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On the oscillation of forced second order mixed-nonlinear
elliptic equations

by Zhiting Xu (Guangzhou)

Abstract. Oscillation theorems are established for forced second order mixed-non-
linear elliptic differential equations(

div(A(x)‖∇y‖p−1∇y) + 〈 b(x), ‖∇y‖p−1∇y 〉 + C(x, y) = e(x),

C(x, y) = c(x)|y|p−1y +
mP

i=1

ci(x)|y|pi−1y

under quite general conditions. These results are extensions of the recent results of Sun and
Wong, [J. Math. Anal. Appl. 334 (2007)] and Zheng, Wang and Han [Appl. Math. Lett. 22
(2009)] for forced second order ordinary differential equations with mixed nonlinearities,
and include some known oscillation results in the literature.

1. Introduction and preliminaries. Since the pioneering work of
Noussair and Swanson [14] and Picone [15], by using partial Riccati trans-
formation [14] and Picone’s identity [15], many researchers have studied the
oscillation of half-linear partial differential equations with first order term

div(A(x)‖∇y‖p−1∇y) + 〈 b(x), ‖∇y‖p−1∇y 〉+ c(x)|y|p−1 = 0.

We refer the reader to papers [5, 6, 7, 10, 11, 23, 24, 27, 28, 32], to mono-
graphs [12], [29], and to the references cited there. To the author’s knowl-
edge, very little is known about the oscillation of elliptic differential equa-
tions with forced terms. Recently, Jaroš, Kusano and Yoshida [5] and Zhuang
[32] have established oscillation criteria for forced second order elliptic dif-
ferential equations

div(A(x)∇y) + c(x)|y|β−1 = e(x), β ≥ 1,

and Xu [25] has obtained Sun–Wong type oscillation theorems for forced
second order damped elliptic equations with mixed nonlinearities

div(A(x)∇y) + 〈b(x),∇y〉+ C(x, y) = e(x)
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with

C(x, y) = q(x)y +
m∑
i=1

qi(x)|y|αi−1y,

where α1 > · · · > αk > 1 > αk+1 > · · · > αm > 0.
On the other hand, by using a Picone-type inequality, Jaroš, Kusano and

Yoshida [6] have given oscillation criteria for half-linear partial differential
equations with a forced term

div(a(x)‖∇y‖α−1∇y) + C(x)|y|β−1y = e(x), 0 < α < β,

as well as the unforced elliptic equation with mixed nonlinearities

div(a(x))‖∇y‖α−1∇y) + C(x)|y|β−1y +D(x)|y|γ−1y = 0,

where 0 < γ < α < β. Furthermore, in [7] they have extended the results of
[5] to elliptic differential equations with a first order term

div(A(x)∇y) + 2〈b(x),∇y〉+ C(x)|y|β−1 = e(x), β > 1,

and to unforced elliptic differential equations with mixed nonlinearities

div(A(x)∇y) + 2〈 b(x),∇y 〉+ C(x)|y|β−1y +D(x)|y|γ−1y = 0,

where 0 < γ < 1 < β.
In this paper, we are concerned with the oscillation of forced second

order mixed-nonlinear elliptic equations

(1.1)


div(A(x)‖∇y‖p−1∇y) + 〈 b(x), ‖∇y‖p−1∇y 〉+ C(x, y) = e(x),

C(x, y) = c(x)|y|p−1y +
m∑
i=1

ci(x)|y|pi−1y,

where p, pi > 0, i = 1, . . . ,m, x = (xi)Ni=1 ∈ RN , ‖x‖ = [
∑N

i=1 x
2
i ]

1/2, ∇ =
(∂/∂xi)Ni=1, and 〈 , 〉 denotes the usual scalar product in RN . We set Ω(r0) =
{x ∈ RN : ‖x‖ ≥ r0} for r0 ≥ 0.

Throughout this paper we shall also assume that

(A1) A(x) = (aij(x))N×N is an elliptic matrix with aij∈C1+µ
loc (Ω(r0),R)

for all i, j, µ ∈ (0, 1);
(A2) b(x) = (bi(x))Ni=1 with bi ∈ Cµ

loc(Ω(r0),R) for all i;
(A3) e, c, ci ∈ Cµ

loc(Ω(r0),R) for all i;
(A4) p1 > · · · > pk > p > pk+1 > · · · > pm;

or

(A5) p1 > · · · > pm > p.

A function y ∈ C1+µ
loc (Ω(r0),R) with the property aij‖∇y‖α−1∂y/∂xi ∈

C1+µ
loc (Ω(r0),R) for all i, j is said to be a solution of (1.1) in Ω(r0) if y(x)

satisfies (1.1) for all x ∈ Ω(r0). For existence of solutions of (1.1), we refer the
reader to the monograph [3]. We restrict our attention to nontrivial solutions
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y(x) of (1.1), i.e., sup{|y(x)| : x ∈ Ω(r)} > 0 for any r ≥ r0. A nontrivial
solution y(x) of (1.1) is called oscillatory if the set {x ∈ Ω(r0) : y(x) = 0}
is unbounded; otherwise it is said to be nonoscillatory. Equation (1.1) is
oscillatory if all of its solutions are oscillatory.

Consider the second order forced ordinary differential equation with
mixed nonlinearities

(1.2) (p(t)x′)′ + q(t)x+
m∑
i=1

qi(t)|x|αi−1x = e(t),

where p, q, qi, e ∈ C([t0,∞),R), p(t) is positive and differentiable, and α1 >
· · · > αk > 1 > αk+1 > · · · > αm. The oscillation of (1.2) was first studied
by Sun and Wong [19] (see also [18]). Here our main objective is to extend
the known oscillation criteria for (1.2) to (1.1). To motivate the formulation
of our main results, we quote one of Sun–Wong’s theorems for (1.2).

Theorem 1.1 ([19]). If for any T ≥ t0, there exist a1, b1, a2, b2 such
that T ≤ a1 < b1 ≤ a2 < b2 and{

qi(t) ≥ 0, t ∈ [a1, b1] ∪ [a2, b2], i = 1, . . . ,m,
e(t) ≤ 0, t ∈ [a1, b1]; e(t) ≥ 0, t ∈ [a2, b2],

and if there exists a continuously differentiable function u(t) such that u(ai)
= u(bi) = 0, u(t) 6≡ 0 for t ∈ [ai, bi] and

(1.3)
bi�

ai

[Q(t)u2(t)− u′ 2(t)] dt ≥ 0 for i = 1, 2,

where

Q(t) = k0|e(t)|η0
n∏
i=1

qηi
i (t) + q(t),

k0 =
∏n
i=0 η

−ηi
i , and η0, η1, . . . , ηn are positive constants satisfying condi-

tions (a) and (b) of [19, Lemma 1], then equation (1.2) is oscillatory.

Theorem 1.1 was first given by Nasr [13] and Wong [22] for the case
where m = 1 and q(t) = 0. In recent years, the Nasr–Wong theorem has
been extended to various types of differential equations: see, for example,
[1, 2, 8, 9, 17, 20, 21, 26, 30–32]. As pointed out in [19], it is interesting
to study the oscillation of differential equations with mixed nonlinearities.
In this paper, inspired by the ideas of Noussair and Swanson [14], Sun and
Wong [19], and Zheng et al. [31], we shall establish some forced oscillation
criteria for (1.1) which extend the results in [19, 30]. When N = 1, our
results include these of Sun and Wong [19] and Zheng et al. [31] for certain
second order differential equations with mixed nonlinearities. Furthermore
when N ≥ 2, our results are more general than the oscillation criteria of
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Zhuang [32]. In particular, some interesting corollaries are established, and
three examples of applications of our results are also included.

Before proceeding, we shall set some notations:

• S(r) = {x ∈ RN : ‖x‖ = r},
• Ω[a, b] = {x ∈ RN : a ≤ ‖x‖ ≤ b},
• Ω(a, b) = {x ∈ RN : a < ‖x‖ < b},
• A−1(x) denotes the inverse of the matrix A(x),
• ν(x) = x/|x| denotes the outside normal unit vector to the sphere
S(‖x‖),
• dσ represents the integral element of S(‖x‖),
• λmax(x) and λmin(x) denote respectively the largest and smallest eigen-

values of the matrix A(x),
• |A(x)| = supυ 6=0 ‖A(x)υ‖/‖υ‖ for any υ ∈ RN is the induced matrix

norm.

Note that it follows from (A1) that λmax(x) ≥ λmin(x) > 0 and |A(x)| =
λmax(x) for all x ∈ Ω(r0). For any [a, b] ⊂ [r0,∞), define

D(a, b) = {u ∈ C1[a, b],R) : up+1(r) > 0 for all r ∈ (a, b),
and u(a) = u(b) = 0}.

In order to prove our results we will need the following lemmas. The
first one can be deduced from Lemma 2.1 of [19] using the transformation
αi = pi/p, the second one is the well-known arithmetic-geometric mean
inequality [4], and Lemma 2.3 is a result on the maximal value of a function
proved by a direct computation.

Lemma 1.1. Let {pi}, i = 1, . . . ,m, be an m-tuple satisfying (A4). Then
there exists an m-tuple (η1, . . . , ηm) with

∑m
i=1 ηi < 1 and 0 < ηi < 1 such

that
m∑
i=1

piηi = p.

Lemma 1.2 ([4]). If ai ≥ 0 and qi > 0 with
∑m

i=0 qi = 1, then
m∑
i=0

qiai ≥
m∏
i=0

aqii .

Lemma 1.3. Let a ≥ 0, b > 0 and X > 0. Then

(1) for γ > p, aXγ + b ≥ γp−p/γ(γ − p)(p−γ)/γap/γb(γ−p)/γXp;
(2) for 0 < γ < p, aXγ − b ≤ γp−p/γ(p− γ)(p−γ)/γap/γb(γ−p)/γXp.

2. Main results. We begin by extending Theorem 1.1 [19, Theorem 1].
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Theorem 2.1. Let (A1)–(A4) hold. Assume that for any r ≥ r0, there
exist a1, b1, a2, b2 such that r ≤ a1 < b1 ≤ a2 < b2 and

(2.1)

{
ci(x) ≥ 0, x ∈ Ω[a1, b1] ∪Ω[a2, b2], i = 1, . . . ,m,
e(x) ≤ 0, x ∈ Ω[a1, b1]; e(x) ≥ 0, x ∈ Ω[a2, b2].

If there exist u ∈ D(ai, bi) and φ ∈ C1(Ω(r0),R+) such that

(2.2) �

Ω[ai,bi]

φ(x)
[
C1(x)up+1(‖x‖)− 1

(p+ 1)p+1

|A(x)|p+1

λpmin(x)
‖H(x)‖p+1

]
dx > 0

for i = 1, 2, where

H(x) = (p+ 1)u′(‖x‖) ν(x)− u(‖x‖)
(
b(x)A−1(x)− ∇φ(x)

φ(x)

)
,

and

C1(x) = c(x) +
( m∏
i=0

η−ηi
i

)
|e(x)|η0

m∏
i=1

cηi
i (x),

η1, . . . , ηm are positive constants given in Lemma 1.1, and 0 < η0 < 1 with∑m
i=0 ηi = 1, then equation (1.1) is oscillatory.

Proof. Suppose that y = y(x) is a nonoscillatory solution of (1.1). With-
out loss of generality we may assume that y(x) > 0 for all x ∈ Ω(a0),
a0 ≥ r0, where a0 depends on the solution y(x). When y(x) is eventually
negative, the proof is the same, using the annular domain Ω[a2, b2] instead
of Ω[a1, b1]. By the assumption, we can choose a1 > b1 ≥ a0 such that
ci(x) ≥ 0 for all i and e(x) ≤ 0 for x ∈ Ω[a1, b1]. Applying Lemma 1.2 to
the case where

u0 =
1

η0yp
|e(x)|, ui =

1
ηi
ci(x)ypi−p, i = 1, . . . ,m,

we observe that for x ∈ Ω(a0),

(2.3) − e(x) +
m∑
i=1

ci(x)ypi = |e(x)|+
m∑
i=1

ci(x)ypi

= yp[η0u0 + · · ·+ ηmum] ≥ yp
( m∏
i=0

η−ηi
i

)
|e(x)|η0

m∏
i=1

cηi
i (x).

Combining (2.3) and (1.1), we get

(2.4) div(A(x)‖∇y‖p−1∇y) + 〈b(x), ‖∇y‖p−1∇y〉+ C1(x)|y|p−1y ≤ 0.

Now, for x ∈ Ω(a0), define

w(x) =
1

yp(x)
(A(x)‖∇y‖p−1∇y).
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From (1.1) it follows that

divw(x) =
1
yα

div(A(x)‖∇y‖p−1∇y)− 〈b(x)A−1(x), w(x)〉(2.5)

− p

yp+1
〈A(x)‖∇y‖p−1∇y,∇y〉.

Note that

(2.6) ‖w(x)‖ ≤ |A(x)|(‖∇y‖/y)p, (∇y)TA(x)∇y ≥ λmin(x)‖∇y‖2.

Then, by (2.4)–(2.6),

(2.7) divw(x) ≤ −C1(x)− 〈b(x)A−1(x), w(x)〉 − p λmin(x)
|A(x)|q

‖w(x)‖q,

where q = (p+ 1)/p. Multiplying (2.7) by φ(x), we get

div(φ(x)w(x)) ≤ − φ(x)C1(x)− φ(x)
〈
b(x)A−1(x)− ∇φ(x)

φ(x)
, w(x)

〉
(2.8)

− p φ(x)λmin(x)
|A(x)|q

‖w(x)‖q.

Hence, multiplying both sides of (2.8) by up+1(‖x‖), we have

(2.9)
�

Ω[a1,b1]

φ(x)C1(x)up+1(‖x‖) dx

≤ −
�

Ω[a1,b1]

up+1(‖x‖) div(φ(x)w(x)) dx

−
�

Ω[a1,b1]

φ(x)up+1(‖x‖)
〈
b(x)A−1(x)− ∇φ(x)

φ(x)
, w(x)

〉
dx

− p
�

Ω[a1,b1]

φ(x)up+1(‖x‖) λmin(x)
|A(x)|q

‖w(x)‖q dx.

By applying Green’s formula to the first term of the right-hand side of (2.9),
and noting that u(a1) = u(b1) = 0, we have

�

Ω[a1,b1]

up+1(‖x‖) div(φ(x)w(x))dx

=
b1�

a1

up+1(r)
�

S(r)

div(φ(x)w(x)) dσ dr

= −(p+ 1)
�

Ω[a1,b1]

φ(x)up(‖x‖)u′(‖x‖)〈ν(x), w(x)〉 dx.
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Combining this computation and (2.9), we get

(2.10)
�

Ω(a1,b1)

φ(x)C1(x)up+1(‖x‖) dx ≤
�

Ω(a1,b1)

φ(x)up(‖x‖)〈H(x), w(x)〉 dx

− p
�

Ω[a1,b1]

φ(x)up+1(‖x‖) λmin(x)
|A(x)|q

‖w(x)‖q dx.

By Young’s inequality [4, Theorem 37],

up(‖x‖)〈H(x), w(x)〉 ≤ 1
(p+ 1)p+1

|A(x)|p+1

λpmin(x)
‖H(x)‖p+1(2.11)

+ pup+1(‖x‖) λmin(x)
|A(x)|q

‖w(x)‖q.

Substituting (2.11) into (2.10), we find that
�

Ω[a1,b1]

φ(x)C1(x)up+1(‖x‖) dx

≤ 1
(p+ 1)p+1

�

Ω[a1,b1]

φ(x)
|A(x)|p+1

λpmin(x)
‖H(x)‖p+1 dx,

which contradicts (2.2).

If ci(x), i = k + 1, . . . ,m, is nonpositive on Ω[a1, b1] ∪ Ω[a2, b2], the
following theorem is useful.

Theorem 2.2. Let (A1)–(A4) hold. Assume that for any r ≥ r0, there
exist a1, b1, a2, b2 such that r ≤ a1 < b1 ≤ a2 < b2 and

(2.12)

{
ci(x) ≥ 0, x ∈ Ω[a1, b1] ∪Ω[a2, b2], i = 1, . . . , k,
e(x) < 0, x ∈ Ω(a1, b1); e(x) > 0, x ∈ Ω(a2, b2).

If there exist u ∈ D(ai, bi), φ ∈ C1(Ω(r0),R+) and positive numbers δi,
i = 1, . . . , k, and εj, j = k + 1, . . . ,m, with

∑k
i=1 δi +

∑m
j=k+1 εj = 1 such

that

(2.13)
�

Ω[ai,bi]

φ(x)
[
C2(x)up+1(‖x‖)− 1

(p+ 1)p+1

|A(x)|p+1

λpmin(x)
‖H(x)‖p+1

]
dx>0

for i = 1, 2, where H(x) is defined in Theorem 2.1, and

C2(x) = c(x) +
k∑
i=1

αi|e(x)|(pi−p)/pic
p/pi

i (x)

−
m∑

j=k+1

αj |e(x)|(pj−p)/pjc
p/pj

j (x),
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with
αi = pi p

−p/pi(pi − p)(p−pi)/piδ
(pi−p)/pi

i , i = 1, . . . , k,

αj = pj p
−p/pi(p− pj)(p−pj)/pjε

(pj−p)/pj

j , j = k + 1, . . . ,m,

cj(x) = max{−cj(x), 0}, j = k + 1, . . . ,m,

then equation (1.1) is oscillatory.

Proof. Assume to the contrary that y = y(x) is a nonoscillatory solution
and it is eventually positive, say y(x) > 0 for all x ∈ Ω(a0), a0 ≥ r0. Note
that (1.1) can be rewritten as

(2.14) div(A(x)‖∇y‖p−1∇y) + 〈 b(x), ‖∇y‖p−1∇y 〉+ c(x)yp

+
k∑
i=1

[qi(x)yαi − δie(x)] +
m∑

j=k+1

[qj(x)ypj − εje(x)] = 0.

By Lemma 1.3, for x ∈ Ω(a1, b1), we get

ci(x)ypi − δie(x) = ci(x)ypi + δi|e(x)|

≥ αi cp/pi

i (x)|e(x)|(pi−p)/piyp, i = 1, . . . , k,

and

cj(x)ypj − εje(x) ≥ −[c̄j(x)ypj − εj |e(x)|]

≥ −αjc
p/pj

j (x)|e(x)|(pi−p)/pjyp, j = k + 1, . . . ,m.

Therefore, we can deduce from (2.14) that

div(A(x)‖∇y‖p−1∇y) + 〈 b(x), ‖∇y‖p−1∇y 〉+ C2(x)|y|p−1y ≤ 0,

which is the same as (2.4). The remaining argument is the same as in the
proof of Theorem 2.1.

Theorem 2.3. Let (A1)–(A3) and (A5) hold. Assume that for any r ≥
r0, there exist a1, b1, a2, b2 such that r ≤ a1 < b1 ≤ a2 < b2, and (2.1)
holds. If there exist u ∈ D(ai, bi), φ ∈ C1(Ω(r0),R+) and positive numbers
δi, i = 1, . . . ,m, with

∑m
i=1 δi = 1 such that

(2.15)�

Ω[ai,bi]

φ(x)
[
C3(x)up+1(‖x‖)− 1

(p+ 1)p+1

|A(x)|p+1

λpmin(x)
‖H(x)‖p+1

]
dx > 0

for i = 1, 2, where H(x) is defined in Theorem 2.1, and

C3(x) = c(x) +
m∑
i=1

αic
p/pi

i (x)|e(x)|(pi−p)/pi ,

αi = pi p
−p/pi(pi − p)(p−pi)/piδ

(pi−p)/pi

i ,

then equation (1.1) is oscillatory.
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Proof. Assume to the contrary that y = y(x) is a nonoscillatory solution
and it is eventually positive, say y(x) > 0 for all x ∈ Ω(a0), a0 ≥ r0. Note
that (1.1) can be rewritten as

(2.16) div(A(x)‖∇y‖p−1∇y) + 〈 b(x), ‖∇y‖p−1∇y 〉

+ c(x)|y|p−1y +
m∑
i=1

[qi(x)ypi − δie(x)] ≤ 0.

By Lemma 1.3(1), for x ∈ Ω(a1, b1), we get

ci(x)ypi − δie(x) = ci(x)ypi + δi|e(x)|(2.17)

≥ αicp/pi

i (x)|e(x)|(pi−p)/pi , i = 1, . . . ,m.

Therefore, we can deduce from (2.16) and (2.17) that

div(A(x)‖∇y‖p−1∇y) + 〈 b(x), ‖∇y‖p−1∇y 〉+ C3(x)|y|p−1y ≤ 0,

which is the same as (2.4). The remaining argument is the same as in the
proof of Theorem 2.1.

The following Theorems 2.4, 2.5 and 2.6 are variants of Theorems 2.1,
2.2 and 2.3 and present sharper results, but cover the case 0 < p ≤ 1.

Theorem 2.4. Let 0 < p ≤ 1, and (A1)–(A4) hold. Assume that for any
r ≥ r0, there exist a1, b1, a2, b2 such that r ≤ a1 < b1 ≤ a2 < b2, and (2.1)
holds. If there exist u ∈ D(ai, bi) and φ ∈ C1(Ω(r0),R+) such that

(2.18)
�

Ω[ai,bi]

φ(x)
[
C1(x)up+1(‖x‖)− 1

(p+ 1)p+1
λmax(x)‖H(x)‖p+1

]
dx > 0

for i = 1, 2, where H(x), C1(x) and ηi, i = 0, 1, . . . ,m, are as in Theo-
rem 2.1, then equation (1.1) is oscillatory.

Proof. Suppose, by contradiction, that (1.1) is nonoscillatory. We start
as in the proof of Theorem 2.1 and derive (2.5) which can be written in the
form

divw(x) ≤− C1(x)− 〈b(x)A−1(x), w(x)〉(2.19)

− p〈w(x), A−1(x)w(x)〉
(
‖∇y‖
|y|

)1−p
.

Note that

〈w(x), A−1(x)w(x)〉 ≥ w2(x)
λmax(x)

, ‖w(x)‖ ≤ |A(x)|
(
‖∇y‖
|y|

)p
,

which for 0 < p ≤ 1 is equivalent to the inequality(
‖∇y‖
|y|

)1−p
≥
(
‖w(x)‖
|A(x)|

)(1−p)/p
=
(
‖w(x)‖
λmax(x)

)(1−p)/p
.
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Combining these, we have

〈w(x), A−1(x)w(x)〉
(
‖∇y‖
|y|

)1−p
≥ w2(x)
λmax(x)

(
‖w(x)‖
λmax(x)

)(1−p)/p
(2.20)

=
‖w(x)‖(p+1)/p

λ
1/p
max(x)

.

Then, substituting (2.20) into (2.19), we get

divw(x) ≤ −C1(x)− 〈b(x)A−1(x), w(x)〉 − p

λ
1/p
max(x)

‖w(x)‖(p+1)/p,

which is the same as (2.7). The remaining argument is the same as in the
proof of Theorem 2.1.

Combining the techniques of the proofs of Theorems 2.4, 2.2 and 2.3, we
have

Theorem 2.5. Let 0 < p ≤ 1 and (A1)–(A4) hold. Assume that for any
r ≥ r0, there exist a1, b1, a2, b2 such that r ≤ a1 < b1 ≤ a2 < b2, and (2.12)
holds. If there exist u ∈ D(ai, bi), φ ∈ C1(Ω(r0),R+) and positive numbers
δi, i = 1, . . . , k, and εj, j = k + 1, . . . ,m, with

∑k
i=1 δi +

∑m
j=k+1 εj = 1

such that

(2.21)
�

Ω[ai,bi]

φ(x)
[
C2(x)up+1(‖x‖)− 1

(p+ 1)p+1
λmax(x)‖H(x)‖p+1

]
dx > 0

for i = 1, 2, where H(x) and C2(x) are defined in Theorem 2.2, then equation
(1.1) is oscillatory.

Theorem 2.6. Let 0 < p ≤ 1, and (A1)–(A3) and (A5) hold. Assume
that for any r ≥ r0, there exist a1, b1, a2, b2 such that r ≤ a1 < b1 ≤ a2 < b2,
and (2.1) holds. If there exist u ∈ D(ai, bi), φ ∈ C1(Ω(r0),R+) and positive
numbers δi, i = 1, . . . ,m, with

∑m
i=1 δi = 1 such that

(2.22) �

Ω[ai,bi]

φ(x)
[
C3(x)up+1(‖x‖)− 1

(p+ 1)p+1
λmax(x)‖H(x)‖p+1

]
dx > 0

for i = 1, 2, where H(x) and C3(x) are defined in Theorem 2.3, then equation
(1.1) is oscillatory.

Remark 2.1. Let N = 1 and φ(x) = 1. For equation (1.2), Theorems
2.4 and 2.5 reduce to Theorems 1 and 3 in [19], respectively. On the other
hand, for (1.1) with N = 1, Theorem 2.6 reduces to Theorem 2.2 in [31].

Remark 2.2. Let m ≡ 1, p = 1, bi(x) ≡ 0, c(x) ≡ 0, and φ(x) ≡ 1 in
Theorem 2.4. Note that p1(p1 − 1)1/p1−1 > 1 for p1 > 1, so condition (2.2)
in Theorem 2.4 is more general than the condition of Theorem 1 in [32].
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Therefore, Theorem 2.4 improves and extends the main results in [32]. On
the other hand, the method used in [32], starting with integration of the
Riccati equality over spheres in RN centered at the origin, converts the N -
dimensional problem into a problem in one variable and repeats steps from
the proof in [26] to establish the main results. In the present paper, our
methodology is somewhat different from [32]. We believe that our approach
is more natural for partial differential equations and provides a much deeper
insight into oscillation. Moreover, our results also take the first order term
into account.

Remark 2.3. Finally, we discuss condition (A4) and pose a problem
for future work. Firstly, observe that in condition (A4) (i.e., (1.1) being a
mixed type, superlinear and sublinear equation), we cannot allow k = m,
since otherwise the fact

∑m
i=1 piηi > p

∑m
i=1 ηi (in Lemma 1.1) implies that∑m

i=1 piηi 6= p, and hence, the conclusions of Theorems 2.2 and 2.4 fail to
hold. Secondly, if we let k = 0 in (A4), i.e., p > p1 > · · · > pm, in which
case (1.1) is called a mixed sublinear equation, then there is no way to
obtain an m-tuple (η1, . . . , ηm) with

∑m
i=1 ηi < 1 and 0 < ηi < 1 such that∑m

i=1 piηi = p. Therefore, it is an open problem to find analogous oscillation
criteria when p > p1 > · · · > pm.

3. Applications. Now we present a method of constructing the test
function u. Following Philos [16], we say that a function H(r, s) belongs
to the function space H if it is defined on D = {(r, s) : r ≥ s ≥ r0},
H(r, r) = 0 for r ≥ r0 and H(r, s) > 0 and has continuous partial derivatives
in D0 = {(r, s) : r > s ≥ r0}.

For given H1, H2 ∈ H, we define h1(r, s) and h2(r, s) as follows:
∂H1

∂r
(r, s) = H1(r, s)h1(r, s),

∂H2

∂s
(r, s) = H2(r, s)h2(r, s).

Let u(r) = [H1(b, r)H2(r, a)]1/(p+1). It is easy to see that u(b) = u(a) = 0,
up+1(r) > 0 and u(r) is differentiable on (a, b), with

u′(r) =
1

p+ 1
u(r)[h1(b, r) + h2(r, a)].

In order to make our ideas more transparent, we consider the simple case
m = 2, where (1.1) becomes

(3.1)

{
div(A(x)‖∇y‖p−1∇y) + 〈b(x), ‖∇y‖p−1∇y〉+ C(x, y) = e(x),
C(x, y) = c(x)|y|p−1y + c1(x)|y|p1−1y + c2(x)|y|p2−1y.

By Theorems 2.1–2.3, we then have
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Theorem 3.1. Let p1 > p > p2, let η0, η1, η2 be positive constants satis-
fying

(3.2) η0 + η1 + η2 = 1, p1η1 + p2η2 = p,

and let (A1)–(A3) hold. Assume that for any r ≥ r0, there exist a1, b1, a2, b2
such that r ≤ a1 < b1 ≤ a2 < b2 and

(3.3)

{
ci(x) ≥ 0, x ∈ Ω[a1, b1] ∪Ω[a2, b2], i = 1, 2,
e(x) ≤ 0, x ∈ Ω[a1, b1]; e(x) ≥ 0, x ∈ Ω[a2, b2].

If there exist H1, H2 ∈ H and φ ∈ C1(Ω(r0),R+) such that ∇φ(x) =
φ(x)b(x)A−1(x) and

(3.4)
�

Ω[ai,bi]

φ(x)H1(bi, ‖x‖)H2(‖x‖, ai)
[
C1(x)− 1

(p+ 1)p+1

|A(x)|p+1

λpmin(x)

× |h1(bi, ‖x‖) + h2(‖x‖, ai)|p+1

]
dx > 0

for i = 1, 2, where

C1(x) = c(x) +
( 3∏
i=0

η−ηi
i

)
|e(x)|η0cη11 (x)cη22 (x),

then equation (3.1) is oscillatory.

Remark 3.1. η0, η1, η2 satisfying condition (3.2) of Theorem 3.1 can
indeed be found. For example, η1, η2 may be

η1 =
p− p2(1− η0)

p1 − p2
, η2 =

p1(1− η0)− p
p1 − p2

,

where η0 is any positive number satisfying 0 < η0 < (p1 − p)/p1. This will
ensure that (3.2) holds.

Theorem 3.2. Let p1 > p > p2 and (A1)–(A3) hold. Assume that for
any r ≥ r0, there exist a1, b1, a2, b2 such that r ≤ a1 < b1 ≤ a2 < b2 and

(3.5)

{
c1(x) ≥ 0, x ∈ Ω[a1, b1] ∪Ω[a2, b2],
e(x) < 0, x ∈ Ω(a1, b1); e(x) > 0, x ∈ Ω(a2, b2).

If there exist H1, H2 ∈ H, φ ∈ C1(Ω(r0),R+) with ∇φ(x)=φ(x)b(x)A−1(x),
and δ ∈ (0, 1) such that

(3.6)
�

Ω[ai,bi]

φ(x)H1(bi, ‖x‖)H2(‖x‖, ai)
[
C2(x)− 1

(p+ 1)p+1

|A(x)|p+1

λpmin(x)

× |h1(bi, ‖x‖) + h2(‖x‖, ai)|p+1

]
dx > 0
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for i = 1, 2, where

C2(x) = c(x) + α1|e(x)|(p1−p)/p1cp/p11 (x)− α2|e(x)|(p2−p)/p2cp/p22 (x),

α1 = p1p
−p/p1(p1 − p)(p−p1)/p1δ(p1−p)/p1 ,

α2 = p2p
−p/p2(p− p2)(p−p2)/p2(1− δ)(p2−p)/p2 ,

and c2(x) = max{−c2(x), 0}, then equation (3.1) is oscillatory.

Theorem 3.3. Let p1 > p2 > p and (A1)–(A3) hold. Assume that for
any r ≥ r0, there exist a1, b1, a2, b2 such that r ≤ a1 < b1 ≤ a2 < b2
and (3.3) holds. If there exist H1, H2 ∈ H and φ ∈ C1(Ω(r0),R+) with
∇φ(x) = φ(x)b(x)A−1(x) and δ ∈ (0, 1) such that

(3.7)
�

Ω[ai,bi]

φ(x)H1(bi, ‖x‖)H2(‖x‖, ai)
[
C3(x)− 1

(p+ 1)p+1

|A(x)|p+1

λpmin(x)

× |h1(bi, ‖x‖) + h2(‖x‖, ai)|p+1

]
dx > 0

for i = 1, 2, where

C3(x) = c(x) + α1|e(x)|(p1−p)/p1cp/p11 (x) + α2|e(x)|(p2−p)/p2cp/p22 (x),

α1 = p1p
−p/p1(p1 − p)(p−p1)/p1δ(p1−p)/p1 ,

α2 = p2p
−p/p2(p2 − p)(p−p2)/p2(1− δ)(p2−p)/p2 ,

then equation (3.1) is oscillatory.

In particular, we shall give the following interesting corollaries. For φ ∈
C(Ω(r0),R+), define

λ(r) =
�

S(r)

φ(x)
|A(x)|p+1

λpmin(x)
dσ, Λ(r) =

r�

r0

ds

λ1/p(s)
,

and recall the Beta function [33],

B(α, β) =
1�

0

sα−1(1− s)β−1 ds for α, β > 0.

Keep in mind that B(α, β) = B(β, α).

Corollary 3.1. Let p1 > p > p2 and η0, η1, η2 be positive constants
such that (3.2) hold, and let (A1)–(A3) hold. Assume that for any r ≥ r0,
there exist a1, b1, a2, b2 such that r ≤ a1 < b1 ≤ a2 < b2 and (3.3) holds. If
there exist φ ∈ C1(Ω(r0),R+) with ∇φ(x) = φ(x)b(x)A−1(x) and constants
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α, β > max{1, p} such that

(3.8)
1

[Λ(bi)− Λ(ai)]α+β−p

�

Ω[ai,bi]

φ(x)[Λ(bi)−Λ(‖x‖)]α[Λ(‖x‖)−Λ(ai)]β C1(x) dx

>
2p

(p+ 1)p+1
[αp+1B(α− p, β + 1) + βp+1B(α+ 1, β − p)]

for i = 1, 2, where C1(x) is defined as in Theorem 3.1, then equation (1.1)
is oscillatory.

Proof. To apply Theorem 3.1, let

H1(bi, s) = [Λ(bi)− Λ(s)]α, H2(s, ai) = [Λ(s)− Λ(ai)]β.

Note that

h1(bi, s) = − α

λ1/p(s)[Λ(bi)− Λ(s)]
, h2(s, ai) =

β

λ1/p(s)[Λ(s)− Λ(ai)]
,

and

(3.9)
�

Ω[ai,bi]

|A(x)|p+1

λpmin(x)
φ(x)H1(bi, ‖x‖)H2(‖x‖, ai)|h1(bi, ‖x‖)+h2(‖x‖, ai)|p+1 dx

=
bi�

ai

[Λ(bi)− Λ(s)]α−p−1[Λ(s)− Λ(ai)]β−p−1

× |α[Λ(s)− Λ(ai)]− β[Λ(bi)− Λ(s)]|p+1 dΛ(s).

Let u = Λ(s) − Λ(ai) and v = Λ(bi) − Λ(ai). Taking into account the
elementary inequality

(a+ b)p+1 ≤ 2p(ap+1 + bp+1) for a, b ≥ 0,

we then see that the right-hand side of (3.9) takes the form

(3.10)
v�

0

(v − u)α−p−1uβ−p−1|αu− β(v − u)|p+1 du

≤ 2p
[
αp+1

v�

0

(v − u)α−p−1uβ du+ βp+1
v�

0

(v − u)αuβ−p−1 du
]

(u = vθ)

= 2pvα+β−p
[
αp+1

1�

0

(1− θ)α−p−1θβ dθ + βp+1
1�

0

(1− θ)αθβ−p−1 dθ
]

= 2p[Λ(bi)− Λ(ai)]α+β−p[αp+1B(α− p, β + 1) + βp+1B(α+ 1, β − p)].



Mixed-nonlinear elliptic equations 183

Combining (3.9) and (3.10), we have

(3.11)
�

Ω[ai,bi]

|A(x)|p+1

λpmin(x)
φ(x)H1(bi, ‖x‖)H2(‖x‖, ai)

∣∣h1(bi, ‖x‖+h2(‖x‖, ai)
∣∣p+1

dx

≤ 2p[Λ(bi)− Λ(ai)]α+β−p[αp+1B(α− p, β + 1) + βp+1B(α+ 1, β − p)].

From (3.8) and (3.11), we can easily find that (3.4) holds. Hence, by Theorem
3.1, equation (3.1) is oscillatory.

Similar to the proof of Corollary 3.1, by Theorems 3.2 and 3.3, we have

Corollary 3.2. Let p1 > p > p2 and (A1)–(A3) hold. Assume that for
any r ≥ r0, there exist a1, b1, a2, b2 such that r ≤ a1 < b1 ≤ a2 < b2 and
(3.5) holds. If there exist φ ∈ C1(Ω(r0),R+) with ∇φ(x) = φ(x)b(x)A−1(x)
and constants α, β > max{1, p} and δ ∈ (0, 1) such that

1
[Λ(bi)− Λ(ai)]α+β−p

�

Ω[ai,bi]

φ(x)[Λ(bi)−Λ(‖x‖)]α[Λ(‖x‖)−Λ(ai)]β C2(x) dx

>
2p

(p+ 1)p+1
[αp+1B(α− p, β + 1) + βp+1B(α+ 1, β − p)]

for i = 1, 2, where C2(x) is defined as in Theorem 3.2, then equation (3.1)
is oscillatory.

Corollary 3.3. Let p1 > p2 > p and (A1)–(A3) hold. Assume that for
any r ≥ r0, there exist a1, b1, a2, b2 such that r ≤ a1 < b1 ≤ a2 < b2 and
(3.3) holds. If there exist φ ∈ C1(Ω(r0),R+) with ∇φ(x) = φ(x)b(x)A−1(x)
and constants α, β > max{1, p}, δ ∈ (0, 1) such that

1
[Λ(bi)− Λ(ai)]α+β−p

�

Ω[ai,bi]

φ(x)[Λ(bi)−Λ(‖x‖)]α[Λ(‖x‖)−Λ(ai)]β C3(x) dx

>
2p

(p+ 1)p+1
[αp+1B(α− p, β + 1) + βp+1B(α+ 1, β − p)]

for i = 1, 2, where C3(x) is defined as in Theorem 3.1, then equation (3.1)
is oscillatory.

Remark 3.2. Similar theorems and corollaries can be formulated for
Theorems 2.4, 2.5 and 2.6 concerning (3.1). We leave the details to the
interested reader.

Finally, we give three examples to illustrate our main results.
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Example 3.1. Consider equation (3.1) with N = 2 and

(3.12)

A = I (identity matrix), b(x) = − 1
‖x‖2

(x1, x2),

c(x) = c0 sin 2‖x‖,

c1(x) =
3
5

sin5/3 2‖x‖, c2(x) =
9
25

cos25/9 ‖x‖,

e(x) = −25 cos25 2‖x‖,

where x ∈ Ω(1), p = 3, p1 = 7/2, p2 = 5/2, c0 ≥ 0. Let

η0 = 1/25, η1 = 3/5, η2 = 9/25.

Then η0, η1, η2 satisfy (3.2) and

C1(x) = c0 sin 2‖x‖+
1
2

∣∣cos 2‖x‖
∣∣ sin 2‖x‖.

For any r ≥ 1, let a1 = 2jπ, b1 = a2 = 2jπ + π/4, b2 = 2jπ + π/2 for
j = 1, 2, . . . , and φ(x) = 1/‖x‖. Clearly, φ(x)b(x)A−1(x) = ∇φ(x). A direct
computation yields

�

Ω[ai,bi]

φ(x)[C1(x)up+1(‖x‖)− u′ p+1(‖x‖)] dx

= 2π
π/4�

0

{
sin4 4s

[
c0 sin 2s+

1
4

sin 4s
]
− (4 cos 4s)4

}
ds

= 2π
[

16
15
c0 +

1
15
− 3

2
π

]
.

Hence, by Theorem 2.1, if we choose the constant c0 ≥ 0 satisfying

c0 >
1
32

(45π − 2),

then equation (3.1) with (3.12) is oscillatory.

Example 3.2. Consider equation (3.1) with N = 2 and

(3.13)

A = I (identity matrix), b(x) = − 1
‖x‖2

(x1, x2),

c(x) = c0 sin ‖x‖,
c1(x) = sin ‖x‖, c2(x) = − cos ‖x‖, e(x) = − cos ‖x‖,

where x ∈ Ω(1), p = 1, p1 = 2, p2 = 1/2 and c0 ≥ 0. For any r ≥ 1, let
a1 = 2jπ, b1 = a2 = 2jπ+π/2, b2 = (2j+ 1)π for j = 1, 2, . . . , and δ = 1/2.
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A direct computation yields

C2(x)

=

{
c0 sin ‖x‖+ 21/2

∣∣cos ‖x‖
∣∣1/2 sin1/2 ‖x‖ − 1

2 cos ‖x‖, x ∈ Ω(a1, b1),

c0 sin ‖x‖+ 21/2
∣∣cos ‖x‖

∣∣1/2 sin1/2 ‖x‖, x ∈ Ω(a2, b2).

Let u(r) = sin 2r and φ(x) = ‖x‖. Clearly, φ(x)b(x)A−1(x) = ∇φ(x). Then
�

Ω(a1,b1)

φ(x)[C2(x)u2(‖x‖)− u′2(‖x‖)] dx

= 2π
π/2�

0

{
sin2 2s

[
c0 sin s+ sin1/2 2s− 1

2
cos s

]
− 4 cos2 2s

}
ds

= 2π
[

8
15
c0 + 23/2B

(
7
4
,
7
4

)
− 4

15
− 1

4
π

]
,

and
�

Ω(a2,b2)

φ(x)[C2(x)u2(‖x‖)− u′2(‖x‖)] dx

= 2π
π/2�

0

{sin2 2s [c0 sin s+ sin1/2 2s]− 4 cos2 2s} ds

= 2π
[

8
15
c0 + 23/2B

(
7
4
,
7
4

)
− 1

4
π

]
.

Hence, by Theorem 2.2, if we choose the constant c0 satisfying

4
15
c0 + 21/2B

(
7
4
,
7
4

)
>

2
15

+
1
8
π,

then equation (3.1) with (3.13) is oscillatory.

Example 3.3. Consider (3.1) with N = 2 and

(3.14)

A = I (identity matrix), b(x) = − 1
‖x‖2

(x1, x2),

c(x) = c0 sin5/3 2‖x‖, c1(x) = c1, c2(x) = c2,

e(x) = − cos ‖x‖,
where x ∈ Ω(1), p = 1/3, p1 = 1, p2 = 2/3, c1 ≥ 0, c2 ≥ 0. Let δ = 1/3.
Then

C3(x) = c0 sin5/3 2‖x‖+ (3c1)1/3
∣∣cos ‖x‖

∣∣2/3 + 2(c2/3)1/3
∣∣cos ‖x‖

∣∣1/2.
For any r ≥ 1, let a1 = 2jπ, b1 = a2 = 2jπ + π/2, b2 = (2j + 1)π for
j = 1, 2, . . . . Let φ(x) = 1/‖x‖. Clearly, φ(x)b(x)A−1(x) = ∇φ(x). Let
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u(r) = sin 2r. We have
�

Ω[ai,bi]

φ(x)[C3(x)u4/3(‖x‖)− u′4/3(‖x‖)] dx

= 2π
π/2�

0

{sin4/3 2s[c0 sin5/3 2s+ (3c1)1/3 cos2/3 s+ 2(c2/3)1/3 cos1/2 s]

− 24/3 cos4/3 2s} ds

= 2π
[

2
3
c0 + (6c1)1/3B

(
7
6
,
3
2

)
+ 2c1/22 B

(
7
6
,
17
12

)
− 1

2
B

(
7
6
,
7
6

)]
.

Hence, by Theorem 2.3 if we choose the constants c0, c1, c2 satisfying

2
3
c0 + (6c1)1/3B

(
7
6
,
3
2

)
+ 2c1/22 B

(
7
6
,
17
12

)
>

1
2
B

(
7
6
,
7
6

)
,

then equation (3.1) with (3.14) is oscillatory.
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[10] R. Mař́ık, Riccati-type inequality and oscillation criteria for a half-linear PDE with

damping, Electron. J. Differential Equations 2004, no. 11, 17 pp.

http://dx.doi.org/10.1016/j.camwa.2005.02.005
http://dx.doi.org/10.1155/S1025583401000236
http://dx.doi.org/10.1080/00036810008840853
http://dx.doi.org/10.1016/j.camwa.2006.08.040


Mixed-nonlinear elliptic equations 187
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