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L-homology theory of FSQL-manifolds and
the degree of FSQL-mappings

by A. Abbasov (Biga)

Abstract. A homology theory of Banach manifolds of a special form, called FSQL-
manifolds, is developed, and also a homological degree of FSQL-mappings between FSQL-
manifolds is introduced.

1. Introduction. In this article the results of the article [3] are gener-
alized to Banach manifolds of a special form, namely to Fredholm Special
Quasi Linear (FSQL) manifolds. In other words, a homology theory of such
manifolds is devised and also the homological degree of FSQL-mappings be-
tween them is introduced. Every FSQL-mapping is an FQL-mapping [10] (1),
and vice versa. However, FSQL-mappings are more convenient for the struc-
ture of FSQL-manifolds.

It is known that the degree of a mapping is a strong tool for proving
the existence of solutions of various mathematical problems. For instance,
various variants of the nonlinear Hilbert problem ([7], [10], etc.) have been
solved with the help of the degree of FQL-mappings. Moreover, the homo-
logical degree of mappings transforms topological problems into algebraic
ones. In this case, the problem of finding the degree of a mapping will be
reduced to a combinatorial problem.

2. Definition of FSQL-manifolds and FSQL-mappings. Let ξp =
(Xp, ϕp, Vp) and ξp,r = (Xp, ϕp,r, Vp,r) be affine bundles with identical total
space Xp and with base spaces Vp, Vp,r which are p- and r-manifolds (r ≥ p),
respectively.
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(1) See [1] for the proof that every FQL-mapping is an FSQL-mapping.
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Definition 2.1. ξp,r is called an (r − p)-division of ξp if

∀α′ ∈ Vp,r ∃α ∈ Vp, ϕ−1
p,r(α

′) ⊂ ϕ−1
p (α) and

codim(ϕ−1
p,r(α

′)) = r − p in ϕ−1
p (α).

Obviously, in this case Vp,r is an affine bundle with the base space Vp
and with fibers of dimension r − p.

Let ηm = (Ym, ψm, Bm) also be an affine bundle, the base space of which
is an m-manifold.

Definition 2.2. A continuous mapping fp,m : Xp → Ym is called a Fred-
holm Special Linear (FSL) mapping between the affine bundles ξp and ηm if
for some r there exists an (r− p)-division ξp,r = (Xp, ϕp,r, Vp,r) of ξp and an
(r−m)-division ηm,r = (Ym, ψm,r, Bm,r) of ηm with the same dimension r of
the base spaces, such that fp,m induces a bimorphism between ξp,r and ηm,r.

From this point on, we will denote such fp,m as fp,m,r. We will also call
the restriction of an FSL-mapping to any subset of Xp an FSL-mapping.

Obviously, if fp,m,r is a bimorphism between ξp,r and ηm,r, then it is
also a bimorphism between some (ν − r)-divisions ξp,ν = (Xp, ϕp,ν , Vp,ν)
and ηm,ν = (Ym, ψm,ν , Bm,ν) of ξp,r and ηm,r for any ν > r.

For simplicity, let us assume that ξp and ηm are embedded in Banach
spaces E1 and E2 with norms ‖ ·‖1 and ‖ ·‖2, respectively. Let fp,m,r : Xp →
Ym be a bimorphism between ξp and ηm, and ∆p be a bounded domain
in Xp. Let

|||fp,m,r|||∆p = sup inf{C | ‖fp,m,r,α′(u)‖2 ≤ C(1 + ‖u‖1),
‖u‖1 ≤ C(1 + ‖fp,m,r,α′(u)‖2), ∀u ∈ Xp,α′},

where Xp,α′ is the fiber of ξp,r over α′ ∈ Vp,r, fp,m,r,α′ is the restriction
of fp,m,r onto Xp,α′ , and the supremum is taken over all Xp,α′ for which
Xp,α′ ∩∆p 6= ∅.

Definition 2.3. A continuous mapping fp,m : Xp → Ym is called an
FSQL-mapping between the affine bundles ξp and ηm if it can be uniformly
approximated in each bounded domain ∆p of Xp by FSL-mappings fp,m,r
so that

|||fp,m,r|||∆p ≤ C(∆p), ∀r > r(∆p),

where C(∆p) is independent of r for r > r(∆p).

Now we shall give definitions of FSQL-manifolds and of FSQL-mappings
between FSQL-manifolds. Let X̃ be a Banach manifold and {X̃p}, X̃p−1 ⊂
X̃p, p = 1, 2, . . . , be a system of open sets covering X̃, i.e. X̃ =

⋃
X̃p. Let

ξp = (Xp, ϕp, Vp) be an affine bundle, ∆p be a bounded domain in Xp and
ϕ̃p : X̃p → ∆p be a homeomorphism. In this case, (ϕ̃p, X̃p) is called a linear
chart (L-chart) on X̃. We shall say that a linear structure (L-structure)
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is introduced on X̃p if the conditions above are satisfied. If an L-structure
is defined on X̃p+1, then obviously it is also defined on X̃p (as an induced
structure). If ϕ̃p′ : X̃p′ → ∆p′ , ϕ̃p′′ : X̃p′′ → ∆p′′ , p′, p′′ ≥ p, are two L-
structures on X̃p, then the transition functions ϕ̃p′′ ◦ ϕ̃−1

p′ : ∆p′ → ∆p′ and
ϕ̃p′ ◦ ϕ̃−1

p′ : ∆p′′ → ∆p′ arise. Let us suppose that they are FSQL-mappings
between ξp′ = (Xp′ , ϕp′ , Vp′) and ξp′′ = (Xp′′ , ϕp′′ , Vp′′). In that case, we shall
say that the two L-structures on X̃p are equivalent.

Definition 2.4. A class of equivalent L-structures on X̃p is called an
FSQL-structure on X̃p.

Obviously, an FSQL-structure on X̃p+1 induces an FSQL-structure on
X̃p. An FSQL-structure on X̃p is said to be coordinated with an FSQL-
structure on X̃p+1 if it coincides with the induced structure.

Definition 2.5. A collection of FSQL-structures on X̃p, p = 1, 2, . . . ,
which are coordinated with each other is called an FSQL-structure on X̃.
A Banach manifold X̃ with an FSQL-structure is called an FSQL-manifold.

Let X̃, Ỹ be FSQL-manifolds,

X̃ =
⋃
X̃p, X̃p ⊂ X̃p+1 ∀p, Ỹ =

⋃
Ỹm, Ỹm ⊂ Ỹm+1 ∀m,

(ϕ̃p, X̃p), (ψ̃m, Ỹm) be L-charts on X̃, Ỹ and ϕ̃p(X̃p) = ∆p, ψ̃m(Ỹm) = Ωm
be bounded domains in ξp = (Xp, ϕp, Vp), ηm = (Ym, ψm, Bm), respectively.

Definition 2.6. A continuous mapping f̃ : X̃ → Ỹ between FSQL-
manifolds X̃ and Ỹ is called an FSQL-mapping if

(a) ∀p ∃m, f̃(X̃p) ⊂ Ỹm,
(b) fp,m ≡ ψ̃m ◦ f̃ ◦ ϕ̃−1

p : ∆p → Ωm is an FSQL-mapping between the
domains of the affine bundles ξp and ηm.

3. L-homology theory of affine bundles. Singular theory. First,
note that the simplicial theory of (n, k)-simplexes is available in [3], it is
similar to the finite-dimensional case.

Let H be a real Hilbert space, Hk be a linear subspace of codimension
k (k ≥ 0) and σn be a Euclidean n-simplex. We will name the Cartesian
product σn × Hk a Hilbertian simplex of bi-dimension (n, k) and we will
denote it by σkn, that is, σkn = σn ×Hk. We will consider σkn to be oriented
if σn is oriented. In this case, the orientation on σn is taken to be the
orientation on σkn. From this point on, we will consider σkn to be oriented.

Definition 3.1. A continuous mapping fkn : σkn → Xp is called a singu-
lar (n, k)-simplex in ξp if there exists a k-division (ξp′) of ξp such that fkn
induces a bimorphism between σn ×Hk and ξp′ .
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It follows from this definition that each singular (n, k)-simplex fkn induces
some finite-dimensional mapping between the base spaces σn and Vp′ (p′ =
p+ k) of these bundles.

Definition 3.2. A finite formal linear combination c̃kn =
∑

i gi · fkn,i of
singular (n, k)-simplexes in ξp with coefficients gi ∈ Z, where Z is the ring
of integers, is called a singular (n, k)-chain in ξp.

We will denote by C̃kn(Xp) the set of all singular chains in ξp of bi-
dimension (n, k). Obviously, it is an Abelian group under addition of chains.
It is a free group.

Definition 3.3. We define the differential

∂̃kn : C̃kn(Xp)→ C̃kn−1(Xp) ∀n ≥ 1,∀k ≥ 0

as follows:
∂̃knf

k
n =

∑
(−1)i(fkn |σkn−1,i

)

and we extend it to C̃kn(Xp) by additivity. Moreover,

∂̃k0 : C̃k0 (Xp)→ 0 ∀k ≥ 0.

Remark. Here σkn−1,i is the (n−1, k)-boundary of the simplex σkn, which
is located opposite vertex i.

Theorem 3.4. The equality

∂̃kn−1 ◦ ∂̃kn = 0

is true for each n ≥ 1 and k.

The proof is similar to the finite-dimensional case.
Analogously to the finite-dimensional case, one can define the groups

Ker ∂̃kn, Im ∂̃kn+1 and H̃k
n, i.e. the groups of (n, k)-cycles, (n, k)-boundaries

and the (n, k)-homology group (see [3]). However the theory of relative ho-
mology of ξp, which is introduced in the following section, is more interesting.

4. The relative L-homology of an affine bundle

Definition 4.1. An (n, k)-chain c̃kn ∈ C̃kn(Xp) is called a relative cycle
of bi-dimension (n, k) if ∂̃knc̃

k
n ∈ C̃kn−1(Xp \∆p).

Definition 4.2. A relative cycle c̃kn is called homologous to zero if

∃c̃kn+1 ∈ C̃kn+1(Xp), ∂̃kn+1c̃
k
n+1 = c̃kn ⊕ d̃kn, d̃kn ∈ C̃kn(Xp \∆p).

It follows from this definition that the sum of relative (n, k)-cycles ho-
mologous to zero is also homologous to zero. Therefore the set of relative
(n, k)-cycles homologous to zero forms a subgroup of the group of relative
(n, k)-cycles.



L-homology theory 133

Now we define the concept of “support” of a singular simplex.
Let fkn be a singular simplex in Xp. By definition, it induces a bimor-

phism between σn×Hk and some k-division ξp′ = (Xp, ϕp′ , Vp′) of ξp. Then
(fkn)−1(ξp′) induces an affine bundle (σk

′
n′), which is a (k′ − k)-division of

σkn: its base space σn′ is itself an affine bundle with base space σn and
fiber Hk′−k, n′ = n + (k′ − k), which is the Euclidean (k′ − k)-space. As
σn is convex, one can represent σn′ in the form of a Cartesian product:
σn′ = σn ×Hk′−k. Therefore the bundle σk

′
n′ is also a Cartesian product, i.e.

σk
′
n′ = σn′ ×Hk′ , where Hk′ is a subspace of H of codimension k′. Now we

divide σn′ into n′-prisms σn′,j , j = 0,±1,±2, . . ., with bases σn (2). Let us
choose the orientation of one (n′, k′)-prism σk

′
n′,j = σn′,j × Hk′ arbitrarily

and coordinate orientations of other (n′, k′)-prisms with it. Then any two
neighboring prisms will induce opposite orientations on the common edge.
Obviously, it is possible to divide σn′ into n′-prisms so that the restriction
of each of the mappings fkn to a unique σn′,j ×Hk′ contains the intersection
of fkn(σkn) with ∆p; this is possible because of the linearity of each fkn on Hk

α,
the uniform continuity of fkn in α, and the boundedness of ∆p. In this case
all the other analogous restrictions will be outside of ∆p. Thus, we can give
the following

Definition 4.3. The restriction of a singular simplex fkn to an (n′, k′)-
prism σk

′
n′ is called an (n′, k′)-support of fkn if

(a) n′ − n = k′ − k,
(b) fkn(σk

′
n′) ∩∆p = fkn(σkn) ∩∆p.

Let us denote the (n′, k′)-support of fkn by fk
′

n′ . From Definition 4.3 it fol-
lows that there can be different (n′, k′)-supports of a singular (n, k)-simplex.
But obviously, the difference of two (n′, k′)-supports of fkn is homologous to
zero relative to Xp \∆p.

Analogously, we shall say that a chain c̃k
′
n′ =

∑
gi · fk

′
n′,i is an (n′, k′)-

support of the chain c̃kn =
∑
gi · fkn,i if for each i the simplex fk

′
n′,i is an

(n′, k′)-support of fkn,i.
Obviously with the help of the above construction one can construct an

(n′′, k′′)-support of the chain c̃kn for any n′′ > n′, k′′ > k′, where n′′ − n =
k′′ − k.

(2) For example, in the case of n = 1 and k′−k = 1 the base space σn′ , n′ = 2, can be
represented in the form of an infinite band. The line segment which defines the width of
this band is σn. Having divided this band into segments, we will obtain rectangles-prisms
σn′,j , j = 0,±1,±2, . . . , with bases σn.

One can represent each prism σn′,j , j = 0,±1,±2, . . ., in the form of σn×Ik′−k, where
Ik′−k is a (k′ − k)-cube.
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Remark. In view of the aforementioned construction, from this point
on we will suppose that all simplexes fk

′
n′,i of c̃k

′
n′ are bimorphisms between

σn ×Hk and ξp′′ = (Xp, ϕp′′ , Vp′′).

Let c̃kn be a singular cycle relative to Xp \ ∆p and c̃k
′
n′ be its (n′, k′)-

support. Let us orient each simplex of c̃k
′
n′ so that two simplexes which have

a common edge induce opposite orientations on this common edge. Then
c̃k
′
n′ is also a singular cycle relative to Xp \∆p. Thus the relative cycle c̃k

′
n′ is

oriented (in two possible ways).
Obviously, two supports of a relative cycle c̃kn of the same bi-dimension

are homologous to each other relative to Xp \∆p.

Lemma 4.4. If c̃kn is a singular cycle relative to Xp \ ∆p, then for ev-
ery l > 0 its (n+ l, k + l)-support c̃k+ln+l is also a singular cycle relative to
Xp \∆p, and if an (n+ l, k + l)-support c̃k+ln+l of c̃kn is a singular cycle rela-
tive to Xp \ ∆p for some l > 0, then c̃kn is also a singular cycle relative to
Xp \∆p (3).

Indeed, as c̃kn is a singular cycle relative to Xp\∆p, ∂̃knc̃
k
n ∈ C̃kn−1(Xp\∆p).

Because of the definition of a support of a chain and the construction of the
prism, the boundary of the (n+ l, k + l)-support c̃k+ln+l also belongs to Xp\∆p

for every l > 0. For the proof of the second statement of this lemma, it is
enough to apply the construction from the definition of the support of a
function in reverse order.

Lemma 4.5. If c̃kn ∼ 0 (Xp, Xp \ ∆p), then c̃k+ln+l ∼ 0 (Xp, Xp \ ∆p) for
all l > 0, and if c̃k+ln+l ∼ 0 (Xp, Xp \ ∆p) for some l > 0, then c̃kn ∼ 0
(Xp, Xp \∆p) (4).

Indeed, if c̃kn ∼ 0 (Xp, Xp \∆p), then

∃c̃kn+1 ∈ C̃kn+1(Xp), ∂̃kn+1c̃
k
n+1 = c̃kn ⊕ d̃kn, d̃kn ∈ C̃kn(Xp \∆p).

In this case one can construct an (n+ l + 1, k + l)-support c̃k+ln+l+1 of c̃kn+1

such that

∂̃k+ln+l+1c̃
k+l
n+l+1 = c̃k+ln+l ⊕ d̃

k+l
n+l, d̃k+ln+l ∈ C̃

k+l
n+l(Xp \∆p),

where c̃k+ln+l and d̃k+ln+l are (n+ l, k + l)-supports of c̃kn and d̃kn, respectively.
For the proof of the second statement of this lemma it is enough to apply the
construction from the definition of support of a function in reverse order.

In view of Lemmas 4.4 and 4.5 we can give a new definition of homology
to zero, which is equivalent to the previous one.

(3) Here and in the following, k′ = k + l, n′ = n+ l.

(4) c̃kn ∼ 0 (Xp, Xp \∆p) means that c̃kn ∼ 0 relative to Xp \∆p.
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Definition 4.6 (equivalent to Definition 4.2). A relative cycle c̃kn is
called homologous to zero if for some l > 0 its (n+ l, k + l)-support c̃k+ln+l is
homologous to zero (in the sense of Definition 4.2).

5. Calculation of relative L-homology of an affine bundle. In
this section we will assume that the base space Vp0 of the affine bundle
ξp0 = (Xp0 , ϕp0 , Vp0) does not have boundary, and the bounded domain ∆p0

is of the form Xp0 ∩B1(R), where B1(R) is the open ball in E1 of radius R
with center at zero (5).

Theorem 5.1. For any p0 and k ≥ 0,

H̃k
n(Xp0 , Xp0 \∆p0) ∼=

{
0, n 6= p0 + k,

Z, n = p0 + k.

The proof reduces to calculating H̃n(Vp0,p0+k, Vp0,p0+k \Wp0,p0+k) where
Wp0,p0+k = ϕp0,p0+k(∆p0), ϕp0,p0+k is the projection of the k-division
(Xp0 , ϕp0,p0+k, Vp0,p0+k) of (Xp0 , ϕp0 , Vp0).

Before proving the theorem we state two relevant lemmas.
Let c̃kn =

∑
gi · fkn,i be an (n, k)-chain in C̃kn(Xp0), σkn = σn × Hk be

a Hilbertian (n, k)-simplex and s : σn → σkn be a continuous section of
σn ×Hk. Let us consider the n-chain c̃n =

∑
gi · fn,i in Vp0,p0+k, where

fn,i = ϕp0,p0+k ◦ fkn,i ◦ s : σn → Vp0,p0+k.

In other words, c̃n is the projection (by means of ϕp0,p0+k) of the chain c̃kn
onto Vp0,p0+k.

Lemma 5.2. c̃kn is a cycle relative to Xp0 \∆p0 if and only if c̃n is a cycle
relative to Vp0,p0+k \Wp0,p0+k.

Indeed, if c̃kn is a cycle relative to Xp0 \∆p0 , then ∂̃knc̃
k
n ∈ C̃kn−1(Xp0 \∆p0).

As c̃n is the projection (by means of ϕp0,p0+k) of c̃kn onto Vp0,p0+k, then
∂̃nc̃n ∈ C̃n−1(Vp0,p0+k \Wp0,p0+k). The converse implication is self-evident.

Lemma 5.3. c̃kn ∼ 0 (Xp0 , Xp0 \∆p0) if and only if

c̃n ∼ 0 (Vp0,p0+k, Vp0,p0+k \Wp0,p0+k).

Indeed, if c̃kn ∼ 0 (Xp0 , Xp0 \∆p0), it follows that

∃c̃kn+1 ∈ C̃kn+1(Xp0), ∂̃kn+1c̃
k
n+1 = c̃kn ⊕ d̃kn, d̃kn ∈ C̃kn(Xp0 \∆p0).

(5) Recall that the affine bundle ξp0 is embedded in a Banach space E1.
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Therefore

∂̃n+1c̃n+1 = c̃n ⊕ d̃n, d̃n ∈ C̃n(Vp0,p0+k \Wp0,p0+k),

where c̃n+1, c̃n and d̃n are the projections (by means of ϕp0,p0+k) of the
chains c̃kn+1, c̃kn and d̃kn onto Vp0,p0+k, respectively. The converse implication
is self-evident.

Proof of Theorem 5.1. Let c̃kn ∈ [c̃kn] ∈ H̃k
n(Xp0 , Xp0 \ ∆p0), and c̃n be

the projection of c̃kn onto Vp0,p0+k. By Lemma 5.2, c̃n is a cycle relative to
Vp0,p0+k \Wp0,p0+k.

1) Let n 6= p0+k. Then, as is known from the theory of finite-dimensional
homology,

c̃n ∼ 0 (Vp0,p0+k, Vp0,p0+k \Wp0,p0+k),

i.e. the n-dimensional singular cycle c̃n in Vp0,p0+k is homologous to zero
relative to Vp0,p0+k \Wp0,p0+k. By Lemma 5.3,

c̃kn ∼ 0 (Xp0 , Xp0 \∆p0).

Hence,
H̃k
n(Xp0 , Xp0 \∆p0) ∼= 0 for n 6= p0 + k.

2) Let n = p0 + k. If c̃p0+k is a cycle relative to Vp0,p0+k \Wp0,p0+k, then

[c̃p0+k] ∈ H̃p0+k(Vp0,p0+k, Vp0,p0+k \Wp0,p0+k).

Therefore
∃d ∈ Z, [c̃p0+k] = d · [1̃p0+k],

where [1̃p0+k] is the unit element of H̃p0+k(Vp0,p0+k, Vp0,p0+k \Wp0,p0+k). By
Lemma 5.3,

[c̃kp0+k] = d · [1̃kp0+k],

where [1̃kp0+k] is the unit element of H̃k
p0+k(Xp0 , Xp0 \ ∆p0). By the above-

mentioned construction, the mapping

[c̃kp0+k] 7→ d ∈ Z

is an isomorphism. Thus,

H̃k
p0+k(Xp0 , Xp0 \∆p0) ∼= Z.

Remark. Actually we proved that

H̃k
n(Xp0 , Xp0\∆p0) ∼= H̃n(Vp0,p0+k, Vp0,p0+k\Wp0,p0+k) ∼=

{
0, n 6= p0 + k,

Z, n = p0 + k.
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As ϕ̃p0(X̃p0) = ∆p0 and ∆p0 ⊂ Xp0 , the spaces (X̃, X̃ \ X̃p0) and
(Xp0 , Xp0 \∆p0) are homeomorphic to each other. Therefore

H̃k
n(X̃, X̃ \ X̃p0) ∼=

{
0, n 6= p0 + k,

Z, n = p0 + k.

for every integer k ≥ 0 (6).

6. L-homological degree of an FSQL-mapping between FSQL-
manifolds. We shall consider a simpler case for the definition of L-homolo-
gical degree of FSQL-mappings between FSQL-manifolds.

We will suppose that

1) The FSQL-manifolds X̃, Ỹ are embedded in the Banach spaces Ex,
Ey with the norms ‖ · ‖x, ‖ · ‖y, respectively.

2) The mappings ϕ̃p, ϕ̃−1
p , ψ̃m, ψ̃−1

m are uniformly continuous.
3) f̃ : X̃ → Ỹ is an FSQL-mapping which satisfies an a priori estimate

(6.1) ‖x‖x ≤ Φ(‖f̃(x)‖y),
where Φ is some positive monotone function.

For simplicity, suppose that Φ is the identity mapping. Let us consider
the equation

(6.2) f̃(x) = y0, y0 ∈ Ỹ .
Under condition (6.1), all the solutions of (6.2) belong to X̃R0 = X̃∩Bx(R0),
where Bx(R0) is the open ball in Ex of radius R0 = ‖y0‖y with center at
zero. According to the definition of an FSQL-manifold,

∃p0, ∀p ≥ p0 : X̃R0X̃p,

and according to the definition of FSQL-mappings between FSQL-manifolds,

∃m0, ∀m ≥ m0 : f̃(X̃p) ⊂ Ỹm.
Let p and m be numbers for which all the above mentioned conditions

are satisfied. Then to define the degree of f̃ at the point y0 ∈ Ỹ we can
consider the restriction of f̃ to X̃p. As ϕ̃p and ψ̃m are homeomorphisms,
equation (6.2) holds in X̃R0 if and only if the equation

fp,m(u) = w0, w0 = ψ̃m(y0)

holds in ϕ̃p(X̃R0), where fp,m ≡ ψ̃m ◦ f̃ ◦ ϕ̃−1
p : ∆p → Ωm, ϕ̃p(X̃R0) ⊂ ∆p.

According to the definition of FSQL-manifolds, fp,m is an FSQL-mapping
between the affine bundles ξp and ηm. Let {fp,m,r} be a sequence of FSL-
mappings which is uniformly convergent to fp,m on ∆p. Let us consider the

(6) Recall that p0 is the dimension of the base space Vp0 of the affine bundle ξp0 .
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equation

(6.3) fp,m,r(u) = w0.

We will search for its solutions in ϕ̃p(X̃R′0
), where X̃R′0

= X̃ ∩ Bx(R′0),
R′0 = ‖y0‖y + 2δ, δ > 0.

Remark. X̃R′0
⊂ X̃p for large enough p, therefore ϕ̃p(X̃R′0

) ⊂ ∆p.

Obviously, f̃(x) ∈ Ỹ \ By(R0) at x ∈ X̃ \ Bx(R0), where By(R0) is the
open ball in Ey of radius R0 with center at zero. Therefore f̃ is a mapping
of pairs (X̃, X̃ \Bx(R0)) and (Ỹ , Ỹ \By(R0)), and fp,m is a mapping of pairs
(∆p, ∆p \ ϕ̃p(X̃R0)t) and (Ωm, Ωm \ ψ̃m(ỸR0)) (7).

By the definition of FSQL-mapping,

∀u ∈ ∆p : ‖fp,m(u)− fp,m,r(u)‖2 < δ1, δ1 > 0.

for sufficiently large r. As the L-charts ϕ̃p, ϕ̃−1
p , ψ̃m, ψ̃−1

m are uniformly
continuous,

∀x ∈ X̃p : ‖f̃(x)− ψ̃−1
m ◦ fp,m,r ◦ ϕ̃p(x)‖y < δ, δ > 0.

for a proper choice of δ1. Therefore fp,m,r will be a mapping of pairs (∆p,

∆p \ ϕ̃p(X̃R′0
)) and (Ωm, Ωm \ ψ̃m(ỸR0−δ)) for sufficiently large r, where

ỸR0−δ = Ỹ ∩By(R0− δ), By(R0 − δ) is the open ball in Ey of radius R0 − δ
with center at zero.

Let [ω̃kr+k] ∈ H̃k
r+k(∆p, ∆p\ ϕ̃p(X̃R′0

)), ω̃kr+k ∈ [ω̃kr+k], ω̃
k
r+k =

∑
gi ·fkr+k,i

and for any i, fkr+k,i : σr+k × Hk → ξp′′ where ξp′′ = (Xp, ϕp′′ , Vp′′), and
fp,m,r : ∆p → Ωm is an FSL-mapping which satisfies the above men-
tioned conditions. One can construct an affine bundle ξp,ν , ν ≥ r, which
is a common division of ξp,r and ξp′′ . Let us take an (r + ν, ν)-support
ω̃νr+ν =

∑
gi · fνr+ν,i of ω̃kr+k. Then there exists a singular chain c̃νr+ν =∑

gi · (fp,m,r ◦ fνr+ν,i). By Lemma 4.4, ω̃νr+ν is a relative cycle. As fp,m,r
is a mapping of the above-mentioned pairs, c̃νr+ν is also a relative cycle,
i.e. bc̃νr+νc ∈ H̃ν

r+ν(Ωm, Ωm \ ψ̃m(ỸR0−δ)). Obviously, the class [ω̃kr+k] corre-
sponds to bω̃νr+νc under the natural isomorphism H̃ν

r+ν(∆p, ∆p\ϕ̃p(X̃R′
0
))→

H̃k
r+k(∆p, ∆p \ ϕ̃p(X̃R′0)), and the class [c̃kr+k] corresponds to bc̃νr+νc under

the natural isomorphism

H̃ν
r+ν(Ωm, Ωm \ ψ̃m(ỸR0−δ))→ H̃k

r+k(Ωm, Ωm \ ψ̃m(ỸR0−δ)).

Therefore fp,m,r induces a homomorphism

fp,m,r,∗ : H̃k
r+k(∆p, ∆p \ ϕ̃p(X̃R′0

))→ H̃k
r+k(Ωm, Ωm \ ψ̃m(ỸR0−δ)).

(7) Recall that ψ̃m(Ỹm) = Ωm, where (ψ̃m, Ỹmt) is the L-chart on Ỹ .
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Let [1̃kr+k] be the generator of the group H̃k
r+k(∆p, ∆p \ ϕ̃p(X̃R′1

)) and
[c̃kr+k] = fp,m,r,∗[1̃kr+k]. As H̃k

r+k(Ωm, Ωm \ ψ̃m(ỸR0−δ))
∼= Z, some num-

ber in Z corresponds to the element [c̃kr+k]. Let us denote that number by
degH(fp,m,r).

Definition 6.1. The number degH(fp,m,r) is called an L-homological
degree of the FSL-mapping fp,m,r.

The sign of degH(fp,m,r) depends on the choice of the generators of the
groups H̃k

r+k(∆p, ∆p \ ϕ̃p(X̃R′0
)) and H̃k

r+k(Ωm, Ωm \ ψ̃m(ỸR0−δ)), but its
absolute value is invariable. The latter fact is not important for the proof
of the existence of a solution of equation (6.2) (see Theorem 6.6). One can
prove that the degree of fp,m,r is well defined by Definition 6.1.

One can prove that {|degH(fp,m,r)|} stabilizes for sufficiently large r (8).
Therefore we can give the following

Definition 6.2. degH(fp,m) = limr→∞ |degH(fp,m,r)|.

Definition 6.3. degH(f̃) = degH(fp,m).

As fp,m ≡ ψ̃m ◦ f̃ ◦ ϕ̃−1
p ψ̃m, and ϕ̃p are homeomorphisms, the degree of

f̃ is well defined by Definition 6.3.

Lemma 6.4. Let degH(fp,m,r) 6= 0. Then the equation (6.3) has a solu-
tion in ϕ̃p(X̃R′0

).

Proof. As fp,m,r is a bimorphism, it induces some finite-dimensional con-
tinuous mapping gp,m,r : Vp,r → Bm,r. The commutativity of the diagram

(∆p, ∆p \ ϕ̃p(X̃R′0
))

fp,m,r−−−−−−−→ (Ωm, Ωm \ ψ̃m(ỸR0−δ))

ϕp,r

y yψm,r
(Vp,r, Vp,r \ ϕp,r(ϕ̃p(X̃R′0

)))
gp,m,r−−−−−−−→ (Bm,r, Bm,r \ ψm,r(ψ̃m(ỸR0−δ)))

yields the commutativity of

H̃0
r (∆p, ∆p \ ϕ̃p(X̃R′0

))
fp,m,r,∗−−−−−−→ H̃0

r (Ωm, Ωm \ ψ̃m(ỸR0−δ))

ϕp,r,∗

y yψm,r,∗
H̃r(Vp,r, Vp,r \ ϕp,r(ϕ̃p(X̃R′0

)))
gp,m,r,∗−−−−−→ H̃r(Bm,r, Bm,r \ ψm,r(ψ̃m(ỸR0−δ)))

As ϕp,r,∗ and ψm,r,∗ are isomorphisms (see Theorem 5.1),

degH(fp,m,r) = degH(gp,m,r,∗).

(8) Because of its length, the proof of this statement is given in the appendix.
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Here degH(gp,m,r) is the homological degree of gp,m,r. Thus, degH(gp,m,r) 6= 0
as degH(fp,m,r) 6= 0. Then, as is known from finite-dimensional analysis,

∃α′0 ∈ Vp,r, gp,m,r(α′0) = β′0, β′0 = ψm,r(w0).

As fp,m,r,α′0 is an isomorphism between the fibers Xp,α′0
(Xp,α′0

= ϕ−1
p,r(α

′
0))

and Ym,β′0 (Ym,β′0 = ψ−1
m,r(β

′
0)) of the affine bundles ξp,r and ηm,r, there exists

a unique point u0 ∈ ϕ−1
p,r(α

′
0) such that

(6.4) fp,m,r(u0) = w0.

However, in this case, it could happen that u0 /∈ ϕ̃p(X̃R′0
). Let us show that

this is not the case. Obviously,

∀u ∈ ∆p : ‖fp,m(u)− fp,m,r(u)‖2 < δ1, δ1 > 0,

for sufficiently large r. As the L-charts ϕ̃p, ϕ̃−1
p , ψ̃m, ψ̃−1

m are uniformly
continuous,

∀x ∈ X̃p : ‖f̃(x)− ψ̃−1
m ◦ fp,m,r ◦ ϕ̃p(x)‖y < δ, δ > 0.

If u0 /∈ ϕ̃p(X̃R′0
), then x0 = ϕ̃−1

p (u0) /∈ XR′0
, i.e. ‖x0‖x > R′0. Then it follows

from the estimate (6.1) that ‖f̃(x0)‖y > R′0. As R′0 = R0 + 2δ, R0 = ‖y0‖y,
we have

‖ψ̃−1
m ◦ fp,m,r ◦ ϕ̃p(x0)‖y ≥ ‖f̃(x0)‖y − ‖f̃(x0)− ψ̃−1

m ◦ fp,m,r ◦ ϕ̃p(x0)‖y
≥ (‖y0‖y + 2δ)− δ > ‖y0‖y,

i.e. ψ̃−1
m ◦ fp,m,r ◦ ϕ̃p(x0) 6= y0, hence fp,m,r(u0) 6= w0, which contradicts the

equality (6.4). Thus u0 ∈ ϕ̃p(X̃R′0
).

Using the local stability of |degH(fp,m,r)| it is not difficult to prove the
following:

Theorem 6.5. Let {f̃t} be a family of FSQL-mappings between X̃
and Ỹ , which continuously depends on t ∈ [0, 1] (uniformly in each ball)
and for each t ∈ [0, 1] an a priori estimate (6.1) is satisfied, where the func-
tion Φ does not depend on t. Then

degH(f̃1) = degH(f̃0).

Theorem 6.6 (9). Let f̃ : X̃ → Ỹ be an FSQL-mapping which satisfies
an a priori estimate (6.1) and degH(f̃) 6= 0. Then equation (6.2) has a
solution for each y0 ∈ Ỹ .

Proof. Because of Definition 6.3,

degH(fp,m) 6= 0,

(9) A similar theorem, for a simple case, is proved in [10].
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and because of Definition 6.2,

degH(fp,m,r) 6= 0

for sufficiently large r. By Lemma 6.4, in this case equation (6.3) has a
solution in ϕ̃p(X̃R′0

). Let

Nr = {u ∈ ϕ̃p(X̃R′0
) | fp,m,r(u) = w0}, N =

⋃
r≥r0

Nr.

Let us prove that N is compact. First, we shall prove that Nr is compact.
For this purpose we will construct its finite ε-covering. Let u0 ∈ Nr and
B1(u0, ε) the ball in E1 of radius ε with center at u0. Let us consider the
function

Pu0(α′) = inf
u
{‖fp,m,r,α′(u)− w0‖2 | u ∈ Xp,α′ \B1(u0, ε)},

where Xp,α′ is the fiber of the subbundle ξp,r = (Xp, ϕp,r, Vp,r) above α′ ∈
Vp,r and fp,m,r,α′ is the restriction of fp,m,r to Xp,α′ . It is continuous in
ϕp,r(ϕ̃p(X̃R′0

)). Let C be the constant from Definition 2.3. Then for u ∈
Xp,α′0

\B1(u0, ε),

‖fp,m,r,α′0(u)− w0‖2 = ‖fp,m,r,α′0(u)− fp,m,r,α′0(u0)‖2(6.5)

= ‖fp,m,r,α′0(u− u0)‖2 ≥
1
C
· ‖u− ul‖1 >

ε

C
.

As ‖u− u0‖1 > ε we have Pu0(α′0) > ε/C. Then there exists a neighborhood
U(α′0) in which

Pu0(α′) >
ε

2C
.

Let u ∈ Xp,α′ \B1(u0, ε). Then

‖fp,m,r,α′(u)− w0‖2
= ‖fp,m,r,α′(u)− fp,m,r,α′0(u0)‖2
= ‖(fp,m,r,α′(u)− fp,m,r,α′(u0)) + (fp,m,r,α′(u0)− fp,m,r,α′0(u0))‖2
≥ ‖fp,m,r,α′(u)− fp,m,r,α′(u0)‖2 − ‖fp,m,r,α′(u0)− fp,m,r,α′0(u0)‖2
≥ ‖fp,m,r,α′(u− u0)‖2 − ‖(fp,m,r,α′ − fp,m,r,α′0)(u0)‖2

≥ ε

C
− ‖fp,m,r,α′ − fp,m,r,α′0‖ · ‖u0‖1.

Let us denote the last difference by A. As the family {fp,m,r,α′} of affine
mappings is uniformly continuous in α′,

∃λ > 0, ‖fp,m,r,α′ − fp,m,r,α′0‖ <
ε

2C ·max{‖uτ‖1}
if ρr(α′, α′0) < λ,
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where uτ ∈ Nr, and ρr(α′, α′0) is a metric on Vp,r. Then

A >
ε

C
− ε

2C ·max{‖uτ‖1}
·max{‖uτ‖1} =

ε

2C
(10).

So, the neighborhood U(α′0) contains a ball W (α′l) = {α′ | ρr(α′, α′l) < λ}
of some radius λ, where λ depends only on ε. Therefore there exists a fi-
nite covering of the bounded finite-dimensional set ϕp,r(Nr) by balls W (α′l):
ϕp,r(Nr) ⊂

⋃
W (α′l). Then the balls B1(ul, ε) form an ε-covering of the

set Nr, as for u /∈
⋃
B1(ul, ε), u /∈ Nr because of (6.5).

Now we will prove that N is compact. Let

N ε
r = {u ∈ ϕ̃p(X̃R′0

) | ‖fp,m,r(u)− w0‖2 < ε}.
By the definition of FSQL-mapping for each ε > 0 there exists µ such that

(6.6) ‖fp,m,r(u)− fp,m(u)‖2 <
ε

8C
for r ≥ µ and u ∈ ϕ̃p(X̃R′0

).

Let u ∈ Nr, i.e. fp,m,r(u) = w0, and r ≥ µ. Then taking into account (6.6)
we have

‖fp,m,µ(u)− w0‖2 ≤ ‖fp,m,µ(u)− fp,m(u)‖2 + ‖fp,m(u)− fp,m,r(u)‖2
+ ‖fp,m,r(u)− w0‖2 ≤

ε

4C
.

Hence Nr ⊂ N ε/4C
µ at r ≥ µ. Therefore N ⊂ Nr0 ∪ · · · ∪Nµ−1 ∪N ε/4C

µ . Now
we shall construct a finite ε-covering for N . It is already constructed for
each Nr0 , . . . , Nµ−1; therefore it is sufficient to construct a finite covering
only for N ε/4C

µ . Let ϕp,µ be the projection of ξp,µ = (Xp, ϕp,µ, Vp,µ), on
which fp,m,µ is defined. Let us consider a ball B1(u0, ε), where u0 ∈ N ε/4C

µ .
The intersection of N ε/4C

µ with the plane Xp,α′′0
, where α′′0 = ϕp,µ(u0), is

contained in B1(u0, ε/2). Indeed, if u /∈ B1(u0, ε/2), then ‖u− u0‖1 > ε/2,
hence

‖fp,m,µ,α′′0 (u)− w0‖2
≥ ‖fp,m,µ,α′′0 (u)− fp,m,µ,α′′0 (u0)‖2 − ‖fp,m,µ,α′′0 (u0)− w0‖2
≥ ‖(fp,m,µ,α′′0 )−1‖ · ‖u− u0‖1 − ‖fp,m,µ,α′′0 (u0)− w0‖2

≥ 1
C
· ‖u− u0‖1 −

ε

4C
≥ 1
C
· ε

2
− ε

4C
=

ε

4C
,

i.e. u /∈ N ε/4C
µ . This contradicts the assumption. From this it follows that

for the continuous function

P ′u0
(α′′) = inf

u
{‖fp,m,µ,α′′(u)− w0‖2 | u ∈ Xµ

p,α′′ \B1(u0, ε)},

(10) The set Nr is bounded, therefore max{‖uτ‖1} <∞.
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we have
P ′u0

(α′′0) > ε/4C.

Hence, as above, from the covering N ε/4C
µ by balls B1(u, ε), one can select

a finite subcovering. As ε is arbitrary, it is proved that N is compact.
Now let {ur} ⊂ ϕ̃p(X̃R′0

) be some sequence of solutions of (6.3). As
{ur} ⊂ N , there exists a subsequence converging to some u0 ∈ N . As
{fp,m,r} uniformly converges to fp,m in ϕ̃p(X̃R′0

), fp,m(u0) = w0. Therefore,
f̃(x0) = y0, where x0 = ϕ̃−1

p (u0), i.e. x0 is a solution of equation (6.2).

7. Appendix. The proof of stabilization of {|degH(fp,m,r)|}. First
we recall that ηm is embedded in the Banach space E2. Let fp,m,r′ : ξp,r′ →
ηm,r′ and fp,m,r′′ : ξp,r′′ → ηm,r′′ be two FSL-mappings which are close
enough to each other in ∆p ⊂ Xp. Without restriction of generality one
can suppose that fp,m,r′ : ξp,ν → ηm,ν,1 and fp,m,r′′ : ξp,ν → ηm,ν,2 are
bimorphisms between the aforesaid bundles, where ξp,ν = (Xp, ϕp,ν , Vp,ν),
ν ≥ r′, r′′, is a common division of ξp,r′ , ξp,r′′ and ηm,ν,1, ηm,ν,2 are divisions
of ηm of the same codimension ν. Let us introduce the following notations:

We denote the mappings fp,m,r′ and fp,m,r′′ by fp,m,ν,1 and fp,m,ν,2, re-
spectively. We denote the fibers of ξp,ν = (Xp, ϕp,ν , Vp,ν) by Xp,α:

Xp,α = ϕ−1
p,ν(α), α ∈ Vp,ν .

We denote the fibers of ηm = (Ym, ψm, Bm) by Ym,β:

Ym,β = ψ−1
m (β), β ∈ Bm.

We denote the fibers of ηm,ν,1 = (Ym, ψm,ν,1, Bm,ν,1) by Ym,ν,β1,1:

Ym,ν,β1,1 = ψ−1
m,ν,1(β1), β1 ∈ Bm,ν,1.

We denote the fibers of ηm,ν,2 = (Ym, ψm,ν,2, Bm,ν,2) by Ym,ν,β2,2:

Ym,ν,β2,2 = ψ−1
m,ν,2(β2), β2 ∈ Bm,ν,2.

Finally

fp,m,ν,1(Xp,α) = Ym,ν,β1(α),1, fp,m,ν,2(Xp,α) = Ym,ν,β2(α),2.

As fp,m,ν,1 and fp,m,ν,2 are close to each other in ∆p, the fibers Ym,ν,β1(α),1

and Ym,ν,β2(α),2 are also close to each other for any α ∈ Vp,ν , i.e.

dist(Ym,ν,β1(α),1, Ym,ν,β2(α),2)

= sup{ρ(w, Y ′m,ν,β1(α),1) | w ∈ Y ′m,ν,β2(α),2 ∩B2(1))} < ε, ε > 0 (11).

(11) Here Y ′m,ν,β1(α),1, Y ′m,ν,β2(α),2 are the subspaces of E2 which are parallel translates
of Ym,ν,β1(α),1, Ym,ν,β2(α),2 respectively through the origin of E2, B2(1) is the ball of
radius one in E2 with center at zero, and ρ(w, Y ′m,ν,β1(α),1) is the distance between w and
Y ′m,ν,β1(α),1.



144 A. Abbasov

Therefore Ym,ν,β2(α),2 is close to Ym,β(α), which contains Ym,ν,β1(α),1. Then
it is possible to take the orthogonal projection of each fiber Ym,ν,β2(α),2

onto Ym,β(α). Let us denote this projection by πβ(α), α ∈ Vp,ν . By con-
struction:

1) πβ(α) is an affine isomorphism between Ym,ν,β2(α),2 and its image.
2) π ={πβ(α) | α ∈ Vp,ν} is an isomorphism between {Ym,ν,β2(α),2} and

its image.
3) fp,m,ν,3 = π ◦ fp,m,ν,2 is an FSL-mapping.
4) The mappings fp,m,ν,3 and fp,m,ν,2 are close to each other in ∆p, hence

fp,m,ν,3 is close to fp,m,ν,1 in ∆p.

Remark. The difference between the mappings fp,m,ν,3 and fp,m,ν,2 is
that fp,m,ν,1(Xp,α) and fp,m,ν,3(Xp,α) are contained in the same Ym,β(α) for
each α ∈ Vp,ν .

As all the mappings obeying fp,m,ν,3 = π◦fp,m,ν,2 are FSL-mappings and
π is an isomorphism,

degH fp,m,ν,3 = degH(π ◦ fp,m,ν,2)
= (degH π) · (degH fp,m,ν,2) = degH fp,m,ν,2.

Now let us prove that

degH fp,m,ν,3 = degH fp,m,ν,1.

For this purpose we take an (ν + 1, k)-prism σkν+1 = σkν × I1, where I1 is a
1-cube, that is, a line segment. We will consider the singular (ν + 1, k)-chain

σ̃kν+1 =
∑

gi · [t · fp,m,ν,1 ◦ fkν,i(u) + (1− t) ◦ fp,m,ν,3 ◦ fkν,i(u)] (12).

One can show that ∂̃kν+1σ̃
k
ν+1 ∈ C̃kν (Xp \∆p), i.e. the relative cycles σkν,1 =∑

gi · fp,m,ν,1 ◦ fkν,i and σ̃kν,3 =
∑
gi · fp,m,ν,3 ◦ fkν,i are homologous to each

other relative to Xp \∆p. Hence

degH fp,m,ν,3 = degH fp,m,ν,1.

Therefore
degH fp,m,ν,2 = degH fp,m,ν,1.

Thus,
degH fp,m,r′ = degH fp,m,r′′

for sufficiently large r′ and r′′.
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(12) Because of the note mentioned above, σ̃kν+1 is a chain in Xp.
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