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Probability distribution solutions
of a general linear equation of infinite order

by Tomasz Kochanek and Janusz Morawiec (Katowice)

Abstract. Let (Ω,A, P ) be a probability space and let τ : R × Ω → R be strictly
increasing and continuous with respect to the first variable, andA-measurable with respect
to the second variable. We obtain a partial characterization and a uniqueness-type result
for solutions of the general linear equation

F (x) =
�

Ω

F (τ(x, ω))P (dω)

in the class of probability distribution functions.

1. Introduction. In this paper we deal with the linear functional equa-
tion

(1) F (x) =
�

Ω

F (τ(x, ω))P (dω).

Several particular cases of (1) appear in various areas of applications. For
instance, in the case where τ(x, ω) = x+ω the corresponding equation, called
the Integrated Cauchy Functional Equation, is of importance in probability
theory (see [27], [28]). G. Choquet and J. Deny were the first to consider that
version of (1) (see [3], [9]). The case τ(x, ω) = αx + ω is closely connected
with refinement equations (see [8], [15], [26]), which generate wavelets bases
(see [4], [7], [20]) and splines (see [6], [19]). They are also fundamental to
subdivision schemes (see [5], [10]). Equation (1) also appears in such areas
of mathematics as iterated function systems (see [12], [14]), Markov chains
(see [11], [21]) and perpetuities (see [13], [16], [29]).

For more information about results concerning equation (1) the reader
is referred to the survey paper [1], and to [17], [18] for a complete theory of
iterative functional equations.
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In the present paper we deal with the following problem: what can be
said about uniqueness and properties of probability distribution (p.d.) solu-
tions of (1) assuming only reasonable conditions on the given mapping τ?
We establish a uniqueness-type result which allows us to determine all p.d.
solutions, provided we know all continuous p.d. solutions satisfying some
special boundary conditions.

2. Preliminaries. Throughout the paper, (Ω,A, P ) is a probability
space and τ : R × Ω → R is a mapping such that for every x ∈ R the
function τ(x, ·) is A-measurable, and for every ω ∈ Ω the function τ(·, ω) is
strictly increasing and continuous.

We are interested in the following two classes of solutions of (1):

I := {F : R→ [0, 1] | F is a weakly increasing solution of (1) such that
F (−∞) := lim

x→−∞
F (x) = 0 and F (+∞) := lim

x→+∞
F (x) = 1},

C := {F ∈ I : F is continuous}.
It will be convenient to consider equation (1) in a more general situation.

If I ⊂ R is an interval and σ : I × Ω → I is a mapping which is weakly in-
creasing and continuous with respect to the first variable, and A-measurable
with respect to the second variable, then we rewrite (1) as

(2) F (x) =
�

Ω

F (σ(x, ω))P (dω).

We denote by Cσ(I) the class of all continuous and weakly increasing solu-
tions F : I → R of (2), and put

C0
σ(I) = {F ∈ Cσ(I) : lim

x→inf I
F (x) = 0 and lim

x→sup I
F (x) = 1}.

We say that a subset S of I is σ-invariant if S 6= ∅ and for every x ∈ S we
have σ(x, ω) ∈ S for almost all ω ∈ Ω.

Given a σ-invariant subinterval J of I define a mapping σJ : J ×Ω→ J
by putting σJ(x, ω) = σ(x, ω) if σ(x, ω) ∈ J , and σJ(x, ω) = 0 otherwise. It
is evident that for every function F : I → [0, 1] we have F |J ∈ C0

σJ
(J) if and

only if F ∈ C0
σ(I), limx→inf J F (x) = 0 and limx→sup J F (x) = 1. Therefore,

for every σ-invariant subinterval J of I we will use the symbol C0
σ(J) instead

of C0
σJ

(J).
Define

Eσ = {x ∈ I : σ(x, ω) = x for almost all ω ∈ Ω}.
Clearly, Eσ is closed. Let Uσ be the family of all open components of I \Eσ.
Note that each such component is a σ-invariant interval disjoint from Eσ.

We now quote the main result from [24] which is the first step in deter-
mining the class I (cf. also [23] where a result of similar type was established
in a very particular case of (1)).
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Theorem 1 (see [24, Theorem 2]).

(i) If Eτ = ∅, then C = I.
(ii) If Eτ 6= ∅, then C ( I. Moreover, a function F : R → [0, 1] belongs

to I if and only if it is weakly increasing, F (−∞) = 0, F (+∞) = 1
and on every component J ∈ Uτ , either F is constant or the function
given by

(3) FJ(x) =
F (x)− F (inf J)

F (sup J)− F (inf J)

belongs to C0
τ (J).

We see that p.d. solutions of (1) may be defined arbitrarily on Eτ (they
just have to meet the requirements in Theorem 1(ii)), whereas their be-
haviour on every component J ∈ Uτ is determined by functions from C0

τ (J).
It turns out that all functions belonging to that class may be described by
functions from C0

σ(R) with a suitable σ : R × Ω → R satisfying Eσ = ∅. To
see this, fix J ∈ Uτ , any increasing homeomorphism φJ : R→ J and define

(4) σ(·, ω) = φ−1
J ◦ τ(·, ω) ◦ φJ .

Plainly, σ is strictly increasing and continuous with respect to the first
variable, and A-measurable with respect to the second. A simple calcu-
lation shows that FJ ∈ C0

τ (J) if and only if FJ ◦ φJ ∈ C0
σ(R). Moreover,

τ -invariant subsets S ⊂ J are in one-to-one correspondence with σ-invariant
sets φ−1

J (S). In particular, since J ∩Eτ = ∅, we have Eσ = ∅.
The above argument, jointly with Theorem 1, justifies the assumption

Eτ = ∅, which we will adopt from now on.
In Section 3 we prove the main result of this paper. In Section 4 we

show how it can be used to describe solutions from the class I in terms of
solutions from a very special subclass (see Corollary 2). We finish the paper
with an example, included in Section 5, which demonstrates an application
of our results.

3. Uniqueness-type theorem. Let

Sσ = {S ⊂ I : S is a minimal compact σ-invariant interval}.
The main result of this paper reads as follows.

Theorem 2. Assume Eτ = ∅. Every F ∈ I is constant on each interval
from Sτ . Moreover, for every f : Sτ → [0, 1] there is at most one F ∈ I
such that F |I = f(I) for all I ∈ Sτ .

Let us stress that Sτ = ∅ may happen. In such a case (1) has at most
one solution in the class of all p.d. functions. Of course, the “monotonicity”
of the function f is essential to produce a p.d. solution F .
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Proof. For transparency we divide the proof into several parts.

Claim 1. It is enough to prove the assertion of Theorem 2 under the
assumption that F is a continuous p.d. function.

This follows immediately from assertion (i) of Theorem 1.
In Claims 2–5 we constantly assume the following: −∞ ≤ α < β ≤ +∞,

I = cl (α, β) (here and below, cl stands for closure in R), and σ : I ×Ω → I
is a mapping which is weakly increasing and continuous with respect to the
first variable, A-measurable with respect to the second variable, and such
that Eσ = ∅. We recall that F (±∞) always stands for limx→±∞ F (x).

Claim 2. If there are distinct F,G ∈ Cσ(I) such that F (α) = G(α) and
F (β) = G(β), then Sσ is non-void.

Put

M = sup{|F (x)−G(x)| : x ∈ I} > 0,
S = {x ∈ I : |F (x)−G(x)| = M},
Sn = {x ∈ I : |F (x)−G(x)| ≤M − 1/n} for n ∈ N.

Evidently, S is a non-void and compact subset of I, and I \ S =
⋃
n∈N Sn.

Let
N = {x ∈ I : P (σ(x, ω) ∈ S) = 1}.

Assume that there exists x0 ∈ I \N . This means that P (σ(x0, ω) 6∈ S) > 0,
and thus

α0 := P (σ(x0, ω) ∈ Sn0) > 0

for sufficiently large n0 ∈ N. Set

Ω0 = {ω ∈ Ω : σ(x0, ω) ∈ Sn0}.
Then equation (2) implies

|F (x0)−G(x0)| ≤
�

Ω

|F (σ(x0, ω))−G(σ(x0, ω))|P (dω)

=
�

Ω0

+
�

Ω\Ω0

≤ α0

(
M − 1

n0

)
+ (1− α0)M < M,

which shows that x0 6∈ S. We infer that S ⊂ N , hence S is σ-invariant.
If s1 := inf S and s2 := supS, then σ(s1, ω) ≥ s1 and σ(s2, ω) ≤ s2 for

almost all ω ∈ Ω, which, jointly with monotonicity of σ, implies that the
interval [s1, s2] is σ-invariant.

It remains to apply the Zorn–Kuratowski lemma to the family

{S ⊂ I : S is a compact and σ-invariant interval}.

From now on Ĩ stands for an element of Sσ.
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Claim 3. Define φ : Ĩ → Ĩ by

φ(x) = sup{y ∈ Ĩ : P (σ(x, ω) ≥ y) > 0}.
Then:

(i) φ is weakly increasing and left-continuous;
(ii) for every x ∈ [inf Ĩ , sup Ĩ) we have x < φ(x).

The fact that φ is weakly increasing is an easy consequence of the fact
that σ weakly increases as a function of the first variable.

For the left-continuity suppose, on the contrary, that x0 ∈ Ĩ and there
exists a strictly increasing sequence (xn)n∈N in Ĩ such that

lim
n→∞

xn = x0 and γ := lim
n→∞

φ(xn) < φ(x0).

Choose any numbers ν, ξ such that γ < ν < ξ < φ(x0). By the definition
of φ, the set

C := {ω ∈ Ω : σ(x0, ω) ≥ ξ}
has a positive measure. Let

Cn = {ω ∈ C : σ(xn, ω) ≥ ν} for n ∈ N.

The continuity of σ as a function of the first variable yields⋃
n∈N

Cn = C.

Since φ(xn) < ν, we have P (Cn) = 0 for n ∈ N, hence P (C) = 0; a contra-
diction.

Finally, suppose that φ(x) ≤ x for some x ∈ [inf Ĩ , sup Ĩ). Then by the
definition of φ, no y ∈ Ĩ with P (σ(x, ω) ≥ y) > 0 exceeds x. Hence

P (σ(x, ω) > x) ≤
∑
n∈N

P (σ(x, ω) ≥ x+ 1/n) = 0,

which means that σ(x, ω) ≤ x for almost all ω ∈ Ω. However, the mono-
tonicity of σ with respect to the first variable would then imply that the
interval [inf Ĩ , x] is σ-invariant and [inf Ĩ , x] ( Ĩ, which contradicts the fact
that Ĩ is minimal.

Claim 4. Define ψ : Ĩ → Ĩ by

ψ(x) = 1
2(x+ φ(x)).

Let ψn stand for the nth iterate of ψ. Then:

(i) ψn(inf Ĩ) < sup Ĩ for n ≥ 0;
(ii) the sequence (ψn(inf Ĩ))n≥0 is strictly increasing ;
(iii) limn→∞ ψ

n(inf Ĩ) = sup Ĩ.
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Inequality (i) follows directly from the formula of ψ and the fact that
the interval Ĩ is non-degenerate (which is a consequence of the assumption
Eσ = ∅).

With the aid of assertion (i) and Claim 3(i) we easily obtain (ii).
For the proof of (iii) set γ = limn→∞ ψ

n(inf Ĩ) and suppose that γ <

sup Ĩ. From the equality

ψn+1(inf Ĩ) = 1
2(ψn(inf Ĩ) + φ(ψn(inf Ĩ))) for n ∈ N

we get limn→∞ φ(ψn(inf Ĩ)) = γ. However, by (ii) and Claim 3(i), the last
limit equals φ(γ) and we obtain φ(γ) = γ, which contradicts Claim 3(ii).

Claim 5. If F ∈ Cσ(I), then F is constant on Ĩ.

For n ≥ 0 let Jn = [ψn(inf Ĩ), ψn+1(inf Ĩ)]. In the light of Claim 4, it
suffices to prove that F |Jn is constant for every n ≥ 0. Put ξn = ψn(inf Ĩ).
Assume inductively that F (ξn) = F (inf Ĩ) (which is trivial for n = 0) and fix
x ∈ Jn = [ξn, ψ(ξn)]. By Claims 3(ii) and 4(i), we infer that ψ(ξn) < φ(ξn),
hence the set

Ω0 := {ω ∈ Ω : σ(ξn, ω) ≥ x}

is of a positive probability α0. Since F ∈ Cσ(I) and σ(ξn, ω) ≥ inf Ĩ for
almost all ω ∈ Ω, we have

F (inf Ĩ) = F (ξn) =
�

Ω

F (σ(ξn, ω))P (dω) =
�

Ω0

+
�

Ω\Ω0

≥ α0F (x) + (1− α0)F (inf Ĩ).

This implies that F (x) ≤ F (inf Ĩ), thus F (x) = F (inf Ĩ).

Before we proceed with the proof, let us introduce some notation. If
S ⊂ R is a τ -invariant interval such that every F ∈ Cτ (R) is constant on S,
let κ(S) denote a maximal τ -invariant interval such that S ⊂ κ(S) and every
F ∈ Cτ (R) is constant on κ(S). Obviously, such an interval exists, and the
continuity of functions from Cτ (R) and of τ(·, ω) for ω ∈ Ω implies that it
is a closed interval. By Claim 5 (applied for I = R and σ = τ), the symbol
κ(S) makes sense for every S ∈ Sτ . Define

M = {J ⊂ R : J is a maximal τ -invariant interval such that
every F ∈ Cτ (R) is constant on J}.

The families Sτ , κ(Sτ ), M each consist of pairwise disjoint non-degenerate
closed intervals.

Claim 6. We have:

(i) κ(Sτ ) ⊂M;
(ii) {J ∈M : J is compact} ⊂ κ(Sτ ).
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The first assertion is clear. For the second, observe that if J ∈ M is
compact, then there is S ∈ Sτ with S ⊂ J . Plainly, κ(S) = J , so J ∈ κ(Sτ ).

Claim 7. The set
⋃
M is closed.

Suppose that there is x0 ∈ (cl
⋃
M) \

⋃
M. Then there exists either an

increasing sequence of right end-points of intervals fromM which converges
to x0, or a decreasing sequence of left end-points of intervals fromM which
converges to x0. Without loss of generality, assume that the latter case
holds true and let (In)n∈N be a sequence of intervals from M such that
inf In+1 < sup In+1 < inf In for n ∈ N and

lim
n→∞

inf In = x0 = lim
n→∞

sup In.

Since all the intervals In are τ -invariant, we infer that

P (τ(inf In, ω) ≥ inf In) = 1 and P (τ(sup In, ω) ≤ sup In) = 1,

hence τ(x0, ω) = x0 for almost all ω ∈ Ω, contrary to the fact that Eτ = ∅.

Claim 8. For every g : M→ [0, 1] there exists at most one F ∈ C such
that F |I = g(I) for all I ∈M.

Suppose F,G ∈ C, F 6= G and F |I = g(I) = G|I for all I ∈M. By Claim
7, the set R \

⋃
M is open. Choose any of its components, (α, β), on which

F and G do not coincide.
Let I = cl (α, β) and F̃ = F |I , G̃ = G|I . It is obvious that F̃ and G̃

are continuous, weakly increasing and F̃ (α) = G̃(α), F̃ (β) = G̃(β). Define
a mapping σ : I ×Ω → I as follows. For every x ∈ I and ω ∈ Ω put

σ(x, ω) =


τ(x, ω) if τ(x, ω) ∈ I,
α if τ(x, ω) < α,

β if τ(x, ω) > β.

It is easily seen that σ is weakly increasing and continuous with respect to
the first variable, and A-measurable with respect to the second. Moreover,
Eσ = ∅. Now, we are going to verify that F̃ and G̃ satisfy (2).

Fix x ∈ I. Assume that β < +∞; then β ∈
⋃
M, so it is a lower bound

of one of the intervals from M, say It0 = cl [β, sup It0). This implies that

P (τ(β, ω) ≤ sup It0) = 1,
and therefore

(5) P (τ(x, ω) ≤ sup It0) = 1.

Directly from the definition of σ we infer that�

{τ(x,ω)>β}

F̃ (σ(x, ω))P (dω) = P (τ(x, ω) > β) · F (β).
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Condition (5) implies that τ(x, ω) ∈ It0 for almost all ω ∈ {τ(x, ω) > β}.
Since F is constant on the interval It0 , we have

�

{τ(x,ω)>β}

F (τ(x, ω))P (dω) = P (τ(x, ω) > β) · F (β).

Hence

(6)
�

{τ(x,ω)>β}

F̃ (σ(x, ω))P (dω) =
�

{τ(x,ω)>β}

F (τ(x, ω))P (dω).

In the case where β = +∞ the above equality is trivial. Analogously we
show that

(7)
�

{τ(x,ω)<α}

F̃ (σ(x, ω))P (dω) =
�

{τ(x,ω)<α}

F (τ(x, ω))P (dω).

Plainly,

(8)
�

{τ(x,ω)∈I}

F̃ (σ(x, ω))P (dω) =
�

{τ(x,ω)∈I}

F (τ(x, ω))P (dω).

Summing up equations (6)–(8) we obtain�

Ω

F̃ (σ(x, ω))P (dω) =
�

Ω

F (τ(x, ω))P (dω),

which shows that F̃ (and G̃ as well) satisfies (2). Consequently, F̃ , G̃ ∈ Cσ(I).
By Claim 2, there exists Ĩ ⊂ I such that Ĩ ∈ Sσ. We have just proved

that for every F ∈ C its restriction F̃ = F |I belongs to Cσ(I), thus Claim 5
shows that F̃ , and so F itself, is constant on Ĩ. Consequently, the symbol
κ(Ĩ) makes sense.

Fix x ∈ Ĩ. Since Ĩ is σ-invariant, we have

P (σ(x, ω) ≤ β) ≥ P (σ(sup Ĩ , ω) ≤ β) ≥ P (σ(sup Ĩ , ω) ≤ sup Ĩ) = 1,
P (σ(x, ω) ≥ α) ≥ P (σ(inf Ĩ , ω) ≥ α) ≥ P (σ(inf Ĩ , ω) ≥ inf Ĩ) = 1.

Hence for all x ∈ Ĩ and almost all ω ∈ Ω we have σ(x, ω) = τ(x, ω), which
implies that Ĩ is τ -invariant, so κ(Ĩ) ∈M, a contradiction.

Claim 9. For every f : Sτ → [0, 1] there exists at most one F ∈ C such
that F |I = f(I) for all I ∈ Sτ .

Suppose that there is F ∈ C satisfying F |I = f(I) for all I ∈ Sτ . Define
g : M→ [0, 1] by

g(J) =


f(I) if J = κ(I) for some I ∈ Sτ ,
0 if J = (−∞, a] for some a ∈ R,
1 if J = [b,+∞) for some b ∈ R.
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In view of Claim 6 and the fact that at least one solution of (1) exists, the
definition is correct. Of course, F |J = g(J) for all J ∈ M and Claim 8
implies that F is uniquely determined.

This completes the proof of Theorem 2.

4. Concluding remarks. The following is an immediate consequence
of Theorem 2.

Corollary 1. If Eτ = ∅ and there exists a strictly increasing function
F ∈ I, then I = {F}.

Observe that a proof similar to that of Claim 7 shows that
⋃
Sτ is

closed. Consider any component J of the open set R \
⋃
Sτ . Let F̃J stand

for a function from C such that

(9) lim
x→inf J

F̃J(x) = 0 and lim
x→sup J

F̃J(x) = 1,

provided it exists. By Theorem 2, such a function is then unique. The fol-
lowing corollary is the next step in reducing the investigation of the class I
to some special situations. In fact, now we may focus on solutions F̃J such
that F̃J(x) = 0 for x ∈ (−∞, inf J ] and F̃J(x) = 1 for x ∈ [sup J,+∞).

Corollary 2. Assume Eτ = ∅. A function F : R → [0, 1] belongs to I
if and only if it is weakly increasing , continuous, F (−∞) = 0, F (+∞) = 1,
F |I is constant for all I ∈ Sτ , and on every component J of R \

⋃
Sτ it

is either constant or expressed by (3), where F̃J ∈ C satisfies (9) and is
uniquely determined.

In the case where the component J is bounded one can try to apply
known results in order to get the existence of F̃J . One of such tools could
be Corollary 1 from [22], where [0, 1] plays the role of cl J ; see also [2].

Remark 1. Assume Eτ = ∅. Then I 6= ∅ if and only if there exists at
least one function F̃J ∈ C satisfying (9) for some component J of R \

⋃
Sτ .

Proof. Sufficiency is clear. Now suppose that F ∈ I, but no F̃J exists.
Then, since F is continuous, we have

(0, 1) = F (R) \ {0, 1} ⊂ F
(⋃

Sτ
)
.

However, the last set is countable, a contradiction.

Remark 2. Assume Eτ = ∅. If S is a τ -invariant half-line disjoint from⋃
Sτ , then every F ∈ C is constant on S.

Proof. If S = [b,+∞) for some b ∈ R, one can verify that all arguments
in Claims 3–5 work with Ĩ replaced by S. If S = (−∞, a] for some a ∈ R,
the proof runs analogously. One has to change sup to inf in the formula
defining φ.
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5. Example. We now demonstrate how Corollary 2, jointly with already
known results, works in the specific case where

τ1(x) :=


x if x ∈ (−∞, 0),
3x if x ∈ [0, 1

3),
3
5x+ 4

5 if x ∈ [13 , 2),
2x− 2 if x ∈ [2,∞),

τ2(x) :=


3
5x−

2
5 if x ∈ (−∞, 2

3),
3x− 2 if x ∈ [23 , 1),
2
3x+ 1

3 if x ∈ [1, 5
2),

2x− 3 if x ∈ [52 ,∞),

and the indices 1, 2 are chosen with probability 1/2.

1 2 3 4

−3 −2 −1

1

2

3

−2

−1

Fig. 1

In this case Eτ = {−1} (see Figure 1) and, by Theorem 1(ii), I 6= ∅ and
we have to consider equation (1) separately on (−∞,−1) and on (−1,+∞).
Fix F ∈ I. The value F (−1) may be an arbitrary number a ∈ [0, 1], and
−1 is the only possible point of discontinuity, by Theorem 1(ii). The next
remark shows that F |(−∞,−1) = 0.

Remark 3. Assume Eτ = ∅. If either τ(x, ω) ≤ x for all x ∈ R and
almost all ω ∈ Ω, or τ(x, ω) ≥ x for all x ∈ R and almost all ω ∈ Ω, then
I = ∅.

Proof. This follows from Remark 2. Indeed, in the first case every half-
line (−∞, a] with a ∈ R is τ -invariant, whereas in the second case every
half-line [b,+∞) with b ∈ R is τ -invariant. Plainly, Sτ = ∅.

Observe that Sτ = {[1, 2]}, so Corollary 2 implies that F |[1,2] is constant,
say c with a ≤ c ≤ 1. Since both (−1, 0] and [3,+∞) are τ -invariant,
Remark 3 yields F |[3,+∞) = 1 and F |(−1,0] = b with a ≤ b ≤ c. Finally,
according to [25] we infer that F is the classical Cantor function on [0, 1]
and an affine function on [2, 3].

Consequently, any solution F ∈ I depends on three parameters 0 ≤ a ≤
b ≤ c ≤ 1 and its graph looks like the one in Figure 2.
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a b

c

−3 −2 −1 1 2 3 4

1

Fig. 2
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