k(Ap’ Ay \ ¢p(Xpry)), and the class [é ¥, ] corresponds to &, ,| under
the natural isomorphism

fNIT’f+V(Qm, O, \ @Z)m(ifRO—é)) - Nf—ﬁ-k(gm’ m \ &m(yRo—J))-

Therefore f ., induces a homomorphism
fp,m,r,* r+k(Ap7 A \ @p(XR’ )) f+k(9mv [ \ @m(ifRo—cS))'

(") Recall that ¥, (Ym) = 2m, where (m, Yimt) is the L-chart on Y.
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Let [~ff+k] be the generator of the group HF ' (Ap, Ap \ (Z)p(XRll)) and

& 7’+k] = fpmr*[ r+k] As Hf+k(9m79m \ wm(YROﬂS)) = Z, some num-
ber in Z corresponds to the element [¢ &) Let us denote that number by

degH(fp,m,r)-

DEFINITION 6.1. The number deg(fym,) is called an L-homological
degree of the FSL-mapping fp m.r-

The sign of degy(fp,m,r) depends on the choice of the generators of the
groups HF 1 (Ap, Ay \ ¢p(Xpy)) and Hﬁ+k(9m,ﬁm \ ¥m(Yr,—s)), but its
absolute value is invariable. The latter fact is not important for the proof
of the existence of a solution of equation (see Theorem [6.6). One can
prove that the degree of f,, , is well defined by Definition

One can prove that {|deg (fpm,r)|} stabilizes for sufficiently large
Therefore we can give the following

DEFINITION 6.2. degy(fpm) = limy oo [deg g (fpm.r)|-
DEFINITION 6.3. degy (f) = degy (fom)-

As fom = 1/;m o f °p, lqzm, and ¢, are homeomorphisms, the degree of
f is well defined by Definition

LEMMA 6.4. Let degy(fpmyr) # 0. Then the equation (6.3) has a solu-
tion in Pp(Xpgy)-

Proof. As f, ;mr is a bimorphism, it induces some finite-dimensional con-
tinuous mapping gp.m,r : Vp,r — Bm,r. The commutativity of the diagram

(A 2\ (X)) = (@ D\ G (Vios))
gowl lwm,T
(Vors Vor \ @pr(8p(X 1)) —2""— (Bumrs By \ e (¥ (Yo —5)))
yields the commutativity of
YA A\ (X)) =220 (R D\ G (Vio—s))
oo | [ ¥
Hy (Voo Vo \ 0pr(p(X i) 22" Hy (B Bine \ Y (¥ (Vig—5)))

As ¢y and 9y, 4 are isomorphisms (see Theorem ,
deg (fp,m,r) = degg (gp,m,r,«)-

(®) Because of its length, the proof of this statement is given in the appendix.



140 A. Abbasov

Here deg 7 (gp,m,r) is the homological degree of g, . Thus, deg (gp,m,r) # 0

as deg (fpm,r) # 0. Then, as is known from finite-dimensional analysis,
Jaf € Vors  gpmr(a0) = 5o, By = bmr(wo).

AS fpmrey 18 an isomorphism between the fibers X, or (X, a1 = ¢, L))

and Yy, g1 (Yo, 5 = Yl (Bg)) of the affine bundles &, and 1y, there exists

a unique point ug € @, 1 (ap) such that

(6'4) fp,m,r(UO) = wo.

However, in this case, it could happen that uy ¢ QZDP(X R())- Let us show that
this is not the case. Obviously,

Vue Ay | fpm(u) = fomr(u)l2 <01, 61>0,

for sufficiently large r. As the L-charts ¢, ¢, L thm, 1;;11 are uniformly
continuous,

Vre Xy [f@) = dn' o fpmr o @pl@)ly, <3, 5>0.
If ug & @p(X gy ), then o = @, (u0) & Xpy, ie. [|zolla > Rfy. Then it follows
from the estimate (6.1) that ||f(xo)|l, > Rb. As Ry = Ro + 25, Ro = |[volly,
we have
[9m" © fomr © @p(@o)lly = 1 (zo)lly — [1f(z0) = i’ © fomr © Gp(@o)lly
> (lwolly +26) =6 > llyolly,

ie Yo Ipmr © @p(x0) # yo, hence fpmr(uo) # wo, which contradicts the
equality (6.4). Thus ug € ¢,(X Rg)' "

Using the local stability of |degy(fpm,»)| it is not difficult to prove the
following:

THEOREM 6.5. Let {f;} be a family of FSQL-mappings between X
and Y, which continuously depends on t € [0,1] (uniformly in each ball)
and for each t € [0,1] an a priori estimate (6.1)) is satisfied, where the func-
tion @ does not depend on t. Then

degH(fl) = degH(f0)~

THEOREM 6.6 (). Let f:X—-Y be an FSQL-mapping which_satisfies
an a priori estimate 1) and degy(f) # 0. Then equation |D has a
solution for each yp € Y.

Proof. Because of Definition [6.3
degH(fpml) 7é 07

(°) A similar theorem, for a simple case, is proved in [10].
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and because of Definition [6.2]

degH(fp,mﬂ") #0

for sufficiently large r. By Lemma in this case equation ([6.3) has a
solution in @, (Xg,). Let

N, ={ue @p(XRE)) | fpmar(u) =wo}, N = U Np.

r>T0

Let us prove that N is compact. First, we shall prove that N, is compact.
For this purpose we will construct its finite e-covering. Let ug € N, and
Bi(ug,€) the ball in Fj of radius € with center at ug. Let us consider the
function

Pug(a) = inf{| fp.m.rar (w) = woll2 [ v € Xpar\ Bi(uo, )},

where X, o is the fiber of the subbundle &,, = (Xp, pp.r, Vpr) above o €
Vpr and f,m o is the restriction of fp,.,, to X, . It is continuous in
opr(@p(XRy)). Let C' be the constant from Definition E Then for u €
Xp,a6 \ By (u0> 5)7

(6'5) ”fp,m,r,oc6 (u) - w0||2 = pr,m,r,ozf) (u) - fp,m,r,a6 (UO)H?

1 €
= I pmrap (u = uo)ll2 = = - llu —wfL > &

As |Ju — up||1 > € we have P, (o)) > ¢/C. Then there exists a neighborhood
U(ay) in which

Let u € X, o \ Bi(ug,€). Then

|| fpm,rar (W) — woll2
= [ fpmrar (W) = fpmray(uo)ll2
= [|(fpmror (W) = fpmrar(10)) + (fpmra (0) = fpmrar (o)) ll2
2 | fpmorar (W) = fpmrar (Wo)ll2 = [ fpm,ra (o) — fp,m,r,a{)(u())H2

> pr,m,f’,a’ (u —ug)ll2 — H(fp,m,r,o/ - fp,m,r,aé)(uO)HQ
g
> = — pr,m,r,a’ - fp,m,r,a6|| : HUOHI

Let us denote the last difference by A. As the family {f, o} of affine
mappings is uniformly continuous in o/,

e

dIA>0 1= :
>0, ”fp,m,?‘,oz fp,m,T,O{OH < 20 - max{HuTHl}

if pr(a’, af) < A,
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where u,; € N;, and p,(d/, af) is a metric on V,,,. Then

9 9

3
A>— — . - _ = (10
>0 " 3 mafunny el =55 ()

So, the neighborhood U(«y) contains a ball W(a;) = {o/ | pr(a/,a]) < A}
of some radius A\, where A depends only on e. Therefore there exists a fi-
nite covering of the bounded finite-dimensional set ¢, (V) by balls W («)):
opr(Ny) € UW (). Then the balls Bi(u,e) form an e-covering of the

set N, as for u ¢ |J Bi(uy,€), u ¢ N, because of (6.5]).
Now we will prove that N is compact. Let
Ny = {u € &p(Xpy) | [ fpmr(u) = woll2 < e}
By the definition of F.SQL-mapping for each £ > 0 there exists u such that

5 -
(6.6) | fpmr(u) = fpm (w2 < 3C for r > pand u € Pp(Xpgy).

Let u € Ny, i.e. fpmr(u) = wo, and r > p. Then taking into account
we have

| fpmopu(w) —woll2 < [ fompu(w) = fpm(w)ll2 + || fom(w) = fomr(w)|l2
+ ([ fpam.r (1) — woll2 < %.

e/4C e/4C

Hence N, C Ny at r > p. Therefore N C N, U---UN,_1UN, . Now
we shall construct a finite e-covering for N. It is already constructed for
each Ny,...,N,_1; therefore it is sufficient to construct a finite covering

only for N€/4C Let ¢,, be the projection of &,,, = (Xp, ¥pus Vpu), on
which fp, ., is defined. Let us consider a ball By (ug,¢), where ug € Ny, 4

The intersection of Nf/ 10 with the plane Xp’ag, where o = ¢p u(uo), is
contained in Bj(ug,e/2). Indeed, if u ¢ Bj(ug,e/2), then ||u — uglls > £/2,
hence

”fpm,,uozo( ) w0H2

Zpr,m,,u,aO() fp,m,u, (u0)||2 pr,mu7 (UO) wO”2

> | (fpmpag) " - e = wollt = | fpm g (u0) = woll2
1 Ny I € < 1 € € €
u—1u — =,
= C MTuc=c'2 10 ac
ie. u ¢ N, ¢/4C This contradicts the assumption. From this it follows that

for the continuous function

Py (") = inf{[| fym o () = woll2 [ w € X \ Bi(uo,€)},

(*%) The set N, is bounded, therefore max{||lu-||1} < co.
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we have
P, (ag) > e/4C.

Hence, as above, from the covering Nj/ 1c by balls Bj(u,¢), one can select
a finite subcovering. As ¢ is arbitrary, it is proved that N is compact.

Now let {ur} C ¢,(Xg;) be some sequence of solutions of l} As
{ur} C N, there exists a subsequence converging to some uyp € N. As
{fp,m,r} uniformly converges to fpm in @p(Xgy), fpm(uo) = wo. Therefore,

f(z0) = yo, where zg = cﬁ;l(uo), i.e. Tg is a solution of equation 1) .

7. Appendix. The proof of stabilization of {|degy(fpmr)|}. First
we recall that 7,, is embedded in the Banach space Es. Let f}, 7 2 &y —
Dt a0 f 0 &yt — N be two FSL-mappings which are close
enough to each other in A, C X,,. Without restriction of generality one
can suppose that f, ;. @ & — Nmp1 and fppm e 0 &y — Nma2 are
bimorphisms between the aforesaid bundles, where §,, = (X, ©pv, Vo),
v > 7' 7", is a common division of &, ,/, &, ,» and N .1, m,v,2 are divisions
of ny, of the same codimension v. Let us introduce the following notations:

We denote the mappings fy, » and fp .7 by fpmpn and fp 2, re-
spectively. We denote the fibers of &, , = (X, Yp, Vo) by Xpa:

Xp,a = 30;,11/(0[)’ o€ V,V-
We denote the fibers of 1, = (Yo, ¥m, Bm) by Y, g
Ym,ﬂ = wr}l(ﬂ)? ﬁ € Bp.
We denote the fibers of nm 1 = (Yo, Ymu1, Bmw1) by Yigi1:
Ym,u,ﬁhl = @Z);L,ly,l(ﬁl)a p1 € Bm,u,l-
We denote the fibers of nm 2 = (Yo, ¥mu2, Bmw,2) by Yo g2t
Yoo = Upho(B2), B2 € B
Finally
Somw1(Xpa) =Yoo fome2(Xpa) =Y 6a(a) 2

As fpmw1 and fp m 0 are close to each other in Ay, the fibers Y, , 3, ()1
and Y, , 5,(a),2 are also close to each other for any a € V., i.e.

diSt(Ym,V,,Bl (a),1s Ym,u,ﬁg (a),2)
= sup{p(’w, Y/n,u,,[ﬁ(a),l) | w e YTIYL,V,ﬁQ(OZ),Q N BQ(].))} < g, e>0

(*') Here Y;:l,y,ﬁl(a),l, YT;,,,,@(Q),Q are the subspaces of F» which are parallel translates
of Yo v.61(a),1s Ym,v,8s(a),2 Tespectively through the origin of Ea, Bz(1) is the ball of

radius one in E» with center at zero, and p(w,Y,, , 5, (a),1) is the distance between w and
Y/

m,v,B1(a),1
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Therefore Y, ,, 3,(a),2 18 close to Yy, 5(4), Which contains Y, , 3, (),1- Then
it is possible to take the orthogonal projection of each fiber Y, , 5,(a)2
onto Y, g(a)- Let us denote this projection by mg(,), @ € V. By con-
struction:

1) mg(q) is an affine isomorphism between Yy, , 3, ()2 and its image.
2) ™ ={mg(a) | @ € Vp,} is an isomorphism between {Y}, , 3,(a)2} and
its image.
3) fpmw3 =70 fpmue is an FSL-mapping.
4) The mappings fp.m,,3 and fpm. 2 are close to each other in A, hence
fpmw,3 is close to fpm 1 in A,
REMARK. The difference between the mappings fp.m,,3 and fpm2 is
that fpm.u1(Xpa) and fpm.3(Xpa) are contained in the same Yy, 5, for
each o € Vj ..

As all the mappings obeying fp m..3 = 70 fpm,2 are FSL-mappings and
7 is an isomorphism,
deggr fpmws = degy(m o fpmup,2)
= (degy m) - (degy fpmp,2) = degy fmup,2-
Now let us prove that

degp fpmup3 = degy fpmu,1-

For this purpose we take an (v + 1, k)-prism allfH = o x I, where I is a

1-cube, that is, a line segment. We will consider the singular (v + 1, k)-chain
Gip1 =Y 9i [t fomur o fli(w) + (1 =)0 frmua o fr(w)]|(*2)
One can show that 5’,f+16,,+1 € CF(X,\ 4,), i.e. the relative cycles 0571 =

> gi fpmp1© fﬁi and 65,3 => 6 fpmw3o fﬁi are homologous to each
other relative to X, \ 4,. Hence

degH fp,m,l/,S = degH fp,m,u,l-
Therefore

degy fp,m,V,Q = degy fp,m,u,l‘
Thus,

degy fp,m,r’ = degy fp,m,r”
for sufficiently large r’ and r”.
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