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Some envelopes of holomorphy

by Edgar Lee Stout (Seattle, WA)

Abstract. We construct some envelopes of holomorphy that are not equivalent to
domains in Cn.

1. Introduction. In [14] we exhibited domains in Cn, n ≥ 2, whose
envelopes of holomorphy are not smoothly equivalent to domains in Cn (1).
The main purpose of the present note is to present an example of a domain,
which lies in C7, whose envelope of holomorphy is real-analytically equiv-
alent to a domain in C7 but is not biholomorphic to such a domain. The
construction we use yields some other examples in the same spirit. The prin-
cipal ingredients of the example are the known results that the seven-sphere
S7 does not admit a totally real embedding in C7 but that every sphere Sn
admits a totally real immersion in Cn.

Weinstein [18, p. 26] observed that if we take

Sn = {(x1, . . . , xn+1) ∈ Rn+1 : |x|2 = x2
1 + · · ·+ x2

n+1 = 1},
then the map ϕ : Cn+1 → Cn given by

ϕ(z) = (z1(1 + 2izn+1), . . . , zn(1 + 2izn+1))(1)

restricts to Sn as a Lagrangian immersion of the sphere into Cn that is one-
to-one except that the two poles p± = (0, . . . , 0,±1) are both taken to the
origin. That ϕ is a Lagrangian immersion means that if ϑ is the (1, 1)-form
on Cn given by

ϑ =
n∑
j=1

dzj ∧ dzj ,

then ϕ∗ϑ = 0. It follows that the image, Σ, of Sn under ϕ is an immersed
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(1) In [14] the methods used are those of differential topology, so it is not evident from
that paper whether the envelopes of holomorphy in question may be homeomorphic to
domains in Cn. By using topological intersection theory as given in [4], it can be shown
that, in fact, these domains are not even topologically equivalent to domains in Cn. Details
are given in Section 3 below.
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totally real submanifold of Cn. At the origin of Cn, the two local branches
of Σ meet transversally.

Thus, though among the spheres Sn only the one-sphere and the three-
sphere embed as totally real submanifolds in Cn, each sphere Sn admits a
very simple totally real immersion in Cn.

2. The main construction. We construct the desired domain as fol-
lows.

Fix once and for all an integer n ≥ 2. Let

Šn = {z ∈ Cn+1 : z2
1 + · · ·+ z2

n+1 = 1}.
The map ϕ defined in (1) above is of maximal rank on the sphere Sn, so there
is a neighborhood U∗, which we fix at the outset, on which ϕ is regular. That
is, the pair (U∗, ϕ) is a Riemann domain spread over Cn. In what follows,
all our constructions are carried out inside U∗, though we shall not again
refer to this restriction.

For positive r and with | · | the Euclidean norm on Cn+1, let

∆(r) = {z ∈ Šn : |z − p+| < r},
which is a strictly pseudoconvex domain with smooth boundary in Šn, pro-
vided r is small enough. Fix r > 0 small enough that ϕ carries ∆(r) injec-
tively into Cn. Having fixed r, fix an r′ ∈ (0, r).

For a compact set X in Cn, we denote by C (X) the space of continuous
C-valued functions on X, and by P(X) the closed subalgebra of C (X)
consisting of those functions that can be approximated uniformly on X by
polynomials.

For any s ≥ 0, the set Sn ∪∆(s) is polynomially convex and satisfies

P(Sn ∪∆(s)) = {f ∈ C (Sn ∪∆(s)) : f |∆(s) is holomorphic},
because it is the union of a compact subset, Sn, of Rn+1 and a compact,
polynomially convex subset, ∆(s), of Cn+1 that is invariant under the con-
jugation x + iy 7→ x − iy on Cn+1 = Rn+1 + iRn+1, so that a theorem of
Smirnov and Chirka [11] shows the set to be polynomially convex. The poly-
nomial convexity assertion and the equality of the two algebras are given
in [15, Th. 8.1.26, p. 392]. (In order for this result to apply in the present
situation, we need to have the approximation result that

P(∆(r)) = {f ∈ C (∆(r)) : f |∆(r) is holomorphic}.(2)

This equality is correct: ∆(r) is a strictly pseudoconvex domain with smooth
boundary in the Stein manifold Šn, so if f is continuous on ∆(r) and holo-
morphic on ∆(r), then it can be approximated uniformly on ∆(r) by func-
tions g holomorphic on a neighborhood in Šn of ∆(r). Moreover, the domain
∆(r) is defined by a strictly plurisubharmonic exhaustion function for Šn,
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so the set ∆(r) is convex with respect to the algebra O(Šn), whence the
approximating functions g can be approximated on ∆(r) by functions h
holomorphic on the whole of Šn. These functions h can be extended to func-
tions holomorphic on the whole ambient Cn and so can be approximated on
the polynomially convex set ∆(r) by polynomials. The desired equality (2)
follows.)

Consider now the set E = (ϕ−1(ϕ(Sn))∩ b∆(r)) \ Sn, a certain compact
subset of b∆(r).

Lemma 1. If r is small , the set E is polynomially convex.

Proof. When s is small, each branch of the set ϕ−1(ϕ(Sn)) ∩ ∆(s) is a
totally real smooth manifold that is nearly a disc, whence each compact
subset of it is polynomially convex and admits approximation of continuous
functions by polynomials. Thus, E is polynomially convex as desired.

Let U0 be an open subset of Šn that contains E and satisfies Û0 = U0

if Û0 denotes the polynomially convex hull of U0 and that is so small that
Û0 is disjoint from ∆(r′). Let U1 be a second neighborhood in Šn of E with
the property that the polynomially convex hull Û1 is contained in U0.

Lemma 2. There is a bounded holomorphic function g on ∆(r) with
|g| < 1 on ∆(r) \ U0 and with the nonempty level set Σα = {z ∈ ∆(r) :
|g(z)| = α} contained in U0 for certain α > 1.

Proof. By the embedding theorem of Fornæss and Henkin [5], there ex-
ist a strictly convex domain W in CN for some sufficiently large N and a
biholomorphic embedding ψ of a neighborhood of ∆(r) as a complex sub-
manifold V of a neighborhood of W such that V is transversal to bW and
ψ−1(W ) = ∆(r). Let U ′1 be a bounded open subset of CN whose intersec-
tion with V is ψ(U1), and let U ′0 be a bounded open subset of CN whose

intersection with V is ψ(U0). We suppose Û ′1 to be contained in U ′0.
Let µ be a continuous function on bW such that 1 ≤ µ ≤ 2 and µ = 1 on

bW \U ′0 and µ = 2 on U1∩bW and 1 < µ < 2 on (U0\U1)∩bW . By a theorem
of E. Løw [10] there is a function g̃ bounded and holomorphic on W and
vanishing at the point ψ(p+) with the property that the almost everywhere
existent boundary values g̃∗ of g̃ satisfy |g̃∗| = µ almost everywhere with
respect to surface area measure on bW . For each α ≥ 0, let Σ̃α = {z ∈ W :
|g̃(z)| = α}.

To complete the proof of Lemma 2, we need a further lemma:

Lemma 3. If α ∈ (1, 2) is sufficiently close to 2, then Σ̃α ⊂ U ′0.

Proof. Assume the lemma false, i.e., for a sequence {αj}∞j=1 increasing to
2 the set W \U ′0 contains a point wj of Σ̃α. The convexity of bW implies that
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if 1 ≤ s < 2 and Cs = {z ∈ bW : µ(z) ≤ s}, then for α > s,Σ̃α∩Cs = ∅. This

implies that when j is large Σ̃αj ∩ bW ⊂ U ′1, which yields Σ̃αj ⊂ Û ′1 when

j is large. By hypothesis, Û ′1 ⊂ U ′0. This completes the proof of Lemma 3.

To conclude the proof of Lemma 2, we take g = g̃ ◦ ψ. The lemma is
proved.

Fix permanently an α as in Lemma 2.
Notice that the surface Σα is fibered by the analytic hypersurfaces g−1(ζ)

for ζ with |ζ| = α.
As already noted, Sn ∪∆(s) is polynomially convex.
If s ∈ (0, r′), there is a thin solid tube T in Šn over Sn \∆(s) on which

ϕ is injective. (The general principle here is that if h : M →M ′ is a local
homeomorphism from the manifold M to the manifold M ′ that is injective
on the compact set K ⊂ M , then h is injective on a neighborhood of K.)
Choose an r′′ ∈ (r′, r). Let Ω2 be a strictly pseudoconvex domain with

Sn ∪∆(r′′) ⊂ Ω2 b (T ∪∆(r)).

The existence of such a domain follows from the polynomial convexity of
Sn ∪∆(r′). We choose Ω2 so large that bΩ2 ∩ {z ∈ ∆(r) : |g(z)| > α} is a
neighborhood in bΩ2 of bΩ2 ∩ (ϕ−1(ϕ(Sn)) \ Sn).

The map ϕ carries (bΩ2∩∆(r))\{z ∈ ∆(r) : |g(z)| > α} injectively onto
a set X in Cn that is at positive distance from ϕ(Sn).

Let T ′ be a solid tube around Sn in Šn that is so thin that T ′ ⊂ T ∪∆(r′)
and ϕ(T ′) is disjoint from the set X. In addition, let r′′′ be a small positive
number slightly greater than r. Then let Ω′2 be a strictly pseudoconvex
domain in Šn that contains Sn ∪∆(r) and that is contained in T ′ ∪∆(r′′′).
The domain Ω′2 can be chosen so that its boundary is transversal to the
boundary of Ω2. Using a process detailed in [12], we see that the intersection
bΩ2 ∩ bΩ′2 can be smoothed so as to obtain a strictly pseudoconvex domain
Ω′1 contained in Ω2 ∩ Ω′2 and that agrees with this intersection outside a
thin neighborhood of bΩ2 ∩ bΩ′2. The strictly pseudoconvex domain Ω′1 is
contained in Šn, contains Sn ∪∆(r′), and satisfies

Ω′1 ∩∆(r) = Ω2 ∩∆(r).

Let Ω1 be the domain

Ω1 = Ω′1 \ {z ∈ ∆(r) : |g(z)| ≥ α}.
The domain Ω1 is pseudoconvex and has the following extension property:

Lemma 4. If V ⊂ Ω1 is a connected open set such that V is a neigh-
borhood of the set

Γ = bΩ1 \ {z ∈ ∆(r) : |g(z)| = α}
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in Ω1∪Γ , then each function f holomorphic on V continues holomorphically
into Ω1.

Proof. We consider first the set Ω̃1 = Ω1 \ U0 = Ω′1 \ U0. Its boundary
is

bΩ̃1 = (bΩ1 \ U0) ∪Ω′1 ∩ bU0 = S ∪K.
The polynomially convex hull of the compact subset K of the boundary of
Ω̃1 is contained in the set U0 and so is disjoint from Ω̃1. Accordingly, the
principal result of the paper [9] implies that every CR-function on S extends
holomorphically through all of Ω̃1. If instead of a CR-function on S, we are
given a function f holomorphic on a one-sided neighborhood of S that lies
in Ω̃1, then we apply this same extension result to the restriction of f to a
surface S′ lying in Ω̃1 and obtained by pulling S in slightly, leaving it fixed
at bS = K ∩ bΩ1, so that f is defined on S′.

What we know, then, is that each function holomorphic on the domain V
above extends holomorphically into Ω̃1. We have to see that there actually
is an extension into all of Ω1.

To this end, notice that since the set U0 is polynomially convex, there is
a Stein domain D that consists of Ω1\Ω̃1 together with a thin neighborhood
of bΩ̃1∩Ω1. We can choose the domain D so that bD\Σα is a smooth strictly
pseudoconvex surface S′. A function defined on Ω̃1 ∪ V is defined on V ∩D
and on a neighborhood of bD ∩ Ω̃1. The function g is defined on a Stein
neighborhood of D, viz. ∆(r), which is biholomorphically equivalent to a
domain in Cn.

At this point, it is convenient to treat the case n ≥ 3 separately from
the case n = 2. Suppose then that n ≥ 3. Notice that the set Tα = bD ∩
Σα has the convexity property that if z ∈ D \ Tα, then there are analytic
varieties of dimension n − 1 in a neighborhood of D that pass through
the point z and miss Tα, e.g., the level set of g through z. This convexity
property implies that each CR-function on bD\Tα continues holomorphically
into D, and indeed that any function defined and holomorphic on a one-sided
neighborhood of bD\Tα in D continues through D. For this relatively simple
result, one can consult [3, Theorem 4.5.2] or [13, Theorem II.3].

The case n = 2 requires something different. In essence, it seems to be
necessary to revisit the ideas used in [9] and by other authors cited there.
We begin with the remark that since ∆(r) is biholomorphically equivalent to
a domain in C2, there are global holomorphic coordinates, say z = (z1, z2),
defined on ∆. As the function g is holomorphic on ∆(r), which is a domain
of holomorphy in the z-space, there is a factorization

g(z)− g(w) = g1(z, w)(z1 − w1) + g2(z, w)(z2, w2)(3)

with g1, g2 holomorphic but not necessarily bounded on ∆(r)×∆(r).
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Denote by KBM the Bochner–Martinelli kernel so that

KBM(z, w) = c2
[(z2 − w2)dz1 − (z1 − w1)dz2] ∧ ω(z)

|z − w|4
,

in which ω(z) = dz1 ∧ dz2 and c2 is a suitable constant. This kernel has the
property that if F is holomorphic on the smoothly bounded domain W and
is continuous on the closure W , then for w ∈ D,

F (w) =
�

bD

f(z)KBM(z, w).

Direct calculation shows that

∂z

(
c2
z1 − w1

|z − w|2

)
ω(z) = (z2 − w2)KBM(z, w),(4)

∂z

(
c2
z2 − w2

|z − w|2

)
ω(z) = −(z1 − w1)KBM(z, w).(5)

Consequently, the form

ϑ(z, w) = c2

(
g2(z, w)

z1 − w1

|z − w|2
− g1(z, w)

z2 − w2

|z − w|2

)
ω(z)

satisfies
∂zϑ(z, w) = (g(z)− g(w))KBM(z, w)

and thus, where g(z) 6= g(w), we have

∂z

{
ϑ(z, w)

g(z)− g(w)

}
= KBM(z, w).

We now consider the domain D constructed above and a function f
defined on a one-sided neighborhood W of bD \Tα. Our goal is to show that
f continues holomorphically into the whole of D. We shall assume that, in
fact, f is defined and holomorphic on a neighborhood of bD \ Tα. This is a
matter of convenience: If f is not defined on such a neighborhood, replace
D by a domain D′ obtained by pulling bD \ Tα in a little, leaving Tα fixed.
The original f is now defined on a neighborhood of bD′ \ Tα, and we need
only show that f continues into D′.

Accordingly, define a function H on D as follows. For w ∈ D, let
|g(w)| = β. We have β < α. Choose γ ∈ (β, α) such that the level set
Σγ = {z ∈ ∆(r) : |g(z)| = γ} is a smooth hypersurface that meets bD \ Tα
transversally. By Stokes’s theorem, the quantity

Hγ(w) =
�

bD∩{z : |g(z)|<γ}

f(z)KBM(z, w) +
�

bD∩Σγ

f(z)ϑ(z, w)
g(z)− g(w)

(6)

is independent of the choice of γ. (In the expression for Hγ(w), the orien-
tation of bD ∩ {z : |g(z) < γ} is that induced on bD as the boundary of
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the domain D. The orientation on bD ∩ Σγ is taken to be that induced on
bD ∩ Σγ as the boundary of the manifold Σγ ∩ D. The latter manifold is
taken to be oriented as part of the boundary of D ∩ {z : |g(z)| < γ}.) We
define H(w) to be Hγ(w). The function H defined in this way depends in a
real-analytic way on the point w in D.

Denote by m the minimum value of |g| on D. The set M on which |g|
assumes the value m is a compact subset of bD \ Tα, and consequently, if
ε > 0 is sufficiently small, f is defined and holomorphic on the set B =
{z ∈ D : |g(z)| ≤ m+ ε}. If ε is chosen properly—invoke Sard’s theorem—
then the level set Σm+ε will be transversal to bD, and we can use Stokes’s
theorem to write that, for w ∈ B ∩D,

H(w) = Hm+ε(w) =
�

bB

f(z)KBM(z, w) = f(w).

That is to say, we have a real-analytic function H on D that agrees
with f on an open set in D. It follows that H is holomorphic on D and that
it gives the holomorphic continuation of f through D.

We have now a complete proof of Lemma 4.

Lemma 5. The map ϕ is injective on the set Γ defined in the preceding
lemma.

Proof. The map ϕ is injective on ∆(r) and on T ′, so if ϕ(z) = ϕ(z′) for
z, z′ ∈ Γ , then z ∈ ∆(r) and z′ ∈ T ′ \∆(r) or vice versa. Suppose the former
case to obtain. As z ∈ ∆(r), we have ϕ(z) ∈ X. Finally, z′ ∈ T ′ implies that
ϕ(z′) /∈ X. This completes the proof.

The fact that ϕ is injective on Γ implies that if Ω0 is a thin one-sided
neighborhood of Γ contained in Ω1, then Ω0 is carried injectively by ϕ
onto a domain Ω in Cn. As each f holomorphic on Ω0 extends holomorphi-
cally into the pseudoconvex domain Ω1, the envelope of holomorphy of Ω
is the Riemann domain (Ω1, ϕ). The manifold Ω1 contains the totally real
sphere Sn.

Thus, for every n = 2, 3, . . . , we have found a domain, say Dn, in Cn

whose envelope of holomorphy, D̂n, is a neighborhood of the n-sphere Sn in
the complexified n-sphere Šn.

There are various cases:

(1) n = 3. It was noted by Gromov that the three-sphere S3 admits
totally real embeddings in Cn; explicit embeddings were constructed by
Ahern and Rudin [2]. Such an embedding, if chosen to be real-analytic,
extends to a biholomorphic embedding of a neighborhood of S3 in Š3 into C3,
so if the domain D3 is chosen to be sufficiently thin, the envelope D̂3 is
biholomorphically equivalent to a domain in C3.
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(2) n = 7. Again, it was noted by Gromov that the seven-sphere S7 does
not admit a totally real embedding into C7. Details of an argument estab-
lishing this are given in [17]. It follows that the envelope D̂7 is not biholo-
morphically equivalent to a domain in C7. It is, however, real-analytically
equivalent to such a domain, for the complexification Š7 is bianalytically
equivalent to the product S7 × R7, which, in turn, is bianalytically equiva-
lent to (R8 \ {0})× R6. See [17].

(3) n 6= 1, 3, 7. For such n, the sphere Sn does not embed as a totally
real submanifold of Cn. The case of even n was treated by Wells [19] and
by Aeppli [1]; the general case is in [17]. It follows that for n 6= 1, 3, 7, the
envelope D̂n is not biholomorphically equivalent to a domain in Cn. In the
case of the even-dimensional spheres more is true: If n is even, then results
of Aeppli [1] imply that no Stein tube over Sn embeds homeomorphically
in Cn, so from this, when n is even, the envelope D̂n is not homeomorphic
to a domain in Cn. The case of odd-dimensional spheres is not covered in
the paper [1].

It is true, though, that for odd n, the envelope D̂n is not diffeomorphic
to a domain in Cn. This is an immediate consequence of the known result—
see Kervaire [8] and the references cited there—that the normal bundle of
a smoothly embedded n-sphere in R2n is trivial. Suppose then that D̂n is
diffeomorphic to a domain in Cn under, say, the diffeomorphism ψ. Then
the normal bundle to the embedded sphere ψ(Sn) in Cn is trivial, which
implies that the normal bundle of the embedded sphere Sn in D̂n (or Šn)
is trivial. The complex structure J on Šn effects an isomorphism of the
normal bundle to Sn with the tangent bundle to Sn. Consequently, Sn is
parallelizable, so n = 1, 3, or 7. (This argument was already used in [17].)

This discussion is again in the domain of differential topology; whe-
ther Dn, n odd, not 1, 3, 7, is homeomorphic to a domain in Cn is still not
evident.

3. The envelope of holomorphy constructed in [14] is not hom-
eomorphic to a domain in Cn. In the paper [14] a domainΩ in Cn, n ≥ 2,
is exhibited whose envelope of holomorphy Ω̃ is not diffeomorphic—even of
class C 1—to a domain in Cn. At the time that paper was written, it was
not evident to the author that the Riemann domain Ω̃ is not homeomorphic
to a domain in Cn. The object of the present paragraph is to observe that,
in fact, Ω̃ is not topologically equivalent to a domain in Cn.

We begin by recalling the principle involved in the example given in [14].
There the counterexample hinges on the construction of a domain Ω in Cn

such that if (Ω̃, π) is the envelope of holomorphy of Ω, then the Riemann
domain Ω̃ contains a pair of smoothly embedded orientable n-manifolds M1
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and M2 that intersect in a single point and whose intersection is transversal.
By intersection theory in the setting of differential topology (see [7, p. 132])
this configuration cannot exist in Cn. This is an argument in differential
topology and does not exclude the possibility that Ω̃ might be homeomorphic
to a domain in Cn.

There is a topological theory of intersection that can be brought to bear
on the matter at hand and that yields the result we seek: The manifold Ω̃
is not homeomorphic to a domain in Cn. The intersection theory necessary
for this conclusion is written out in the book of Dold [4, pp. 197–201 and
342–345].

In our situation, this theory attaches to each pair ξ ∈ Hi(M1) and
η ∈ Hj(M2) of homology classes a homology class ξ•η ∈ Hi+j−2n(M1∩M2).
With i = j = n and with ξ and η the fundamental classes oM1 ∈ Hn(M1)
and oM2 ∈ Hn(M2), the resulting product oM1 • oM2 lies in H0(M1 ∩M2) =
H0({p}) = Z. Moreover, because the manifolds M1 and M2 meet transver-
sally at the point p, we have oM1 • oM2 = ±o{p}. In particular, this product
is not zero.

On the other hand, these intersection numbers are altered at most by a
sign by a homeomorphism of the manifold Ω̃, so because in Rn all intersec-
tion products vanish (see [4, p. 198]), the manifold Ω̃ cannot be homeomor-
phic to a domain in Cn.

4. Another example. To conclude, we give an example that was
brought to our attention by William R. Zame. The paper [16] contains an
example of a domain D in Cn whose universal covering space D∗ is not bi-
holomorphic to a domain in Cn. The obstruction is that by construction D∗

contains a pair of smoothly embedded n-manifolds Σ and Σ1 that intersect
transversally at one point and that have no other intersection. The exis-
tence of these manifolds precludes the possibility that D∗ is biholomorphic
or even diffeomorphic to a domain in Cn. And, as in the preceding section,
we recognize that D∗ is not topologically a domain in Cn. If we now recall
that according to [6], there is a domain D0 in Cn whose envelope of holo-
morphy is the manifold D∗, we have another example of a domain in Cn

whose envelope of holomorphy is not homeomorphic to a domain in Cn.
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