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Weighted pluripotential theory on
compact Kéahler manifolds

by MARITZA M. BRANKER (Niagara University, NY) and
MALGORZATA STAWISKA (Berlin and Lawrence, KS)

Abstract. We introduce a weighted version of the pluripotential theory on compact
Kéhler manifolds developed by Guedj and Zeriahi. We give the appropriate definition of
a weighted pluricomplex Green function, its basic properties and consider its behavior
under holomorphic maps. We also develop a homogeneous version of the weighted theory
and establish a generalization of Siciak’s H-principle.

Introduction. Recently there has been significant progress in weighted
pluripotential theory on CV, which was originally developed in [Sil], [Si2] and
generalized to parabolic manifolds in [Ze|. Specifically, we refer to [BL|, [Bl1],
[B12], |Bral|, [MS|. Concurrently, pluripotential theory on a compact Kéhler
manifold X based on quasiplurisubharmonic functions has been explored in
[GZ1], [GZ2], |[Kol], [Ko2] and [HKH] (see also applications in [Bel], [Be2],
[BBJ). In this article we try to connect the two theories by creating an analog
of the plurisubharmonically-homogeneous pluripotential theory. Our starting
point is an observation that a weighted pluripotential theory on CV extends
naturally to a pluripotential theory on CP" with a suitably modified weight.
In turn, this extends to a homogeneous pluripotential theory in the universal
line bundle over CPY, whose charts are biholomorphic to CN*!, We will
generalize these results to projective algebraic manifolds.

We define a weighted pluricomplex Green function on a compact complex
manifold X with a Kéhler form w. The definition is formulated in terms of
a mild function (see Definition 1). However, many results of our theory hold
without requiring that ¢ be mild. For a mild function () and a Borel set
K C X the weighted pluricomplex Green function is

Vi wg =sup{¢ € PSH(X,w): ¢ < Q on K}.
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Basic properties of Vi, ¢ are stated and proved in Section 1, followed by the
extension of the weighted pluripotential theory in CV to a suitable weighted
pluripotential theory on CPY. In the case when X admits a positive line
bundle (which by Kodaira’s embedding theorem is equivalent to X being
projective algebraic) we obtain more specific results, in particular general-
izations of Siciak’s H-principle and of some classical approximation results.
Another interesting consequence is the following theorem (Theorem 5, Sec-
tion 2):

THEOREM. Let (X,w) be a compact Kdhler manifold and f : X — X a
holomorphic surjection. Assume that there exist o and 3, 1 < a < 3, such
that

af(PSH(X,w)) C PSH(X,w), [f*(PSH(X,w)) C f-PSH(X,w).
Then for every Borel set K C X and every mild function @ on X,

V1K) w,1+Q/a(®) < VK wq o f(2) < BVi-1(k) 0, 1+q/5-

In fact, the similarity between Theorem 2.12 in [Bra] and Theorem 1
in [St1] (both of which are generalized versions of Theorem 5.3.1 in [KI])
provided initial motivation for our work. These two results turn out to be
special cases of the theorem above.

1. Weighted pluricomplex Green functions. Throughout the paper
we assume that X is a connected compact Kédhler manifold. Let w be a closed
real (1, 1)-current on X with continuous local potentials. Following [Kol] and
[GZ1], the class of w-plurisubharmonic functions is defined as

PSH(X,w) = {v € L(X,RU{—00}) : dd°v > —w and

v is upper semicontinuous}.
(On X = CPY such a class was introduced in [BT2|.) The w-pluricomplex
Green function of a Borel set K C X is defined as
Vi w(z) = sup{v(x) : v € PSH(X,w), v|g < .0}
Consider the class PSH(X,w), where w is a Ké&hler form on X with local
potentials ¢; : U; — R for an open cover {Uj}gnzo of X by coordinate
neighborhoods.

DEFINITION 1. Let @ : X — R U {400} be a function such that the
function exp(—@Q + ¢;) is continuous in Uj, j = 1,...,m, and {Q # +oo} is
not a pluripolar subset of X. We will call @) satisfying these assumptions a
mild function. Note that mild functions are necessarily lower semicontinuous.

DEFINITION 2. For a mild function ¢ on X and a Borel set K C X let
us define the weighted w-pluricomplex Green function as

Vi wg =sup{¢ € PSH(X,w): ¢ < Q on K}.
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The following properties are direct consequences of our definition of
VKvva'

PROPOSITION 1. Let K, K1, Ko be Borel subsets of X and @Q,Q1, Q2 be
mild functions.

(i) If Q1 < Q2 on K then Vikwor < VKwQs-
(ii) If K1 C Ko then Vi, < VK w,0-
(iii) Let Q be a mild function that belongs to the class PSH(X,w). Then
VX,w,Q = Q
(iv) Let w' be cohomologous to w, that is, w' = w + dd°¢ for € € L}(X).
If & s mild and continuous, then Vi v o = Vi wo—¢ +&.

We continue to establish basic properties of the weighted pluricomplex
Green function in Propositions 2 and 3.

PROPOSITION 2. Let E be a Borel set in X and Q a mild function on X .
If E is not PSH(X,w)-polar then Viwo € PSH(X,w).

Proof. By Choquet’s lemma there exists an increasing sequence of func-
tions ¢; € PSH(X,w) such that ¢; < @ on E and

VEwo = (jlifgo b;)".
It follows from Proposition 2.6(2) in [GZ1] that V , o € PSH(X,w). =

PROPOSITION 3. Let E be a Borel subset of X and P a PSH(X,w)-polar

set. Then
VE*UP,M,Q = VE*,w,Q'

Proof. Recall that a set P is said to be PSH(X, w)-polar if it is included
in the —oo-locus of some function ¢ € PSH(X,w) which is not identically
—oo on X. By Prop. 1(ii) we have Vi p, o < Vi, o We will show that
VE*MQ < VE*UpMQ. Suppose u € PSH(X,w) with v < @ on E and let
v € PSH(X,w) be such that P C {v = —oo}. We may assume v < @ on E.
Then for each € > 0,

(1 —e)u+ev < Veupwg < VEuPwg-
Therefore u < Vg ,p, o on X and by taking the supremum, Vg, o <

3
VEuPwQ- ™

Now we will discuss how weighted pluripotential theory on CV can be
extended to a suitable weighted pluripotential theory on CPY. Recall that
in the weighted theory on CV one begins with an admissible weight function
on a closed set K € CV. An admissible weight w is a nonnegative upper
semicontinuous function w on CV with {z € K : w(z) > 0} nonpluripolar
and satisfying the boundedness condition lim,|_ [2[w(z) = 0 if K is an
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unbounded set (cf. [BL|, [Bl1], [ST]). Let @ = —logw. Then the weighted
pluricomplex Green function of K is defined as

Vkg=sup{ue L:u<Qon K}.

Let [Zy : ... : Zy] be homogeneous coordinates in CPY and Zjg =
Zy/Z; in Uj = {Z; # 0}. (The set Up is identified with CV and 2oy =:
zg, k= 1,..., N, are affine coordinates.) In these coordinates, let w(Zy :

: ZN) = w(z1,...,2N)/|Z0| in Up, where w is nonnegative and upper
semicontinuous with {w > 0} nonpluripolar, but not necessarily satisfying
the boundedness condition. The expression W(Z) := || Z||w(Z) defines a
homogeneous function of order 0 in CN*1\ {Zy = 0}. We have W(Z) =
¢o(z) + logw(z) for Zy # 0, where ¢(z) = (1/2)log(1 + |2|?). To obtain an
upper semicontinuous function (still denoted by W) globally on CPY, with
all values greater than or equal to 0, we take

VIZiI2+ 4+ ZNP®(0: Zy s .. : Zy) = limsup ||V [|@(Y)
0#Yp—0,Y;—Z;
for Y = (Yp,...,Yn).

The boundedness condition is equivalent to the property that this global
function is identically zero on the hyperplane {Zy = 0}. This is because
limy,| o0 |2|w(2) = lim|, 0o /1 + |2[2w(2). We will assume a weaker con-
dition, namely that W is bounded in CPY. The following example demon-
strates that the boundedness condition is too restrictive when constructing
a weighted pluripotential theory on complex manifolds.

EXAMPLE 1. Let wpg be the Fubini-Study Kihler form on X = CPY
with local potentials ¢; = (1/2) log(1+3_ ., |zjk|?) in the coordinate neigh-
borhoods U; = {Z; # 0} with j = 0,1,..., N, and let K be a subset of
CN c CPV. For Z € CPY define Q;(Z) = ¢j(Z), j = 0,...,N, so that
Qo(2) = log(y/1 + ||z||?) for z € CV. The natural 1-to-1 correspondence be-
tween PSH(X, wrs) and the class £(C¥) of plurisubharmonic functions with
logarithmic growth at infinity, presented explicitly in Example 1.2 in [GZ1],
gives the following:

Vicn ) = supfu(e) : u € £(CY), u(z) < log TT [P ¥z € K)
— sup{u(s) : u € <«:N> u(z) — (1/2)log(1 + |2?) < 0 ¥z € K}
= sup{v(x) 4 (1/2)log(1 + |z|?),v € PSH(CPY, ws) : v|x < 0}
= Vit wops () + (1/2) log(1 + |z]?)

for every € CN. Assume now that K is not PSH(CP", wps)-polar. Then
Vi wes € PSH(CPY, wrg) and Vi € L(CY). For a point Z on the hyper-
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plane at infinity {Zy = 0} we get

Vicws(Z) = limsup (Vi o () = (1/2)log(1 + |2]?)).
z—Z,zeCN

Note that the function w(z) = exp(—Qo(z)) in our example does not

P

satisfy the boundedness condition in CV. Indeed, the function ||Z||w(z) =
exp(—Q;(2) + ¢j(Z2)) for Z € U;, j = 0,...,N, is a constant function 1
on CPV. We draw the reader’s attention to the paper [BI2], in which a
relation between weighted theory in CV and standard pluripotential theory
in CNV*1 is outlined. Examples considered in Section 5 of that paper deal with
a weight function w which is given as the Hartogs radius of a domain with
balanced fibers in CN*! (for the definition and basic properties, see [Sh]).
Such a function is upper semicontinuous, but as shown in [BI2], does not
have to satisfy the boundedness condition on CV. Furthermore, the results
of [Si2] as well as [MS| were obtained without assuming the boundedness
condition. It thus seems reasonable to weaken this condition when working
on complex manifolds. In [Gu| a notion of a “convex” hull with respect to a
closed real (1,1)-current 7" is considered where the functions f defining the
hull satisfy the condition that exp(f + ¢) are continuous, with ¢ continuous
local potentials for T'. We adopted an analogous condition as part of our
definition of a mild function.

The method demonstrated in Example 1 can also be used to prove the
following:

PROPOSITION 4. Let K ¢ CN = {Zy # 0}. For a mild function Q on
CPYN with respect to w = wys define

41, on) = a2 2o, [ %) = Q(Z) —Vog(|1 2|1 Zol), Zo #0.
Conwversely, for a lower semicontinuous g on CV, consider
Q(Z) =a(Z1/ 2o, ..., ZN|Zo) + log || Z]| + log | Zo|,
together with its lower semicontinuous reqularization as Zy — 0. Then for
all z € CN,
Viq(%) = Vicw,g(@) — (1/2) log(1 + [|z]|?).

Consider now a holomorphic line bundle L over a compact Kéhler mani-
fold X. Recall that a (singular) metric on L can be given (cf. [De|, [DPS]) by
a collection of real-valued functions h = {h;} on X, defined in a trivializing
cover {U;}, such that h; = h; + log |gi;|, where g;; are transition functions
for L. The metric is called positive if all h; are plurisubharmonic. (The no-
tion of positivity is used here in the weak sense.) In particular, a smooth
metric {¢;} such that w = dd“¢; is a Kahler form will be positive.

If L is a positive line bundle and w = [c1(L)], there is a 1-to-1 cor-
respondence between the family of all positive metrics on L and the class
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PSH(X,w). In the case of X = CPY with the Fubini-Study form w, this
correspondence is equivalent to the H-principle due to Siciak ([Si3]).

PROPOSITION 5 (cf. |Gu, property (iv), p. 456]). Let h be a logarithmi-
cally homogeneous plurisubharmonic nonnegative function on CNtL. Then h
defines a positive metric on CPN. Conversely, each positive metric on CPN
defines a logarithmically homogeneous psh function on CN*L.

Proof. By logarithmic homogeneity we have
’U(Z()/Zk, ey 1, ceey ZN/Zk) = ’U(Z) - log ’Zk‘ in {Zk 7& 0}

Hence v = v; + log|Zx/Z;| in U; N Uy, and all v; are plurisubharmonic.
To prove the converse, take hg = h|y,. The function v(Z) = ho(Z) +
log | Zp| in Uy, and v(0, Z1,...,2ZN) = lim supy, o, v,z v(Yo,Y1,...,YN)
is plurisubharmonic. Since it also satisfies v(A\Z) = v(Z) + log |A| for X € C,
our proof is complete. u

By Example 1.2 in [GZ1], the class £(CY) corresponds in a 1-to-1 manner
to the class of PSH(CPY, w) functions, which in turn correspond in a 1-to-1
manner to positive metrics on the (positive) hyperplane bundle over CP¥ .
Thus Proposition 5 establishes a 1-to-1 correspondence between logarithmi-
cally homogeneous functions ¥ on CV*! and functions v in the class £(C)
so that 9(1, z) = v(z) for z € CV, that is, the H-principle. This well-known
correspondence has been utilized in many works, most recently in [Be3|.

If L is a positive line bundle over X, then its dual L’ is negative (|GF,
Prop. VI.6.1 and VI.6.2|). Hence there exists a system of trivializations 6; :
L'y, — U; x C with transition functions G, = gz._k1 = gr; and a smooth
metric {h;} on L such that the smooth function x; : L' — R, defined as
xXn 0 0 (z,t) = Hi(z) - [t|?, is strictly plurisubharmonic outside the zero
section of L', where H;(z) = exp2h;(x), € U;. As a simple example of
a negative line bundle we can take the universal line bundle over CP¥,
O(—1) :={([Z2],¢) e CPY xCN : ¢ € C- Z, Z e CNT1\ {0}, [Z] =C* - Z}.
That is, the fiber of O(—1) over a point [Z] € CP¥ is the complex line in
CN+1 generated by (Zo, ..., Zn). The function xo8; '(Z,t) = |t|?|Z;| 72| Z|?
for Z; # 0, associated with the Fubini-Study metric on the dual line bundle
O(1) over CPV, is plurisubharmonic.

The above characterization of negative line bundles as those whose zero
section has a strongly pseudoconvex neighborhood (due to Grauert, see |Gr])
leads to the following generalization of Siciak’s H-principle:

THEOREM 1 (cf. |GF, Prop. VI.6.1|). Let L be a positive line bundle
over a compact Kdahler manifold X and let d > 0. Let H; denote the family
of all functions x € PSH(L') which are nonnegative, not identically 0 and
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absolutely homogeneous of order d in each fiber. Then there is a one-to-one
correspondence between H; and the class of positive metrics on L.

Proof. Consider a system of trivializations 6; : L'|y, — U; x C with
transition functions G, = gx; = 1/gk. Let x € ’HC}L. For x € U;, t # 0 define

Hi(z) :=x 00, (z,1)/[t].

Note that this expression does not depend on t. We have x o 6, 1(x,t) =
x 0 0, ' (x,Gri(7)t), hence by absolute homogeneity of order d, Hy(z) =
|Gri(x)|9H;(x) in U; N Uy. Taking h; = (1/d) log H; in U; we get a collection
of plurisubharmonic functions satisfying hx = log|gx| + hi, i.e., a positive
metric on L. Conversely, let {h;} be a metric on L. The function y on L’
defined as x o 0; ! (z,t) = exp(dh;(z)) - |t| is plurisubharmonic if and only if
the h; are, so for a positive metric the associated function x is in H:{. "

Unless otherwise indicated, we will work with HT := Hf. Note that
if we take L' in Theorem 1 to be the universal line bundle ¢ over CP¥,
then the trivialization 6; : 7=1(U;) — U; x C is given as 0;(t(Z)) = ([Z :
...t ZN),tZ;). Hence for a function y € H* we have x o 0, '([Zy : ... :
Zn)it) = hi([Zo = ... : ZN]) + log|Z;| + log|t| for Z; # 0, where the h;
define a metric on CPY. By Proposition 5, over the chart Zy # 0 we get
X(tZ) = v(Zi1/Zo,...,ZN/Z) + log|t| for t # 0 with v plurisubharmonic.
That is, x defines a logarithmically homogeneous psh function on CV+1.

For a positive holomorphic line bundle L over a compact Kéhler manifold
X there is a precise relation between the weighted pluricomplex Green func-
tion with respect to w = [c1(L)] of a Borel set K in X and an H™-envelope
of some associated set K in the dual bundle L'. It generalizes the formulas
obtained by Bloom in [BI2].

For the weight Q on X consider the collection ¢; = Q — ¢;, where w =
dd®¢; in U; and the U; form a trivializing cover for L. For K C X define
K C L' by taking

Knr H(U;) = {07 (z,t) 1z € UiN K, |t| = exp(—q;(x))}.
This set is well defined, since 6, '(z,t) = 6;'(z, Gi(2)t). Hence if » €
UiNUp N K, then |Gy;(z)t| = exp(—qi(z)) if and only if |¢| = exp(—gqx(x)).
Consider
Hp =sup{u € PSH(L') : expu € H', u|z <0}
The following theorem gives the relationship between the functions Hz and
VK w.Q-
THEOREM 2 (cf. [BI2, Thm. 2.1]). For all i,

Hgo Gfl(x,t) = Vikwo(x) +log|t| + ¢i(x).
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Proof. By Theorem 1,
Hyp =sup{u:uo 0, (2, t) = hi(x) +log|t|, uly,nx < 0}
=sup{u:uo 9;1(33,75) = hi(z) + log [t|, hi(x) < ¢;, Vi}
where the h; define a positive metric on L. Hence, for such h;,
Hy 007 (x,t) = sup{hs(2) : hi(2)| kv, < @i} +loglt|
= sup{v(z) + ¢i(x) : v € PSH(X,w), v|x < Q} + log|t|
= Vikwo(z) +log|t| + ¢i(z), Vi. =

Theorem 2 allows us to study the behavior of the weighted pluricomplex
Green functions as we vary the weight. Namely, we have the following:

PROPOSITION 6 (cf. [BI2, Cor. 2.2|). Let K C X be a Borel set. Sup-
pose {Qn}, Qo are mild functions with Qn /" Qo. Then lim, .o Vi w0, =
VszzQO'

Proof. Consider the sets K,,, M,, C L', where
M, Y (U;) = {0, (x,t) : 2 € Ui N K, [t| < exp(—¢™ (2))},
Ky N (U) = {07 (2,1) 1w € Ui N K, [t] = exp(—q)" ()},

and qz-(n) = Qn — ¢;,n > 0. The sequence M, is decreasing, with (o2 ; M,
= ]%. By the maximum principle (applied in each fiber), Hy; = Hg, for
n > 0 (here we use the assumption of all @, being mild). For a function
u € HT such that u < 0 on My and an arbitrary € > 0, there exists an ng
such that for all n > ng we have M,, C {u < €}. The function u — ¢ is in
H* and for n > ng it satisfies u — e < Hyy, < limy,—00 Hpr, < Hyyg,, hence
limy, oo Hy,, = Hg,. By Theorem 2, lim,, oo Vi w.0Q, = VK w,Qo- ®

PROPOSITION 7 (cf. |[BI2, Cor. 2.4|). Let Qn, n > 0, be mild functions
on X such that Q, \, Qo. Then Vi ., = limy oo VK 0.0, -

Proof. Since the potentials ¢; of w are continuous, we have H;i( oﬁjl(x, t)
= Vi w0, T10g[t|+¢; for all i. We can assume that the set M; (see Proposi-
tion 6) is not w-polar. By Proposition 2, Hj, is plurisubharmonic on L' Let
H =lim,, .o, Hys,. The function H is in H* and satisfies H < 0 on K\ P,
where P is some pluripolar set. Hence H < Hi. . =

COROLLARY 1. The conclusion of Proposition 6 holds when the conver-
gence Qn /" Qo takes place quasi-everywhere on X, that is, outside some
w-polar set.

COROLLARY 2. The conclusion of Proposition 7 holds when the conver-
gence Qn "\, Qo takes place quasi-everywhere on X.
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2. Approximation and pullbacks by holomorphic maps. In stan-
dard pluripotential theory in CV and its weighted generalization there is
a function @k such that log @ = Vi g. The function @ is given as the
supremum of certain functions with “regular” growth, that is, polynomials
(when @ = 0) or weighted polynomials (see Theorem 6.2 in [Sil]|, The-
orem 2.8 in [Bl1], and Théoréme 5.1 in |Ze|). In |GZ1] it is proven that
Viw(x) = sup{(1/n)log||s[lnp(z) : n > 1, s € I'(X, L"), sup ||s]lny < 1},
where L is a positive holomorphic line bundle over a compact manifold X,
w = ddj in a trivializing cover U; is a (global) Kahler form and the
norm ||s||n, of a section s of the tensor power L™ is computed as follows:
||sllne = || exp(—ne;) in U;. All such theorems are based on the possibility
of approximation of general plurisubharmonic functions by so-called Hartogs
functions, which are obtained by certain operations from functions of the
type log|f| with f holomorphic (cf. [Kl, Theorem 5.1.6]). Such approxima-
tion may not always be possible, but is possible for example in pseudocon-
vex domains in C, as shown in [Bre|. Below, we will work in pseudoconvex
neighborhoods of the zero section of L’ to prove the following:

THEOREM 3. Let X, L, ¢, w be as above. Let Q) be a mild function on X
and let K be a compact subset of X. Then
Vikwqg =log®Pk o where Pg(z)= Sl;}; (@n(x))l/”
n>
with

Pn(x) = supillsfing(z) : n 2 1, s € D(X, L7), sup exp(=nQ)|s]lnp < 1}-

Unlike [GZ1], in which the theorem was proved for @) = 0, we will not use
L?-estimates for the d-operator. Instead, we will apply the Approximation
Lemma (see below), which we will prove using an argument that can be
traced back to |Bre|. Similar lemmas, e.g. [Ze, Lemme 5.2] and [Bel, Lemma
2.1 and 3.2], were proved for Stein manifolds. However, a neighborhood of the
zero section of a negative line bundle L’ cannot be Stein (since it contains
the zero section as a compact complex submanifold), so an extra effort is
needed to make the argument work in our case. This is achieved by blowing
down the zero section, as shown below.

APPROXIMATION LEMMA. Let X, w, L be as above and let v € PSH(X, w)
N C*® be such that dd“v + w is strictly positive. Then for every € > 0 and
every compact K C X there exist Nq,..., Ny, and s1,..., 8, such that s; €
L(X,LY3), j=1,...,m, and
v(z) —e < sup (1/Nj)log|sj(z)|[n;p < v(x) forallz € K,
1<j<m

where the norm of the section s; is computed as above.
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Proof. Let ¢; be local potentials for the Kéhler form w, [w] = [e1(L)],
and let h = {h; = v + ¢;} be the positive metric corresponding to v. The
inequality in the statement of the lemma is equivalent to

hi —e < sup (1/Nj)log|s;j(z)| < |hi(z)|, xze KnNU;,i=1,...,1,
1<j<m

where |-| is the usual absolute value of a complex number. Let r € (0,1) and
let x, be the function in the class H™ on L’ associated with the metric r - h.
For every r the set 2, = {x, < 1} is a strictly pseudoconvex neighborhood
of the zero section in L’ (cf. [GF, VI.6.1]). Fix a point xy € K and {y =
0, (x0,1). Then [t| < x,((o) if and only if (xo,t) € 2 := ;. The function
f(t) = Zqozozl(Xr(CO))ntnv t] < 1/xr(C0), f(0) = 0, is holomorphic on the
analytic set (2N L}, ) U X and is identically 0 on X.

Let us consider the Remmert reduction of {2 (see |Gr, Theorem 1], or
[P, Theorem 2.7 and preceding discussion|). That is, we have a Stein space
Y and a proper surjective holomorphic map @ : {2 — Y with the following
properties: (i) @ has connected fibers; (ii) @.(Og) = Oy; (iii) the canonical
map Oy (Y) — Oqn(§2) is an isomorphism; (iv) if o : 2 — Z is a holomorphic
map into a Stein space Z then there exists a uniquely determined holomor-
phic map 7 : Y — Z such that 7 o ® = 0. The map @ blows down the zero
section of L’. Note that the set A = &(L) U X) = &(L;, ) is analytic in YV’

(by Remmert’s proper mapping theorem) and the function f(®(t)) := f(t)
is holomorphic on A (by property (ii) of Remmert’s reduction). Every ana-
lytic set in a complex space is the support of a closed complex subspace (cf.
[GR, A.3.5]), so we can apply Theorem V.4.4 of [GR] to conclude that the
function fis the restriction to A of a function F that is holomorphic on the
Stein space Y.

By the properties (ii) and (iii) above, there exists a function F' holo-
morphic on {2 such that Fod = F. For t # 0 one can represent F'
as F o0 Yz, t) = 300, jol0 (z)t™, with F” holomorphic in U;. We have
Fo0, z,t) = F o0 *(x,G(x)t), which gives jolQ (x) = (gzk(x))"Fflk) (x),
i.e., Fj, are cocycles corresponding to holomorphic sections of the tensor
product L™ over (2,.

Considering the domain of convergence of the representation for F o 0,;1,
k=1,...,1, we get limsup,,_ ., |Fn(z)]"/" < exprh(z), z € X. Let § > 0.
By Hartogs’s lemma, there exists an ns > 1 such that (1/n)log|F,(z)| <
r-h(x)+46, x € K, n > ns. For the estimate from below, note that F},(z¢) =
Xr(Co) = rh(zg) for all n. Since rh = r(v + ¢) is continuous, there exists
an ng > ns and a neighborhood W, of xy such that (1/ng)log|Ey,(z)| >
rh(z) — 0, v € Wy,. Compactness of K and suitable relations between ¢, d
and r give holomorphic sections satisfying the conclusion of the lemma. m
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Proof of Theorem 3. We mimic the method of proof of Theorem 2.8(i)
in [Bl1]. Let u € PSH(X,w), u|xg < Q. By Theorem 7.1 in [GZ1], there is a
sequence uy € PSH(X,w) NC*>(X) such that ug \, u. Let ¢ > 0. By Dini’s
theorem, there exists an integer kg such that u(z) < ug(z) < Q(z)+¢ for all
x € K, k > ky. By adding a small multiple of a local Kéhler potential in some
coordinate neighborhood, we can assume that dd“uy 4+ w is strictly positive.

(k
By the Approximation Lemma, there exist sg»k) e I'(X, LY ), 7 =1,...,mp,
such that
up —3e < sup log \exp(—2N;k)6s§k))\/NJ(k) < (1/n)log @, (z),

J=1,...mg
)

inequality is obvious, since (1/N)log||s|| v, defines a positive singular metric
on L. m

where n = max; N](-k , j =1,...,mg. Hence u — 4e < log®. The reverse

Under the assumptions of Theorem 3 we also have the following;:
PROPOSITION 8. Let ¥(x) = limy, o0 Yn(x) = sup,,>; Yn(x), with
¥n(@) = sup{[lsllng(2), s € I'(X, L%), sup®(exp(=nQ)ls]lng) < 1}
and supy (f) := inf{supg\p(f) : P C K, P is PSH(X,w)-polar}. Then
Vi wo = (log¥k)™.

The proof proceeds exactly like that of [Bl1, Theorem 2.8(ii)|, provided
we have the domination principle on a compact Kéhler manifold of dimension
N (cf. [Kl1, Cor. 3.7.5 and Prop. 5.5.1], [BT1, Cor. 4.5], [Ta| for versions on
open subsets of CV). In our proof we will assume that one of the functions is
in L*°(X), since this is the case we need. A more general version was recently
proved independently as Proposition 2.7 in [BB|. Proofs of the domination
principle rely on the comparison principle, which was established in |[GZ2]
for the class of functions £(X, w) defined therein, which contains L>(X) (cf.
also [Ko1], [Ko2], [HKH] for proofs in the case of L>°-functions on manifolds).
Recall the following result, which allows us to apply the comparison and
domination principles in the weighted theory:

PrROPOSITION 9. If K is not PSH(X,w)-polar and Q is continuous, then
Viwo € PSH(X,w) N L*>(X). In particular, the complex Monge—Ampére
operator (wy, )" is well defined and satisfies (wy, )" =0 in X \ K.

Proof. The proof proceeds as that of [GZ1, Theorem 4.2.2|, and uses
Proposition 2. =

Now we may state and prove the required domination principle.
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THEOREM 4 (Domination principle). Let u,v € PSH(X,w) with v €
L>°(X) be such that
S (w + dd°u)™ = 0.
{u<v}
Then u > v in X.

Proof. The following argument was communicated to us by Ahmed Ze-
riahi. It is enough to prove that u > v on a set of full w-volume in X.
We can assume that v is negative everywhere on X. Then for all s,t > 0,
{u—v<—-s—t} C {u—v < —s—tv}, which for small ¢ is still a subset of
{u —v < 0}. Then, by Lemma 2.2 in [EGZ],

0= S (w + dd°u)™ >tV Cap{u —v < —s — t},
{u—v<—s—tv}
where Cap is the Monge-Ampére capacity defined in [Kol| (see also [GZ1,
Definition 2.4|. Proposition 2.5(1) in [GZ1| implies that Vol{u —v < —s —t}
=0 for s,¢t > 0, ¢t small, hence Vol{u —v <0} =0. =

In Section 1 we referred to the definition of “polynomial convexity” with
respect to a positive closed current w of bidegree (1, 1) on a complex manifold
X introduced in [Gu|]. When X is projective algebraic and [w] = [e1(L)],
w = dd°¢ for a positive holomorphic line bundle L over X, this definition is
equivalent to the following one:

DEFINITION 3 (|Gu, Definition 3.1 and Proposition 3.2]). Let K be a
compact subset of X. The w-polynomial hull of K is

KY={zeX: |8]lne(z) < sup ||s]jne Vs € I'(X,L™) Vn € N}.
K

Directly from Theorem 3 we obtain the following:

COROLLARY 3. For every compact K C X and for every mild function
@ on X we have

VK7Q7W = V[?“-’7Q7w'

Finally, we are interested in how weighted pluricomplex Green functions
change under a holomorphic map f : X — X, where X is a compact K&h-
ler manifold (not necessarily projective algebraic) with a closed real (1,1)-
current w on X with continuous local potentials (not necessarily a Kéhler
form). Proposition 4.4.5 in [GZ1] states that if f: X — X is holomorphic,
and K C X is a Borel set, then Vi), o f < Vi f+o,. The proof applies also
to the weighted pluricomplex Green function and gives the following:

PROPOSITION 10. Let X,w, K be as above and let Q@ be a mild function
on X. Then Vi) wq o f < Vi frwqof in X.
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Below, we establish a relation between the pullback of Vi, o by a sur-
jective holomorphic map f : X — X and Vf_1 () 0,0 with an appropriate

function Q. For a function u : X — R U {—oc} let us define fou(z) =
sup{u(y) : y € f~(z)}. This is a well-defined function, since f~!(x) is com-
pact. Also, let f*u = wo f. The following theorem generalizes Theorem 2.12
in [Bra] and Theorem 1 in [St1] (it yields both as special cases):

THEOREM 5. Assume that there exist a and 3, 1 < a < 3, such that
af(PSH(X,w)) C PSH(X,w), f*(PSH(X,w)) C 8 -PSH(X,w).
Then for every Borel set K C X and every mild function Q on X,

avffl(K),w,f*Q/oz(x) S VKM,Q e} f(.%') S ﬂvffl(K),w,f*Q/ﬁ'

Proof. Let u € PSH(X,w) be such that au < f*Q on f~}(K). Then
v = af.u is in PSH(X,w) and satisfies v < @ on X. Moreover, au(z) <
v(f(z)) < Vikwo(f(x)), which gives the first inequality. For the second
one, if u € PSH(X,w) satisfies u < @ on K, then by assumption (1/3)f*u
is in PSH(X,w) and (1/8)f*u < (1/8)f*Q on f~1(K), which gives the

conclusion. =

On X = CP", the assumptions of Theorem 5 are equivalent to assump-
tions about growth of f made in Theorem 2.12 in [Bra| or its unweighted
counterpart, Theorem 5.3.1 in [Kl|. Details may be found in Theorem 1 in
[St1] and its proof. The main theorem in [St2]| has conditions equivalent to
the assumption af,PSH(X,w) C PSH(X,w) when X < CP¥ is a projec-
tive algebraic manifold and w is the pullback of the Fubini—Study form by
the embedding <. One of the conditions is that f has an attracting divisor
in X, so in fact the assumption is quite strong.
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