Diffeomorphisms conformal on distributions

by Kamil Niedziáomski (Łódź)

Abstract

Let $f: M \rightarrow N$ be a local diffeomorphism between Riemannian manifolds. We define the eigenvalues of f to be the eigenvalues of the self-adjoint, positive definite operator $d f^{*} d f: T M \rightarrow T M$, where $d f^{*}$ denotes the operator adjoint to $d f$. We show that if f is conformal on a distribution D, then $\operatorname{dim} V_{\lambda} \geq 2 \operatorname{dim} D-\operatorname{dim} M$, where V_{λ} denotes the eigenspace corresponding to the coefficient of conformality λ of f. Moreover, if f has distinct eigenvalues, then there is locally a distribution D such that f is conformal on D if and only if $2 \operatorname{dim} D<\operatorname{dim} M+1$.

1. Introduction. Let $\left(M, g_{M}\right)$ and $\left(N, g_{N}\right)$ be Riemannian manifolds with $n=\operatorname{dim} M=\operatorname{dim} N$. Let $f: M \rightarrow N$ be a local diffeomorphism. Fix $x \in M$. Let $\left(d f_{x}\right)^{*}: T_{f(x)} N \rightarrow T_{x} M$ be the adjoint operator to $d f_{x}: T_{x} M \rightarrow$ $T_{f(x)} N$, i.e.

$$
g_{N}\left(Y, d f_{x} X\right)=g_{M}\left(\left(d f_{x}\right)^{*} Y, X\right), \quad X \in T_{x} M, Y \in T_{f(x)} N
$$

Then the self-adjoint and positive definite operator $S_{x}=\left(d f_{x}\right)^{*} d f_{x}: T_{x} M \rightarrow$ $T_{x} M$ has n real and positive eigenvalues $\lambda_{1}(x) \geq \cdots \geq \lambda_{n}(x)$. The eigenspace of S_{x} corresponding to the eigenvalue $\lambda_{i}(x)$ is denoted by $V_{\lambda_{i}(x)} \subset T_{x} M$. An eigenvector of f at x is an eigenvector of S_{x}. We call $\lambda_{1}, \ldots, \lambda_{n}$ the eigenvalues of f. We say that $\lambda_{1}, \ldots, \lambda_{n}$ are distinct if they are distinct at every point, that is, $\lambda_{i}(x) \neq \lambda_{j}(x)$ for all $i \neq j$ and $x \in M$. Note that given any n distinct functions $\lambda_{1}, \ldots, \lambda_{n}$ on M, there is locally a diffeomorphism $f: U \rightarrow N, U$ open in M, such that the λ_{i} are the eigenvalues of f (see [2]).

Let D be a distribution on M. We say that f is conformal on D if

$$
g_{N}\left(f_{* x} X, f_{* x} Y\right)=\lambda(x) g_{M}(X, Y), \quad X, Y \in D_{x}, \quad x \in M
$$

for some smooth and positive function $\lambda: M \rightarrow \mathbb{R}$, which is called the coefficient of conformality of f. Properties of such transformations for codimension one distributions on Riemannian manifolds were considered in [5] and [6]. For contact manifolds, conformality of some diffeomorphisms with respect to contact distributions was investigated in [4] and [7].

[^0]Given a diffeomorphism $f: M \rightarrow N$ between Riemannian manifolds, one may ask if there is a distribution D on M such that f is conformal on D. Moreover, integrability of D is of interest. In [3] the author investigated the case when M and N are open subsets of Euclidean space \mathbb{R}^{3}. Then, if f has three everywhere distinct eigenvalues, there are locally exactly two smooth 2-dimensional distributions D_{1}, D_{2} such that f is conformal on each of them. The integrability condition leads to a second order nonlinear equation. It turns out that integrability of one of these distributions does not imply integrability of the other.

In dimensions higher than three the situation is much more complicated. However, we are able to state some local criteria both for existence and nonexistence of diffeomorphisms conformal on distributions.

We have the following results. Let $f: M \rightarrow N$ be a local diffeomorphism. Assume that f has everywhere distinct eigenvalues. Then there is locally a k-dimensional distribution D such that f is conformal on D if and only if $k \leq(\operatorname{dim} M+1) / 2$ (Theorem 3.3). For nonexistence the assumption that f has distinct eigenvalues can be relaxed. Namely, if $\lambda_{l}>\lambda_{l+1}$ or $\lambda_{l+1}>\lambda_{l+2}$ for $\operatorname{dim} M=2 l+1$ and $\lambda_{l}>\lambda_{l+1}$ for $\operatorname{dim} M=2 l$, then for $k>(\operatorname{dim} M+1) / 2$ there is no k-dimensional distribution D such that f is conformal on D (Theorem 3.2). Thus if a diffeomorphism f is conformal on a distribution D and $\operatorname{dim} D>(\operatorname{dim} M+1) / 2$, then f cannot have distinct eigenvalues. A stronger result is valid: $\operatorname{dim} V_{\lambda} \geq 2 \operatorname{dim} D-\operatorname{dim} M$, where V_{λ} is the eigenspace of f corresponding to the coefficient of conformality λ (Theorem 3.4).

Throughout this paper all manifolds, maps and distributions are assumed to be smooth.
2. Geometric lemmas. In this section we prove some geometric results about ellipsoids. By an ellipsoid E in \mathbb{R}^{n} we mean a set

$$
E=\left\{x \in \mathbb{R}^{n}:\langle P y, y\rangle=1\right\}
$$

where $\langle\cdot, \cdot\rangle$ denotes the standard inner product and P is a positive definite symmetric $n \times n$ matrix. Let $\lambda_{1} \geq \cdots \geq \lambda_{n}>0$ be the eigenvalues of P. Put $\mu_{i}=1 / \sqrt{\lambda_{i}}$. Let V_{λ} denote the eigenspace corresponding to the eigenvalue λ. If P has distinct eigenvalues, then the eigenspaces are 1-dimensional and μ_{i} are the lengths of the semi-principal axes of E.

We have the following lemma, generalizing a result from [1, p. 194].
Lemma 2.1. Let E be an ellipsoid in $\mathbb{R}^{2 l+1}$.
(1) For any $k \leq l+1$ there is a k-dimensional subspace intersecting E along a sphere.
(2) If $\lambda_{l}>\lambda_{l+1}$ or $\lambda_{l+1}>\lambda_{l+2}$, then
(i) every $(l+1)$-dimensional subspace intersecting E along a sphere contains the eigenspace $V_{\lambda_{l+1}}$,
(ii) there is no k-dimensional subspace intersecting E along a sphere for any $k>l+1$.

Proof. Let P be the matrix representing the ellipsoid E and let α_{1}, \ldots $\ldots, \alpha_{2 l+1}$ be an orthonormal basis in $\mathbb{R}^{2 l+1}$ consisting of eigenvectors of P corresponding to the eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{2 l+1}$ respectively. For $x \in \mathbb{R}^{2 l+1}$ let $\left(x_{1}, \ldots, x_{2 l+1}\right)$ denote its coordinates in this basis, $x=\sum_{i} x_{i} \alpha_{i}$.

If in the sequence $\lambda_{1} \geq \cdots \geq \lambda_{2 l+1}$ there are l consecutive equalities then there is an $(l+1)$-dimensional (and hence k-dimensional for $k \leq l+1$) subspace intersecting E along a sphere. Therefore, we may assume that $\lambda_{i}>$ λ_{i+1} and $\lambda_{j}>\lambda_{j+1}$ for some $i, j=1, \ldots, 2 l$ such that $j-i<l+1$ and $i<l+1 \leq j$.

Consider the following subsets of $\{1, \ldots, 2 l+1\}$:

$$
\begin{aligned}
& A_{1}=\{1, \ldots, i\}, \quad A_{2}=\{i+1, \ldots, l\}, \quad A_{3}=\{l+2, \ldots, j\} \\
& A_{4}=\{j+1, \ldots, l+j-i\}, \quad A_{5}=\{l+j-i+1, \ldots, 2 l+1\}
\end{aligned}
$$

Then $\sharp A_{1}=\sharp\left(A_{3} \cup A_{5}\right)=i$ and $\sharp A_{2}=\sharp A_{4}=l-i$, where $\sharp A$ denotes the number of elements of A. Put

$$
D_{0}: \begin{cases}\sqrt{\lambda_{k}-\lambda_{l+1}} x_{k}=\sqrt{\lambda_{l+1}-\lambda_{m_{k}}} x_{m_{k}}, & k=1, \ldots, i \\ \sqrt{\lambda_{l+1}-\lambda_{p_{k}}} x_{p_{k}}=\sqrt{\lambda_{n_{k}}-\lambda_{l+1}} x_{n_{k}}, & k=1, \ldots, l-i .\end{cases}
$$

where $\left\{m_{k}\right\}_{k=1, \ldots, i}=A_{3} \cup A_{5},\left\{n_{k}\right\}_{k=1, \ldots, l-i}=A_{2}$ and $\left\{p_{k}\right\}_{k=1, \ldots, l-i}=A_{4}$. Since all the coefficients on the left hand sides are nonzero, D_{0} is an $(l+1)$ dimensional subspace in $\mathbb{R}^{2 l+1}$.

We will show that D_{0} intersects E along a sphere of radius μ_{l+1}. Since E is given by

$$
\begin{equation*}
\lambda_{1} x_{1}^{2}+\cdots+\lambda_{2 l+1} x_{2 l+1}^{2}=1 \tag{1}
\end{equation*}
$$

$x \in E$ satisfies

$$
\begin{aligned}
-\lambda_{l+1}\left(x_{1}^{2}+\ldots+x_{2 l+1}^{2}\right)= & \left(\lambda_{1}-\lambda_{l+1}\right) x_{1}^{2}+\cdots+\left(\lambda_{l}-\lambda_{l+1}\right) x_{l}^{2} \\
& +\left(\lambda_{l+2}-\lambda_{l+1}\right) x_{l+2}^{2}+\cdots+\left(\lambda_{2 l+1}-\lambda_{l+1}\right) x_{2 l+1}^{2}-1
\end{aligned}
$$

Thus we only need to show that for every $x \in D_{0} \cap E$,

$$
\begin{align*}
\left(\lambda_{1}-\lambda_{l+1}\right) x_{1}^{2} & +\cdots+\left(\lambda_{l}-\lambda_{l+1}\right) x_{l}^{2} \tag{2}\\
& +\left(\lambda_{l+2}-\lambda_{l+1}\right) x_{l+2}^{2}+\cdots+\left(\lambda_{2 l+1}-\lambda_{l+1}\right) x_{2 l+1}^{2}=0
\end{align*}
$$

This follows from the definition of D_{0}. Therefore D_{0} intersects E along a sphere of radius μ_{l+1}. Moreover, for any $k<l+1$, a k-dimensional subspace of D_{0} cuts E along a sphere.

Assume now that $\lambda_{l}>\lambda_{l+1}$ or $\lambda_{l+1}>\lambda_{l+2}$. Let D be an $(l+1)$ dimensional subspace cutting E along a sphere of radius μ_{l+1}. We will show that D contains $V_{\lambda_{l+1}}$. We have

$$
D:\left\{\begin{array}{c}
c_{1,1} x_{1}+\cdots+c_{1,2 l+1} x_{2 l+1}=0 \tag{3}\\
\cdots \\
c_{l, 1} x_{1}+\cdots+c_{l, 2 l+1} x_{2 l+1}=0
\end{array}\right.
$$

for some $c_{i, j}$. Since D cuts E along a sphere of radius μ_{l+1}, points in $E \cap D$ solve (1) and $\lambda_{l+1} x_{1}^{2}+\cdots+\lambda_{l+1} x_{2 l+1}^{2}=1$. In addition, if x satisfies (2), so does $t x$ for any $t \in \mathbb{R}$. Thus we see that if $x \in D$, then x satisfies (2). Put

$$
C=\left[\begin{array}{ccc}
c_{1,1} & \ldots & c_{1, l} \\
\vdots & \ddots & \vdots \\
c_{l, 1} & \ldots & c_{l, l}
\end{array}\right], \quad \widetilde{C}=\left[\begin{array}{ccc}
c_{1, l+2} & \ldots & c_{1,2 l+1} \\
\vdots & \ddots & \vdots \\
c_{l, l+2} & \ldots & c_{l, 2 l+1}
\end{array}\right]
$$

Suppose $\operatorname{det} C=\operatorname{det} \widetilde{C}=0$. Consider first the condition $\operatorname{det} C=0$. Then $\operatorname{rank} C<l$, so $\operatorname{dim}\left(D \cap \operatorname{Lin}\left(\alpha_{1}, \ldots, \alpha_{l}\right)\right) \geq 1$. Moreover, $D \cap \operatorname{Lin}\left(\alpha_{1}, \ldots, \alpha_{l}\right)$ cuts an ellipsoid $E \cap \operatorname{Lin}\left(\alpha_{1}, \ldots, \alpha_{l}\right)$ along a sphere of radius not greater than μ_{l}. Since D intersects E along a sphere of radius μ_{l+1}, we get $\mu_{l}=\mu_{l+1}$. Thus $\lambda_{l}=\lambda_{l+1}$. Similarly $\operatorname{det} \widetilde{C}=0$ implies $\lambda_{l+1}=\lambda_{l+2}$. Thus $\lambda_{l}=\lambda_{l+1}=\lambda_{l+2}$, which is impossible. Therefore, without loss of generality, we may assume that $\lambda_{l}>\lambda_{l+1}$ and $\operatorname{det} C \neq 0$. Thus we can write (3) in the form

$$
D:\left\{\begin{array}{c}
x_{1}=a_{1, l+1} x_{l+1}+a_{1, l+2} x_{l+2}+\cdots+a_{1,2 l+1} x_{2 l+1}, \\
\cdots \\
x_{l}=a_{l, l+1} x_{l+1}+a_{l, l+2} x_{l+2}+\cdots+a_{l, 2 l+1} x_{2 l+1},
\end{array}\right.
$$

for some $a_{i, j}$. Moreover, $V_{\lambda_{l+1}}=\operatorname{Lin}\left(\alpha_{l+1}, \ldots, \alpha_{p}\right)$ for some $p \geq l+1$. Thus (2) becomes

$$
\begin{align*}
\left(\lambda_{1}-\lambda_{l+1}\right) x_{1}^{2} & +\cdots+\left(\lambda_{l}-\lambda_{l+1}\right) x_{l}^{2} \\
& +\left(\lambda_{p+1}-\lambda_{l+1}\right) x_{p+1}^{2}+\cdots+\left(\lambda_{2 l+1}-\lambda_{l+1}\right) x_{2 l+1}^{2}=0
\end{align*}
$$

Substituting (3^{\prime}) to (2') we find that the coefficient of $x_{i}^{2}, l+1 \leq i \leq p$, equals

$$
a_{1, i}^{2}\left(\lambda_{1}-\lambda_{l+1}\right)+\cdots+a_{l, i}^{2}\left(\lambda_{l}-\lambda_{l+1}\right)
$$

On the other hand, it must be equal to zero (by taking $x_{l+1}=\cdots=x_{i-1}=$ $x_{i+1}=x_{2 l+1}=0$ and $x_{i}=1$). Therefore $a_{j, i}=0$ for $j=1, \ldots, l$ and $i=l+1, \ldots, p$. We get

$$
D:\left\{\begin{array}{c}
x_{1}=a_{1, p+1} x_{p+1}+\cdots+a_{1,2 l+1} x_{2 l+1}, \\
\cdots \\
x_{l}=a_{l, p+1} x_{p+1}+\cdots+a_{l, 2 l+1} x_{2 l+1},
\end{array}\right.
$$

so D contains $V_{\lambda_{l+1}}$.

Suppose now that there is an $(l+1)$-dimensional subspace D^{\prime} which does not contain $V_{\lambda_{l+1}}$ and intersects E along a sphere. Then, by the above, the radius of this sphere is $\mu \neq \mu_{l+1}$. Since $\operatorname{dim}\left(D \cap D^{\prime}\right) \geq 1$, we can choose a 1-dimensional subspace $l \subset D \cap D^{\prime}$. It intersects E in four points, two with norm μ and two with norm μ_{l+1}. This is impossible.

We only need to show that there is no k-dimensional subspace intersecting E along a sphere if $k>l+1$ (still with the assumption $\lambda_{l}>\lambda_{l+1}$ or $\lambda_{l+1}>$ $\left.\lambda_{l+2}\right)$. Suppose such a subspace D exists. Without loss of generality we may assume that $\lambda_{l}>\lambda_{l+1}$. Consider the subspaces $V_{1}=\operatorname{Lin}\left(\alpha_{1}, \ldots, \alpha_{2 l-1}\right)$ and $V_{2}=\operatorname{Lin}\left(\alpha_{2}, \ldots, \alpha_{2 l}\right)$. Then $\operatorname{dim}\left(D \cap V_{i}\right) \geq l$. Let W_{i} be an l-dimensional subspace of $D \cap V_{i}$. Then, by the previous part, W_{1} and W_{2} intersect the ellipsoids $E \cap V_{1}$ and $E \cap V_{2}$ along spheres of radii μ_{l} and μ_{l+1} respectively, a contradiction since $\mu_{l}<\mu_{l+1}$.

Lemma 2.2. Let E be an ellipsoid in $\mathbb{R}^{2 l}$.
(1) For any $k \leq l$ there is a k-dimensional subspace intersecting E along a sphere.
(2) If $\lambda_{l}>\lambda_{l+1}$ and $k>l$ then there is no k-dimensional subspace intersecting E along a sphere.

Proof. Choose a basis $\left(\alpha_{1}, \ldots, \alpha_{2 l}\right)$ as in the proof of Lemma 2.1. Consider an ellipsoid $E_{1}=E \cap \operatorname{Lin}\left(\alpha_{1}, \ldots, \alpha_{2 l-1}\right)$. By Lemma 2.1 there exists an l-dimensional subspace D intersecting E_{1} along a sphere. Therefore D intersects E along a sphere. If we take $k<l$ then any k-dimensional subspace of D cuts E along a sphere.

Suppose there is a k-dimensional subspace D intersecting E along a sphere for $k>l$ and $\lambda_{l}>\lambda_{l+1}$. Let \widetilde{D} be any $(l+1)$-dimensional subspace of D. Let λ be such that $\lambda_{l}>\lambda>\lambda_{l+1}$. Extend $E \subset \mathbb{R}^{2 l}$ to an ellipsoid \widetilde{E} in $\mathbb{R}^{2 l+1}$ putting

$$
\widetilde{E}: \quad \lambda_{1} x_{1}^{2}+\cdots+\lambda_{2 l} x_{2 l}^{2}+\lambda x_{2 l+1}^{2}=1
$$

where $x=\sum_{i} x_{i} \alpha_{i}+x_{2 l+1} e_{2 l+1}$ and $e_{2 l+1}$ is the $(2 l+1)$ th vector of the canonical basis in $\mathbb{R}^{2 l+1}$. Then \widetilde{D} intersects \widetilde{E} along a sphere but $V_{\lambda} \not \subset \widetilde{D}$, a contradiction with Lemma 2.1.

3. Main results

Lemma 3.1. Let $f: M \rightarrow N$ be a local diffeomorphism between n dimensional Riemannian manifolds $\left(M, g_{M}\right)$ and $\left(N, g_{N}\right)$, and D a distribution on M. Let $e_{1}(x), \ldots, e_{n}(x)$ be an orthonormal basis of $T_{x} M$ consisting of eigenvectors of f at $x \in M$. Let $\lambda_{1}(x), \ldots, \lambda_{n}(x)$ be the corresponding
eigenvalues. Then for every $x \in M, D_{x}$ intersects the ellipsoid

$$
E_{x}=\left\{\sum_{i} X_{i} e_{i}(x): \sum_{i} \lambda_{i}(x) X_{i}^{2}=1\right\} \subset T_{x} M
$$

along a sphere if and only if f is conformal on D.
Proof. Let $X \in E_{x}, X=\sum_{i} X_{i} e_{i}(x)$. Then

$$
\left|d f_{x} X\right|_{N}^{2}=g_{M}\left(S_{x} X, X\right)=\sum_{i, j} X_{i} X_{j} g_{M}\left(S_{x} e_{i}(x), e_{j}(x)\right)=\sum_{i} \lambda_{i} X_{i}^{2}=1,
$$

where $S_{x}=\left(d f_{x}\right)^{*} d f_{x}$ and $|\cdot|_{N}$ denotes the norm in the metric g_{N}. Therefore $d f_{x}\left(E_{x}\right)=\mathbb{S}$, where $\mathbb{S} \subset T_{f(x)} N$ is the unit sphere. If f is conformal on D, then $D_{x} \cap E_{x}$ is a sphere since its image $d f_{x}\left(D_{x}\right) \cap \mathbb{S}$ is a sphere. Conversely, if $D_{x} \cap E_{x}$ is a sphere, then $d f_{x}\left(D_{x} \cap E_{x}\right)=d f_{x}\left(D_{x}\right) \cap \mathbb{S}$ is a sphere. Thus f is conformal on D.

Theorem 3.2. Let $f: M \rightarrow N$ be a local diffeomorphism between n dimensional Riemannian manifolds, and $\lambda_{1} \geq \cdots \geq \lambda_{n}$ the eigenvalues of f. Let $x \in M$. Assume that $\lambda_{l}(x)>\lambda_{l+1}(x)$ or $\lambda_{l+1}(x)>\lambda_{l+2}(x)$ if $n=2 l+1$ and $\lambda_{l}(x)>\lambda_{l+1}(x)$ if $n=2 l$. Then for any $k \in \mathbb{N}$ satisfying $\operatorname{dim} M<2 k-1$ there is no k-dimensional distribution D in any neighbourhood of x such that f is conformal on D.

Proof. Follows from Lemmas 2.1, 2.2 and 3.1.
Theorem 3.3. Let $f: M \rightarrow N$ be a local diffeomorphism between Riemannian manifolds. Assume that f has distinct eigenvalues. Then there exists locally a k-dimensional distribution D such that f is conformal on D if and only if $k \leq(\operatorname{dim} M+1) / 2$.

Proof. Nonexistence for $k>(\operatorname{dim} M+1) / 2$ follows from Theorem 3.2. Let $n=\operatorname{dim} M$ and $k \leq(n+1) / 2$. Let $\lambda_{1}(x)>\cdots>\lambda_{n}(x)>0$ be the eigenvalues of f at $x \in M$. Since f has globally distinct eigenvalues, the functions $\lambda_{i}, i=1, \ldots, n$, are smooth. Fix $x_{0} \in M$. Let $\left(X_{1}, \ldots, X_{n}\right)$ be an orthonormal basis in a neighbourhood U of x_{0} such that $X_{i}(x)$ is an eigenvector of f at x corresponding to the eigenvalue $\lambda_{i}(x), x \in U$, $i=1, \ldots, n$. If $\operatorname{dim} M=2 l+1$ put

$$
Y_{i}=\sqrt{\lambda_{i}-\lambda_{l+1}} X_{i}-\sqrt{\lambda_{l+1}-\lambda_{l+1+i}} X_{l+1+i}, \quad i=1, \ldots, l,
$$

while if $\operatorname{dim} M=2 l$ put

$$
Z_{i}=\sqrt{\lambda_{i}-\lambda_{l}} X_{i}-\sqrt{\lambda_{l}-\lambda_{l+i}} X_{l+i}, \quad i=1, \ldots, l-1 .
$$

Define

$$
D= \begin{cases}\operatorname{Lin}\left(Y_{1}, \ldots, Y_{k-1}, X_{l+1}\right) & \text { if } \operatorname{dim} M=2 l+1, \\ \operatorname{Lin}\left(Z_{1}, \ldots, Z_{k-1}, X_{l}\right) & \text { if } \operatorname{dim} M=2 l .\end{cases}
$$

Then D is a k-dimensional distribution on U. By the proof of Lemma 2.1 (definition of D_{0}) and Lemma 3.1, f is conformal on D.

Theorem 3.4. Let $f: M \rightarrow N$ be a local diffeomorphism between Riemannian manifolds. Let D be a distribution on M such that f is conformal on D. Let $V_{\lambda(x)}$ denote the eigenspace of f at $x \in M$ corresponding to the coefficient of conformality $\lambda(x)$. Then

$$
\begin{equation*}
\operatorname{dim} V_{\lambda(x)} \geq 2 \operatorname{dim} D-\operatorname{dim} M, \quad x \in M \tag{4}
\end{equation*}
$$

Proof. Let $n=\operatorname{dim} M$ and $k=\operatorname{dim} D$. Fix $x \in M$ and consider the notations from Lemma 3.1. Let $\mu_{i}(x)=1 / \sqrt{\lambda_{i}(x)}$. We divide the proof into two cases.

CASE 1: $n=2 l+1$. If $k \leq l$, then

$$
2 \operatorname{dim} D-\operatorname{dim} M \leq 2 l-(2 l+1)=-1,
$$

so (4) holds. If $k \geq l+1$, then $\operatorname{dim} D_{x} \cap D_{i} \geq 1, i=1$, 2 , where

$$
D_{1}=\operatorname{Lin}\left(e_{1}(x), \ldots, e_{l+1}(x)\right), \quad D_{2}=\operatorname{Lin}\left(e_{l+1}(x), \ldots, e_{2 l+1}(x)\right)
$$

Let $\mu=1 / \sqrt{\lambda(x)}$ be the radius of the sphere $E_{x} \cap D_{x}$ (see Lemma 3.1). As $D_{x} \cap D_{1}$ intersects E_{x} along a sphere of radius $\leq \mu_{l+1}(x)$, and $D_{x} \cap D_{2}$ intersects E_{x} along a sphere of radius $\geq \mu_{l+1}(x)$, we get $\mu=\mu_{l+1}(x)$. Therefore $\lambda_{l+1}(x)=\lambda(x)$ and $\operatorname{dim} V_{\lambda(x)} \geq 1$. Moreover, for $k=l+1$,

$$
2 \operatorname{dim} D-\operatorname{dim} M=2(l+1)-(2 l+1)=1 \leq \operatorname{dim} V_{\lambda(x)}
$$

so (4) holds.
Suppose now $k>l+1$. Let

$$
p=k-l-1 \geq 1
$$

For $i=0,1, \ldots, p$ define

$$
k_{i}=k-2 i, \quad l_{i}=l-i
$$

Since $k_{i}-l_{i}=p-i+1$,

$$
k_{i}>l_{i}+1, \quad i=0,1, \ldots, p-1, \quad k_{p}=l_{p}+1
$$

By Lemma $2.1\left(k_{0}>l_{0}+1\right)$ there is a 2-dimensional subspace V_{0} of $V_{\lambda(x)}$. Consider the ellipsoid $E_{x} \cap V_{0}^{\perp}$ and the subspace $D_{x} \cap V_{0}^{\perp}$. We have

$$
\operatorname{dim}\left(T_{x} M \cap V_{0}^{\perp}\right)=2 l_{1}+1, \quad \operatorname{dim}\left(D_{x} \cap V_{0}^{\perp}\right) \geq k_{1}
$$

We replace $T_{x} M$ by $T_{x} M \cap V_{0}^{\perp}$ and D_{x} by a k_{1}-dimensional subspace of $D_{x} \cap V_{0}^{\perp}$ and continue the process (if $k_{1}>l_{1}+1$). In the i th step $\left(k_{i}>l_{i}+1\right.$ for $i<p$) we take a 2-dimensional subspace V_{i} of $V_{\lambda(x)} \cap\left(V_{0} \oplus \cdots \oplus V_{i-1}\right)^{\perp}$.

Thus we have

$$
\begin{gathered}
V_{0} \oplus \cdots \oplus V_{p-1} \subset V_{\lambda(x)} \\
\operatorname{dim}\left(T_{x} M \cap\left(V_{0} \oplus \cdots \oplus V_{p-1}\right)^{\perp}\right)=2 l_{p}+1 \\
\operatorname{dim}\left(E_{x} \cap\left(V_{0} \oplus \cdots \oplus V_{p-1}\right)^{\perp}\right) \geq k_{p}
\end{gathered}
$$

By the part of the proof for $k \geq l+1$ we conclude that $\operatorname{dim}\left(V_{\lambda(x)} \cap\left(V_{0} \oplus\right.\right.$ $\left.\cdots \oplus\left(V_{p-1}\right)^{\perp}\right) \geq 1$. Therefore

$$
\begin{aligned}
\operatorname{dim} V_{\lambda(x)} & \geq \operatorname{dim}\left(V_{0} \oplus \cdots \oplus V_{p-1}\right)+1=2 p+1 \\
& =2(k-l-1)+1=2 k-(2 l+1) \\
& =2 \operatorname{dim} D-\operatorname{dim} M .
\end{aligned}
$$

CASE 2: $n=2 l$. It is analogous to the previous one. If $k \leq l$, then

$$
2 \operatorname{dim} D-\operatorname{dim} M \leq 2 l-2 l=0 \leq \operatorname{dim} V_{\lambda(x)}
$$

so (4) holds. Assume $k>l$. As before, we show that $\lambda(x)=\lambda_{l}(x)=\lambda_{l+1}(x)$. Put $p=k-l$ and define

$$
k_{i}=k-2 i, \quad l_{i}=l-i, \quad i=0,1, \ldots, p
$$

Since $k_{i}-l_{i}=p-i$, we get $k_{i}>l_{i}$ for $i=0,1, \ldots, p-1$ and $k_{p}=l_{p}$. By Lemma $2.2\left(k_{0}>l_{0}\right)$ there is a 2 -dimensional subspace V_{0} of $V_{\lambda(x)}$. In the i th step $\left(k_{i}>l_{i}\right)$ we find a 2-dimensional subspace V_{i} of $V_{\lambda(x)} \cap\left(V_{0} \oplus \cdots \oplus V_{i-1}\right)^{\perp}$. Thus

$$
V_{0} \oplus \cdots \oplus V_{p-1} \subset V_{\lambda(x)}
$$

So

$$
\operatorname{dim} V_{\lambda(x)} \geq 2 p=2(k-l)=2 \operatorname{dim} D-\operatorname{dim} M
$$

4. Examples

Example 4.1. Consider the n-dimensional torus $T^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}, n>3$. Let $A \in S L_{n}(\mathbb{Z})$. Assume each of the matrices A and $A^{\top} A$ has n distinct eigenvalues. For example, one may set

$$
A=\left[\begin{array}{ccc}
M_{1} & & 0 \\
& \ddots & \\
0 & & M_{l}
\end{array}\right] \quad \text { if } n=2 l
$$

and

$$
A=\left[\begin{array}{cccc}
1 & & & 0 \\
& M_{1} & & \\
& & \ddots & \\
0 & & & M_{l}
\end{array}\right] \quad \text { if } n=2 l+1
$$

where

$$
M_{i}=\left[\begin{array}{cc}
1 & 1 \\
a_{i}-1 & a_{i}
\end{array}\right], \quad a_{i} \notin\{-3,-2,-1,0,1\}, \quad a_{i} \neq a_{j} \text { for } i \neq j
$$

Since $A\left(\mathbb{Z}^{n}\right)=\mathbb{Z}^{n}, A$ induces a diffeomorphism $A^{\prime}: T^{n} \rightarrow T^{n}$. Let $\pi: \mathbb{R}^{n}$ $\rightarrow T^{n}$ be the natural projection. Then $A^{\prime} \circ \pi=\pi \circ A$. Therefore $A_{*}^{\prime} \circ \pi_{*}=\pi_{*} \circ A$ and $\left(A_{*}^{\prime}\right)^{*} \circ \pi_{*}=\pi_{*} \circ A^{\top}$. Thus $S=\left(A_{*}^{\prime}\right)^{*} A_{*}^{\prime}$ satisfies

$$
S \circ \pi_{*}=\pi_{*} \circ\left(A^{\top} A\right)
$$

so S has n distinct eigenvalues. If $k>(n+1) / 2$, Theorem 3.3 implies A^{\prime} is not conformal on D for any k-dimensional distribution D on T^{n}.

EXAMPLE 4.2. Consider Euclidean space \mathbb{R}^{3} and the diffeomorphism

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, 2 x_{2}, 3 x_{3}\right), \quad x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}
$$

Then $S_{x}=d f(x)^{\top} d f(x)=\operatorname{diag}(1,4,9)$ has different eigenvalues. Let \mathcal{F} be the family of planes perpendicular to $N=(\sqrt{3}, 0,-\sqrt{5})$. Thus $\mathcal{F}=\left\{L_{t}\right\}_{t}$ is a 2-dimensional foliation on \mathbb{R}^{3}, where

$$
L_{t}=\operatorname{Lin}((\sqrt{5}, 0, \sqrt{3}),(0,1,0))+t N
$$

Moreover,

$$
|d f(x)(\sqrt{5} \alpha, \beta, \sqrt{3} \alpha)|^{2}=4\left(8 \alpha^{2}+\beta^{2}\right)=4|(\sqrt{5} \alpha, \beta, \sqrt{3} \alpha)|^{2}
$$

Thus for every t, the map $f: L_{t} \rightarrow f\left(L_{t}\right)$ is conformal. We see that \mathcal{F} is determined by the distribution D_{0} from the proof of Lemma 2.1. Therefore, using D_{0} and the arguments in the proof of Theorem 3.3, we can easily generalize this example to \mathbb{R}^{n} and foliations by k-planes, provided that $k \leq$ $(n+1) / 2$.

Acknowledgments. The author wishes to thank Professor Paweł Walczak for helpful discussions.

References

[1] K. Borsuk, Higher-dimensional Analytic Geometry, PWN, Warszawa, 1964 (in Polish).
[2] D. DeTurck and D. Yang, Existence of elastic deformations with prescribed principal strains and triply orthogonal systems, Duke Math. J. 51 (1984), 243-260.
[3] K. Niedziałomski, On leafwise conformal diffeomorphisms, preprint, 2008, arXiv: 0812.1378.
[4] A. Pierzchalski, Quasiconformality of pseudoconformal transformations and deformations of hypersurfaces in \mathbb{C}^{n+1}, Math. Scand. 59 (1986), 223-234.
[5] S. Tanno, Partially conformal transformations with respect to ($m-1$)-dimensional distributions of m-dimensional Riemannian manifolds, Tohoku Math. J. 17 (1965), 358-409.
[6] S. Tanno, Partially conformal transformations with respect to ($m-1$)-dimensional distributions of m-dimensional Riemannian manifolds. II, ibid. 18 (1966), 378-392.
[7] -, Some transformations on manifolds with almost contact and contact metric structures, ibid. 15 (1963), 140-147.

Department of Mathematics and Computer Science
University of Łódź
Banacha 22
90-238 Łódź, Poland
E-mail: kamiln@math.uni.lodz.pl

Received 28.5.2008
and in final form 26.9.2008

[^0]: 2000 Mathematics Subject Classification: Primary 53A30; Secondary 53B20.
 Key words and phrases: conformal mappings, distributions, Riemannian manifolds.

