Some envelopes of holomorphy

by EDGAR LEE STOUT (Seattle, WA)

Abstract. We construct some envelopes of holomorphy that are not equivalent to domains in \mathbb{C}^n .

1. Introduction. In [14] we exhibited domains in \mathbb{C}^n , $n \geq 2$, whose envelopes of holomorphy are not smoothly equivalent to domains in \mathbb{C}^n (¹). The main purpose of the present note is to present an example of a domain, which lies in \mathbb{C}^7 , whose envelope of holomorphy is real-analytically equivalent to a domain in \mathbb{C}^7 but is not biholomorphic to such a domain. The construction we use yields some other examples in the same spirit. The principal ingredients of the example are the known results that the seven-sphere \mathbb{S}^7 does not admit a totally real embedding in \mathbb{C}^7 but that *every* sphere \mathbb{S}^n admits a totally real immersion in \mathbb{C}^n .

Weinstein [18, p. 26] observed that if we take

$$\mathbb{S}^n = \{(x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} : |x|^2 = x_1^2 + \dots + x_{n+1}^2 = 1\},\$$

then the map $\varphi : \mathbb{C}^{n+1} \to \mathbb{C}^n$ given by

(1)
$$\varphi(z) = (z_1(1+2iz_{n+1}), \dots, z_n(1+2iz_{n+1}))$$

restricts to \mathbb{S}^n as a Lagrangian immersion of the sphere into \mathbb{C}^n that is oneto-one except that the two poles $p^{\pm} = (0, \ldots, 0, \pm 1)$ are both taken to the origin. That φ is a Lagrangian immersion means that if ϑ is the (1, 1)-form on \mathbb{C}^n given by

$$\vartheta = \sum_{j=1}^n dz_j \wedge d\overline{z}_j,$$

then $\varphi^* \vartheta = 0$. It follows that the image, Σ , of \mathbb{S}^n under φ is an immersed

2000 Mathematics Subject Classification: Primary 32D10.

Key words and phrases: envelope of holomorphy.

 $^(^1)$ In [14] the methods used are those of differential topology, so it is not evident from that paper whether the envelopes of holomorphy in question may be homeomorphic to domains in \mathbb{C}^n . By using topological intersection theory as given in [4], it can be shown that, in fact, these domains are not even topologically equivalent to domains in \mathbb{C}^n . Details are given in Section 3 below.

E. L. Stout

totally real submanifold of \mathbb{C}^n . At the origin of \mathbb{C}^n , the two local branches of Σ meet transversally.

Thus, though among the spheres \mathbb{S}^n only the one-sphere and the threesphere embed as totally real submanifolds in \mathbb{C}^n , each sphere \mathbb{S}^n admits a very simple totally real immersion in \mathbb{C}^n .

2. The main construction. We construct the desired domain as follows.

Fix once and for all an integer $n \ge 2$. Let

$$\check{\mathbb{S}}^n = \{ z \in \mathbb{C}^{n+1} : z_1^2 + \dots + z_{n+1}^2 = 1 \}.$$

The map φ defined in (1) above is of maximal rank on the sphere \mathbb{S}^n , so there is a neighborhood U^* , which we fix at the outset, on which φ is regular. That is, the pair (U^*, φ) is a Riemann domain spread over \mathbb{C}^n . In what follows, all our constructions are carried out inside U^* , though we shall not again refer to this restriction.

For positive r and with $|\cdot|$ the Euclidean norm on \mathbb{C}^{n+1} , let

$$\Delta(r) = \{ z \in \check{\mathbb{S}}^n : |z - p^+| < r \},\$$

which is a strictly pseudoconvex domain with smooth boundary in $\underline{\mathbb{S}}^n$, provided r is small enough. Fix r > 0 small enough that φ carries $\overline{\Delta}(r)$ injectively into \mathbb{C}^n . Having fixed r, fix an $r' \in (0, r)$.

For a compact set X in \mathbb{C}^n , we denote by $\mathscr{C}(X)$ the space of continuous \mathbb{C} -valued functions on X, and by $\mathscr{P}(X)$ the closed subalgebra of $\mathscr{C}(X)$ consisting of those functions that can be approximated uniformly on X by polynomials.

For any $s \ge 0$, the set $\mathbb{S}^n \cup \overline{\Delta(s)}$ is polynomially convex and satisfies

 $\mathscr{P}(\mathbb{S}^n \cup \overline{\Delta(s)}) = \{ f \in \mathscr{C}(\mathbb{S}^n \cup \overline{\Delta(s)}) : f | \Delta(s) \text{ is holomorphic} \},\$

because it is the union of a compact subset, \mathbb{S}^n , of \mathbb{R}^{n+1} and a compact, polynomially convex subset, $\overline{\Delta(s)}$, of \mathbb{C}^{n+1} that is invariant under the conjugation $x + iy \mapsto x - iy$ on $\mathbb{C}^{n+1} = \mathbb{R}^{n+1} + i\mathbb{R}^{n+1}$, so that a theorem of Smirnov and Chirka [11] shows the set to be polynomially convex. The polynomial convexity assertion and the equality of the two algebras are given in [15, Th. 8.1.26, p. 392]. (In order for this result to apply in the present situation, we need to have the approximation result that

(2)
$$\mathscr{P}(\overline{\Delta(r)}) = \{ f \in \mathscr{C}(\overline{\Delta(r)}) : f | \Delta(r) \text{ is holomorphic} \}.$$

This equality is correct: $\Delta(r)$ is a strictly pseudoconvex domain with smooth boundary in the Stein manifold $\check{\mathbb{S}}^n$, so if f is continuous on $\overline{\Delta(r)}$ and holomorphic on $\Delta(r)$, then it can be approximated uniformly on $\overline{\Delta(r)}$ by functions g holomorphic on a neighborhood in $\check{\mathbb{S}}^n$ of $\overline{\Delta(r)}$. Moreover, the domain $\Delta(r)$ is defined by a strictly plurisubharmonic exhaustion function for $\check{\mathbb{S}}^n$, so the set $\overline{\Delta(r)}$ is convex with respect to the algebra $\mathcal{O}(\check{\mathbb{S}}^n)$, whence the approximating functions g can be approximated on $\overline{\Delta(r)}$ by functions h holomorphic on the whole of $\check{\mathbb{S}}^n$. These functions h can be extended to functions holomorphic on the whole ambient \mathbb{C}^n and so can be approximated on the polynomially convex set $\overline{\Delta(r)}$ by polynomials. The desired equality (2) follows.)

Consider now the set $E = (\varphi^{-1}(\varphi(\mathbb{S}^n)) \cap b\Delta(r)) \setminus \mathbb{S}^n$, a certain compact subset of $b\Delta(r)$.

LEMMA 1. If r is small, the set E is polynomially convex.

Proof. When s is small, each branch of the set $\varphi^{-1}(\varphi(\mathbb{S}^n)) \cap \Delta(s)$ is a totally real smooth manifold that is nearly a disc, whence each compact subset of it is polynomially convex and admits approximation of continuous functions by polynomials. Thus, E is polynomially convex as desired.

Let U_0 be an open subset of $\check{\mathbb{S}}^n$ that contains E and satisfies $\widehat{\overline{U}}_0 = \overline{U}_0$ if $\widehat{\overline{U}}_0$ denotes the polynomially convex hull of \overline{U}_0 and that is so small that $\widehat{\overline{U}}_0$ is disjoint from $\overline{\Delta(r')}$. Let U_1 be a second neighborhood in $\check{\mathbb{S}}^n$ of E with the property that the polynomially convex hull $\widehat{\overline{U}}_1$ is contained in U_0 .

LEMMA 2. There is a bounded holomorphic function g on $\Delta(r)$ with |g| < 1 on $\Delta(r) \setminus \overline{U}_0$ and with the nonempty level set $\Sigma_{\alpha} = \{z \in \Delta(r) : |g(z)| = \alpha\}$ contained in U_0 for certain $\alpha > 1$.

Proof. By the embedding theorem of Fornæss and Henkin [5], there exist a strictly convex domain W in \mathbb{C}^N for some sufficiently large N and a biholomorphic embedding ψ of a neighborhood of $\overline{\Delta}(r)$ as a complex submanifold V of a neighborhood of \overline{W} such that V is transversal to bW and $\psi^{-1}(W) = \Delta(r)$. Let U'_1 be a bounded open subset of \mathbb{C}^N whose intersection with V is $\psi(U_1)$, and let U'_0 be a bounded open subset of \mathbb{C}^N whose intersection with V is $\psi(U_0)$. We suppose $\widehat{\overline{U'_1}}$ to be contained in U'_0 .

Let μ be a continuous function on bW such that $1 \leq \mu \leq 2$ and $\mu = 1$ on $bW \setminus U'_0$ and $\mu = 2$ on $U_1 \cap bW$ and $1 < \mu < 2$ on $(U_0 \setminus \overline{U}_1) \cap bW$. By a theorem of E. Løw [10] there is a function \tilde{g} bounded and holomorphic on W and vanishing at the point $\psi(p^+)$ with the property that the almost everywhere existent boundary values \tilde{g}^* of \tilde{g} satisfy $|\tilde{g}^*| = \mu$ almost everywhere with respect to surface area measure on bW. For each $\alpha \geq 0$, let $\tilde{\Sigma}_{\alpha} = \{z \in W : |\tilde{g}(z)| = \alpha\}$.

To complete the proof of Lemma 2, we need a further lemma:

LEMMA 3. If $\alpha \in (1,2)$ is sufficiently close to 2, then $\widetilde{\Sigma}_{\alpha} \subset U'_0$.

Proof. Assume the lemma false, i.e., for a sequence $\{\alpha_j\}_{j=1}^{\infty}$ increasing to 2 the set $W \setminus U'_0$ contains a point w_j of $\widetilde{\Sigma}_{\alpha}$. The convexity of bW implies that

if $1 \leq s < 2$ and $C_s = \{z \in bW : \mu(z) \leq s\}$, then for $\alpha > s, \overline{\widetilde{\Sigma}}_{\alpha} \cap C_s = \emptyset$. This implies that when j is large $\overline{\widetilde{\Sigma}}_{\alpha_j} \cap bW \subset \overline{U}'_1$, which yields $\overline{\widetilde{\Sigma}}_{\alpha_j} \subset \overline{\widetilde{U}'_1}$ when j is large. By hypothesis, $\overline{\widetilde{U}'_1} \subset U'_0$. This completes the proof of Lemma 3.

To conclude the proof of Lemma 2, we take $g = \tilde{g} \circ \psi$. The lemma is proved.

Fix permanently an α as in Lemma 2.

Notice that the surface Σ_{α} is fibered by the analytic hypersurfaces $g^{-1}(\zeta)$ for ζ with $|\zeta| = \alpha$.

As already noted, $\mathbb{S}^n \cup \overline{\Delta(s)}$ is polynomially convex.

If $s \in (0, r')$, there is a thin solid tube T in $\check{\mathbb{S}}^n$ over $\mathbb{S}^n \setminus \Delta(s)$ on which φ is injective. (The general principle here is that if $h : \mathscr{M} \to \mathscr{M}'$ is a local homeomorphism from the manifold \mathscr{M} to the manifold \mathscr{M}' that is injective on the compact set $K \subset \mathscr{M}$, then h is injective on a neighborhood of K.) Choose an $r'' \in (r', r)$. Let Ω_2 be a strictly pseudoconvex domain with

$$\mathbb{S}^n \cup \Delta(r'') \subset \Omega_2 \Subset (T \cup \Delta(r)).$$

The existence of such a domain follows from the polynomial convexity of $\mathbb{S}^n \cup \overline{\Delta(r')}$. We choose Ω_2 so large that $b\Omega_2 \cap \{z \in \Delta(r) : |g(z)| > \alpha\}$ is a neighborhood in $b\Omega_2$ of $b\Omega_2 \cap (\varphi^{-1}(\varphi(\mathbb{S}^n)) \setminus \mathbb{S}^n)$.

The map φ carries $(b\Omega_2 \cap \Delta(r)) \setminus \{z \in \Delta(r) : |g(z)| > \alpha\}$ injectively onto a set X in \mathbb{C}^n that is at positive distance from $\varphi(S^n)$.

Let T' be a solid tube around \mathbb{S}^n in \mathbb{S}^n that is so thin that $T' \subset T \cup \Delta(r')$ and $\varphi(T')$ is disjoint from the set X. In addition, let r''' be a small positive number slightly greater than r. Then let Ω'_2 be a strictly pseudoconvex domain in \mathbb{S}^n that contains $\mathbb{S}^n \cup \overline{\Delta(r)}$ and that is contained in $T' \cup \Delta(r''')$. The domain Ω'_2 can be chosen so that its boundary is transversal to the boundary of Ω_2 . Using a process detailed in [12], we see that the intersection $b\Omega_2 \cap b\Omega'_2$ can be smoothed so as to obtain a strictly pseudoconvex domain Ω'_1 contained in $\Omega_2 \cap \Omega'_2$ and that agrees with this intersection outside a thin neighborhood of $b\Omega_2 \cap b\Omega'_2$. The strictly pseudoconvex domain Ω'_1 is contained in \mathbb{S}^n , contains $\mathbb{S}^n \cup \Delta(r')$, and satisfies

$$\Omega_1' \cap \Delta(r) = \Omega_2 \cap \Delta(r).$$

Let Ω_1 be the domain

$$\Omega_1 = \Omega'_1 \setminus \{ z \in \Delta(r) : |g(z)| \ge \alpha \}.$$

The domain Ω_1 is pseudoconvex and has the following extension property:

LEMMA 4. If $V \subset \Omega_1$ is a connected open set such that \overline{V} is a neighborhood of the set

$$\Gamma = b\Omega_1 \setminus \{ z \in \Delta(r) : |g(z)| = \alpha \}$$

in $\Omega_1 \cup \Gamma$, then each function f holomorphic on V continues holomorphically into Ω_1 .

Proof. We consider first the set $\widetilde{\Omega}_1 = \Omega_1 \setminus \overline{U}_0 = \Omega'_1 \setminus \overline{U}_0$. Its boundary is

$$b\widetilde{\varOmega}_1 = (b \Omega_1 \setminus \overline{U}_0) \cup \overline{\Omega'_1 \cap b U_0} = S \cup K.$$

The polynomially convex hull of the compact subset K of the boundary of $\widetilde{\Omega}_1$ is contained in the set \overline{U}_0 and so is disjoint from $\widetilde{\Omega}_1$. Accordingly, the principal result of the paper [9] implies that every CR-function on S extends holomorphically through all of $\widetilde{\Omega}_1$. If instead of a CR-function on S, we are given a function f holomorphic on a one-sided neighborhood of S that lies in $\widetilde{\Omega}_1$, then we apply this same extension result to the restriction of f to a surface S' lying in $\widetilde{\Omega}_1$ and obtained by pulling S in slightly, leaving it fixed at $bS = K \cap b\Omega_1$, so that f is defined on S'.

What we know, then, is that each function holomorphic on the domain V above extends holomorphically into $\widetilde{\Omega}_1$. We have to see that there actually is an extension into all of Ω_1 .

To this end, notice that since the set \overline{U}_0 is polynomially convex, there is a Stein domain D that consists of $\Omega_1 \setminus \widetilde{\Omega}_1$ together with a thin neighborhood of $b\widetilde{\Omega}_1 \cap \Omega_1$. We can choose the domain D so that $bD \setminus \Sigma_\alpha$ is a smooth strictly pseudoconvex surface S'. A function defined on $\widetilde{\Omega}_1 \cup V$ is defined on $V \cap D$ and on a neighborhood of $bD \cap \widetilde{\Omega}_1$. The function g is defined on a Stein neighborhood of \overline{D} , viz. $\Delta(r)$, which is biholomorphically equivalent to a domain in \mathbb{C}^n .

At this point, it is convenient to treat the case $n \geq 3$ separately from the case n = 2. Suppose then that $n \geq 3$. Notice that the set $T_{\alpha} = bD \cap \Sigma_{\alpha}$ has the convexity property that if $z \in \overline{D} \setminus T_{\alpha}$, then there are analytic varieties of dimension n - 1 in a neighborhood of \overline{D} that pass through the point z and miss T_{α} , e.g., the level set of g through z. This convexity property implies that each CR-function on $bD \setminus T_{\alpha}$ continues holomorphically into D, and indeed that any function defined and holomorphic on a one-sided neighborhood of $bD \setminus T_{\alpha}$ in \overline{D} continues through D. For this relatively simple result, one can consult [3, Theorem 4.5.2] or [13, Theorem II.3].

The case n = 2 requires something different. In essence, it seems to be necessary to revisit the ideas used in [9] and by other authors cited there. We begin with the remark that since $\Delta(r)$ is biholomorphically equivalent to a domain in \mathbb{C}^2 , there are global holomorphic coordinates, say $z = (z_1, z_2)$, defined on Δ . As the function g is holomorphic on $\Delta(r)$, which is a domain of holomorphy in the z-space, there is a factorization

(3)
$$g(z) - g(w) = g_1(z, w)(z_1 - w_1) + g_2(z, w)(z_2, w_2)$$

with g_1, g_2 holomorphic but not necessarily bounded on $\Delta(r) \times \Delta(r)$.

Denote by $K_{\rm BM}$ the Bochner–Martinelli kernel so that

$$K_{\rm BM}(z,w) = c_2 \frac{\left[(\overline{z}_2 - \overline{w}_2)d\overline{z}_1 - (\overline{z}_1 - \overline{w}_1)d\overline{z}_2\right] \wedge \omega(z)}{|z - w|^4},$$

in which $\omega(z) = dz_1 \wedge dz_2$ and c_2 is a suitable constant. This kernel has the property that if F is holomorphic on the smoothly bounded domain W and is continuous on the closure \overline{W} , then for $w \in D$,

$$F(w) = \int_{bD} f(z) K_{\rm BM}(z, w)$$

Direct calculation shows that

(4)
$$\overline{\partial}_z \left(c_2 \, \frac{\overline{z}_1 - \overline{w}_1}{|z - w|^2} \right) \omega(z) = (z_2 - w_2) K_{\text{BM}}(z, w),$$

(5)
$$\overline{\partial}_z \left(c_2 \frac{\overline{z}_2 - \overline{w}_2}{|z - w|^2} \right) \omega(z) = -(z_1 - w_1) K_{\text{BM}}(z, w).$$

Consequently, the form

$$\vartheta(z,w) = c_2 \left(g_2(z,w) \frac{\overline{z}_1 - \overline{w}_1}{|z-w|^2} - g_1(z,w) \frac{\overline{z}_2 - \overline{w}_2}{|z-w|^2} \right) \omega(z)$$

satisfies

$$\overline{\partial}_z \vartheta(z, w) = (g(z) - g(w)) K_{BM}(z, w)$$

and thus, where $g(z) \neq g(w)$, we have

$$\overline{\partial}_z \left\{ \frac{\vartheta(z,w)}{g(z) - g(w)} \right\} = K_{\rm BM}(z,w).$$

We now consider the domain D constructed above and a function f defined on a one-sided neighborhood W of $bD \setminus T_{\alpha}$. Our goal is to show that f continues holomorphically into the whole of D. We shall assume that, in fact, f is defined and holomorphic on a neighborhood of $bD \setminus T_{\alpha}$. This is a matter of convenience: If f is not defined on such a neighborhood, replace D by a domain D' obtained by pulling $bD \setminus T_{\alpha}$ in a little, leaving T_{α} fixed. The original f is now defined on a neighborhood of $bD' \setminus T_{\alpha}$, and we need only show that f continues into D'.

Accordingly, define a function H on D as follows. For $w \in D$, let $|g(w)| = \beta$. We have $\beta < \alpha$. Choose $\gamma \in (\beta, \alpha)$ such that the level set $\Sigma_{\gamma} = \{z \in \Delta(r) : |g(z)| = \gamma\}$ is a smooth hypersurface that meets $bD \setminus T_{\alpha}$ transversally. By Stokes's theorem, the quantity

(6)
$$H_{\gamma}(w) = \int_{bD \cap \{z : |g(z)| < \gamma\}} f(z) K_{BM}(z, w) + \int_{bD \cap \Sigma_{\gamma}} \frac{f(z)\vartheta(z, w)}{g(z) - g(w)}$$

is independent of the choice of γ . (In the expression for $H_{\gamma}(w)$, the orientation of $bD \cap \{z : |g(z) < \gamma\}$ is that induced on bD as the boundary of

158

the domain D. The orientation on $bD \cap \Sigma_{\gamma}$ is taken to be that induced on $bD \cap \Sigma_{\gamma}$ as the boundary of the manifold $\Sigma_{\gamma} \cap D$. The latter manifold is taken to be oriented as part of the boundary of $D \cap \{z : |g(z)| < \gamma\}$.) We define H(w) to be $H_{\gamma}(w)$. The function H defined in this way depends in a real-analytic way on the point w in D.

Denote by m the minimum value of |g| on \overline{D} . The set M on which |g|assumes the value m is a compact subset of $bD \setminus T_{\alpha}$, and consequently, if $\varepsilon > 0$ is sufficiently small, f is defined and holomorphic on the set $B = \{z \in \overline{D} : |g(z)| \le m + \varepsilon\}$. If ε is chosen properly—invoke Sard's theorem then the level set $\Sigma_{m+\varepsilon}$ will be transversal to bD, and we can use Stokes's theorem to write that, for $w \in B \cap D$,

$$H(w) = H_{m+\varepsilon}(w) = \int_{bB} f(z) K_{BM}(z, w) = f(w).$$

That is to say, we have a real-analytic function H on D that agrees with f on an open set in D. It follows that H is holomorphic on D and that it gives the holomorphic continuation of f through D.

We have now a complete proof of Lemma 4.

LEMMA 5. The map φ is injective on the set Γ defined in the preceding lemma.

Proof. The map φ is injective on $\Delta(r)$ and on T', so if $\varphi(z) = \varphi(z')$ for $z, z' \in \Gamma$, then $z \in \Delta(r)$ and $z' \in T' \setminus \Delta(r)$ or vice versa. Suppose the former case to obtain. As $z \in \Delta(r)$, we have $\varphi(z) \in X$. Finally, $z' \in T'$ implies that $\varphi(z') \notin X$. This completes the proof.

The fact that φ is injective on Γ implies that if Ω_0 is a thin one-sided neighborhood of Γ contained in Ω_1 , then Ω_0 is carried injectively by φ onto a domain Ω in \mathbb{C}^n . As each f holomorphic on Ω_0 extends holomorphically into the pseudoconvex domain Ω_1 , the envelope of holomorphy of Ω is the Riemann domain (Ω_1, φ) . The manifold Ω_1 contains the totally real sphere \mathbb{S}^n .

Thus, for every $n = 2, 3, \ldots$, we have found a domain, say \mathcal{D}_n , in \mathbb{C}^n whose envelope of holomorphy, $\widehat{\mathcal{D}}_n$, is a neighborhood of the *n*-sphere \mathbb{S}^n in the complexified *n*-sphere \mathbb{S}^n .

There are various cases:

(1) n = 3. It was noted by Gromov that the three-sphere \mathbb{S}^3 admits totally real embeddings in \mathbb{C}^n ; explicit embeddings were constructed by Ahern and Rudin [2]. Such an embedding, if chosen to be real-analytic, extends to a biholomorphic embedding of a neighborhood of \mathbb{S}^3 in $\check{\mathbb{S}}^3$ into \mathbb{C}^3 , so if the domain \mathcal{D}_3 is chosen to be sufficiently thin, the envelope $\widehat{\mathcal{D}}_3$ is biholomorphically equivalent to a domain in \mathbb{C}^3 . (2) n = 7. Again, it was noted by Gromov that the seven-sphere \mathbb{S}^7 does not admit a totally real embedding into \mathbb{C}^7 . Details of an argument establishing this are given in [17]. It follows that the envelope $\widehat{\mathcal{D}}_7$ is not biholomorphically equivalent to a domain in \mathbb{C}^7 . It is, however, real-analytically equivalent to such a domain, for the complexification $\check{\mathbb{S}}^7$ is bianalytically equivalent to the product $\mathbb{S}^7 \times \mathbb{R}^7$, which, in turn, is bianalytically equivalent to $(\mathbb{R}^8 \setminus \{0\}) \times \mathbb{R}^6$. See [17].

(3) $n \neq 1, 3, 7$. For such n, the sphere \mathbb{S}^n does not embed as a totally real submanifold of \mathbb{C}^n . The case of even n was treated by Wells [19] and by Aeppli [1]; the general case is in [17]. It follows that for $n \neq 1, 3, 7$, the envelope $\widehat{\mathcal{D}}_n$ is not biholomorphically equivalent to a domain in \mathbb{C}^n . In the case of the *even-dimensional* spheres more is true: If n is even, then results of Aeppli [1] imply that no Stein tube over \mathbb{S}^n embeds homeomorphically in \mathbb{C}^n , so from this, when n is even, the envelope $\widehat{\mathcal{D}}_n$ is not homeomorphic to a domain in \mathbb{C}^n . The case of odd-dimensional spheres is not covered in the paper [1].

It is true, though, that for odd n, the envelope $\widehat{\mathcal{D}}_n$ is not diffeomorphic to a domain in \mathbb{C}^n . This is an immediate consequence of the known result see Kervaire [8] and the references cited there—that the normal bundle of a smoothly embedded *n*-sphere in \mathbb{R}^{2n} is trivial. Suppose then that $\widehat{\mathcal{D}}_n$ is diffeomorphic to a domain in \mathbb{C}^n under, say, the diffeomorphism ψ . Then the normal bundle to the embedded sphere $\psi(\mathbb{S}^n)$ in \mathbb{C}^n is trivial, which implies that the normal bundle of the embedded sphere \mathbb{S}^n in $\widehat{\mathcal{D}}_n$ (or $\check{\mathbb{S}}^n$) is trivial. The complex structure J on $\check{\mathbb{S}}^n$ effects an isomorphism of the normal bundle to \mathbb{S}^n with the tangent bundle to \mathbb{S}^n . Consequently, \mathbb{S}^n is parallelizable, so n = 1, 3, or 7. (This argument was already used in [17].)

This discussion is again in the domain of differential topology; whether \mathcal{D}_n , *n* odd, not 1, 3, 7, is *homeomorphic* to a domain in \mathbb{C}^n is still not evident.

3. The envelope of holomorphy constructed in [14] is not homeomorphic to a domain in \mathbb{C}^n . In the paper [14] a domain Ω in \mathbb{C}^n , $n \geq 2$, is exhibited whose envelope of holomorphy $\widetilde{\Omega}$ is not diffeomorphic—even of class \mathscr{C}^1 —to a domain in \mathbb{C}^n . At the time that paper was written, it was not evident to the author that the Riemann domain $\widetilde{\Omega}$ is not homeomorphic to a domain in \mathbb{C}^n . The object of the present paragraph is to observe that, in fact, $\widetilde{\Omega}$ is not topologically equivalent to a domain in \mathbb{C}^n .

We begin by recalling the principle involved in the example given in [14]. There the counterexample hinges on the construction of a domain Ω in \mathbb{C}^n such that if $(\tilde{\Omega}, \pi)$ is the envelope of holomorphy of Ω , then the Riemann domain $\tilde{\Omega}$ contains a pair of smoothly embedded orientable *n*-manifolds M_1 and M_2 that intersect in a single point and whose intersection is transversal. By intersection theory in the setting of differential topology (see [7, p. 132]) this configuration cannot exist in \mathbb{C}^n . This is an argument in differential topology and does not exclude the possibility that $\widetilde{\Omega}$ might be *homeomorphic* to a domain in \mathbb{C}^n .

There is a topological theory of intersection that can be brought to bear on the matter at hand and that yields the result we seek: The manifold $\widetilde{\Omega}$ is not homeomorphic to a domain in \mathbb{C}^n . The intersection theory necessary for this conclusion is written out in the book of Dold [4, pp. 197–201 and 342–345].

In our situation, this theory attaches to each pair $\xi \in H_i(M_1)$ and $\eta \in H_j(M_2)$ of homology classes a homology class $\xi \bullet \eta \in H_{i+j-2n}(M_1 \cap M_2)$. With i = j = n and with ξ and η the fundamental classes $o_{M_1} \in H_n(M_1)$ and $o_{M_2} \in H_n(M_2)$, the resulting product $o_{M_1} \bullet o_{M_2}$ lies in $H_0(M_1 \cap M_2) = H_0(\{p\}) = \mathbb{Z}$. Moreover, because the manifolds M_1 and M_2 meet transversally at the point p, we have $o_{M_1} \bullet o_{M_2} = \pm o_{\{p\}}$. In particular, this product is not zero.

On the other hand, these intersection numbers are altered at most by a sign by a homeomorphism of the manifold $\widetilde{\Omega}$, so because in \mathbb{R}^n all intersection products vanish (see [4, p. 198]), the manifold $\widetilde{\Omega}$ cannot be homeomorphic to a domain in \mathbb{C}^n .

4. Another example. To conclude, we give an example that was brought to our attention by William R. Zame. The paper [16] contains an example of a domain D in \mathbb{C}^n whose universal covering space D^* is not biholomorphic to a domain in \mathbb{C}^n . The obstruction is that by construction D^* contains a pair of smoothly embedded *n*-manifolds Σ and Σ_1 that intersect transversally at one point and that have no other intersection. The existence of these manifolds precludes the possibility that D^* is biholomorphic or even diffeomorphic to a domain in \mathbb{C}^n . And, as in the preceding section, we recognize that D^* is not topologically a domain in \mathbb{C}^n . If we now recall that according to [6], there is a domain D_0 in \mathbb{C}^n whose envelope of holomorphy is the manifold D^* , we have another example of a domain in \mathbb{C}^n .

References

- A. Aeppli, On determining sets in a Stein manifold, in: Proc. Conf. Complex Analysis (Minneapolis 1964), Springer, Berlin, 1965, 48–58.
- [2] P. Ahern and W. Rudin, Totally real embeddings of S³ in C³, Proc. Amer. Math. Soc. 94 (1985), 460–462.

E. L. Stout

- [3] E. M. Chirka and E. L. Stout, *Removable singularities in the boundary*, in: Contributions to Complex Analysis and Analytic Geometry, Aspects of Math. E26, Vieweg, Braunschweig, 1994, 43–104.
- [4] A. Dold, *Lectures on Algebraic Topology*, Grundlehren Math. Wiss. 200, Springer, New York, 1972.
- J. E. Fornæss, Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math. 98 (1976), 529–569.
- J. E. Fornæss and W. R. Zame, Riemann domains and envelopes of holomorphy, Duke Math. J. 50 (1983), 273–283.
- [7] M. W. Hirsch, *Differential Topology*, Grad. Texts in Math. 33, Springer, New York, 1976.
- [8] M. A. Kervaire, Sur le fibré normal à une variété plongée dans l'espace euclidien, Bull. Soc. Math. France 87 (1959), 397–401.
- C. Laurent-Thiébaut, Sur l'extension des fonctions CR dans une variété de Stein, Ann. Mat. Pura Appl. (4) 150 (1988), 141–151.
- [10] E. Løw, Inner functions and boundary values in H[∞](Ω) and A(Ω) in smoothly bounded pseudoconvex domains, Math. Z. 185 (1984), 191–210.
- [11] M. M. Smirnov and E. M. Chirka, Polynomial convexity of some sets in Cⁿ, Mat. Zametki 50 (1991), no. 5, 81–89 (in Russian); English transl.: Math. Notes 50 (1991), 1151–1157.
- [12] E. L. Stout, Interpolation manifolds, in: Recent Developments in Several Complex Variables (Princeton, NJ, 1979), Ann. of Math. Stud. 100, Princeton Univ. Press, Princeton, 1981, 373–391.
- [13] —, Removable singularities for the boundary values of holomorphic functions, in: Several Complex Variables (Stockholm, 1987/1988), Math. Notes 38, Princeton Univ. Press, Princeton, NJ, 1993, 600–629.
- [14] —, A domain whose envelope of holomorphy is not a domain, Ann. Polon. Math. 89 (2006), 197–201.
- [15] —, Polynomial Convexity, Progr. Math. 261, Birkhäuser Boston, Boston, MA, 2007.
- [16] E. L. Stout and W. R. Zame, Totally real imbeddings and the universal convering spaces of domains of holomorphy: Some examples, Manuscripta Math. 50 (1985), 29–48.
- [17] —, —, A Stein manifold topologically but not holomorphically equivalent to a domain in Cⁿ, Adv. in Math. 60 (1986), 154–160.
- [18] A. Weinstein, Lectures on Symplectic Manifolds, CBMS Reg. Conf. Ser. Math. 29, Amer. Math. Soc., Providence, RI, 1977.
- [19] R. O. Wells, Jr., Compact real submanifolds of a complex manifold with nondegenerate holomorphic tangent bundles, Math. Ann. 179 (1969), 123–129.

Department of Mathematics University of Washington Seattle, WA 98195, U.S.A. E-mail: stout@math.washington.edu

> Received 1.7.2008 and in final form 17.9.2008

(1897)