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Weighted pluripotential theory on
compact Kähler manifolds
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Małgorzata Stawiska (Berlin and Lawrence, KS)

Abstract. We introduce a weighted version of the pluripotential theory on compact
Kähler manifolds developed by Guedj and Zeriahi. We give the appropriate definition of
a weighted pluricomplex Green function, its basic properties and consider its behavior
under holomorphic maps. We also develop a homogeneous version of the weighted theory
and establish a generalization of Siciak’s H-principle.

Introduction. Recently there has been significant progress in weighted
pluripotential theory on CN , which was originally developed in [Si1], [Si2] and
generalized to parabolic manifolds in [Ze]. Specifically, we refer to [BL], [Bl1],
[Bl2], [Bra], [MS]. Concurrently, pluripotential theory on a compact Kähler
manifold X based on quasiplurisubharmonic functions has been explored in
[GZ1], [GZ2], [Ko1], [Ko2] and [HKH] (see also applications in [Be1], [Be2],
[BB]). In this article we try to connect the two theories by creating an analog
of the plurisubharmonically-homogeneous pluripotential theory. Our starting
point is an observation that a weighted pluripotential theory on CN extends
naturally to a pluripotential theory on CPN with a suitably modified weight.
In turn, this extends to a homogeneous pluripotential theory in the universal
line bundle over CPN , whose charts are biholomorphic to CN+1. We will
generalize these results to projective algebraic manifolds.

We define a weighted pluricomplex Green function on a compact complex
manifold X with a Kähler form ω. The definition is formulated in terms of
a mild function (see Definition 1). However, many results of our theory hold
without requiring that Q be mild. For a mild function Q and a Borel set
K ⊂ X the weighted pluricomplex Green function is

VK,ω,Q = sup{φ ∈ PSH(X,ω) : φ ≤ Q on K}.
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Basic properties of VK,ω,Q are stated and proved in Section 1, followed by the
extension of the weighted pluripotential theory in CN to a suitable weighted
pluripotential theory on CPN . In the case when X admits a positive line
bundle (which by Kodaira’s embedding theorem is equivalent to X being
projective algebraic) we obtain more specific results, in particular general-
izations of Siciak’s H-principle and of some classical approximation results.
Another interesting consequence is the following theorem (Theorem 5, Sec-
tion 2):

Theorem. Let (X,ω) be a compact Kähler manifold and f : X → X a
holomorphic surjection. Assume that there exist α and β, 1 < α ≤ β, such
that

αf∗(PSH(X,ω)) ⊂ PSH(X,ω), f∗(PSH(X,ω)) ⊂ β · PSH(X,ω).

Then for every Borel set K ⊂ X and every mild function Q on X,
αVf−1(K),ω,f∗Q/α(x) ≤ VK,ω,Q ◦ f(x) ≤ βVf−1(K),ω,f∗Q/β.

In fact, the similarity between Theorem 2.12 in [Bra] and Theorem 1
in [St1] (both of which are generalized versions of Theorem 5.3.1 in [Kl])
provided initial motivation for our work. These two results turn out to be
special cases of the theorem above.

1. Weighted pluricomplex Green functions. Throughout the paper
we assume that X is a connected compact Kähler manifold. Let ω be a closed
real (1, 1)-current onX with continuous local potentials. Following [Ko1] and
[GZ1], the class of ω-plurisubharmonic functions is defined as

PSH(X,ω) = {v ∈ L1(X,R ∪ {−∞}) : ddcv ≥ −ω and
v is upper semicontinuous}.

(On X = CPN such a class was introduced in [BT2].) The ω-pluricomplex
Green function of a Borel set K ⊂ X is defined as

VK,ω(x) = sup{v(x) : v ∈ PSH(X,ω), v|K ≤ .0}
Consider the class PSH(X,ω), where ω is a Kähler form on X with local
potentials φj : Uj → R for an open cover {Uj}mj=0 of X by coordinate
neighborhoods.

Definition 1. Let Q : X → R ∪ {+∞} be a function such that the
function exp(−Q+ φj) is continuous in Uj , j = 1, . . . ,m, and {Q 6= +∞} is
not a pluripolar subset of X. We will call Q satisfying these assumptions a
mild function. Note that mild functions are necessarily lower semicontinuous.

Definition 2. For a mild function Q on X and a Borel set K ⊂ X let
us define the weighted ω-pluricomplex Green function as

VK,ω,Q = sup{φ ∈ PSH(X,ω) : φ ≤ Q on K}.
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The following properties are direct consequences of our definition of
VK,ω,Q.

Proposition 1. Let K,K1,K2 be Borel subsets of X and Q,Q1, Q2 be
mild functions.

(i) If Q1 ≤ Q2 on K then VK,ω,Q1 ≤ VK,ω,Q2.
(ii) If K1 ⊂ K2 then VK2,ω,Q ≤ VK1,ω,Q.
(iii) Let Q be a mild function that belongs to the class PSH(X,ω). Then

VX,ω,Q = Q.
(iv) Let ω′ be cohomologous to ω, that is, ω′ = ω + ddcξ for ξ ∈ L1(X).

If ξ is mild and continuous, then VK,ω′,Q = VK,ω,Q−ξ + ξ.

We continue to establish basic properties of the weighted pluricomplex
Green function in Propositions 2 and 3.

Proposition 2. Let E be a Borel set in X and Q a mild function on X.
If E is not PSH(X,ω)-polar then V ∗E,ω,Q ∈ PSH(X,ω).

Proof. By Choquet’s lemma there exists an increasing sequence of func-
tions φj ∈ PSH(X,ω) such that φj ≤ Q on E and

V ∗E,ω,Q = ( lim
j→∞

φj)∗.

It follows from Proposition 2.6(2) in [GZ1] that V ∗E,ω,Q ∈ PSH(X,ω).

Proposition 3. Let E be a Borel subset of X and P a PSH(X,ω)-polar
set. Then

V ∗E∪P,ω,Q = V ∗E,ω,Q.

Proof. Recall that a set P is said to be PSH(X,ω)-polar if it is included
in the −∞-locus of some function ψ ∈ PSH(X,ω) which is not identically
−∞ on X. By Prop. 1(ii) we have V ∗E∪P,ω,Q ≤ V ∗E,ω,Q. We will show that
V ∗E,ω,Q ≤ V ∗E∪P,ω,Q. Suppose u ∈ PSH(X,ω) with u ≤ Q on E and let
v ∈ PSH(X,ω) be such that P ⊂ {v = −∞}. We may assume v ≤ Q on E.
Then for each ε > 0,

(1− ε)u+ εv ≤ VE∪P,ω,Q ≤ V ∗E∪P,ω,Q.
Therefore u ≤ V ∗E∪P,ω,Q on X and by taking the supremum, V ∗E,ω,Q ≤
V ∗E∪P,ω,Q.

Now we will discuss how weighted pluripotential theory on CN can be
extended to a suitable weighted pluripotential theory on CPN . Recall that
in the weighted theory on CN one begins with an admissible weight function
on a closed set K ⊂ CN . An admissible weight w is a nonnegative upper
semicontinuous function w on CN with {z ∈ K : w(z) > 0} nonpluripolar
and satisfying the boundedness condition lim|z|→∞ |z|w(z) = 0 if K is an
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unbounded set (cf. [BL], [Bl1], [ST]). Let Q = − logw. Then the weighted
pluricomplex Green function of K is defined as

VK,Q = sup{u ∈ L : u ≤ Q on K}.

Let [Z0 : . . . : ZN ] be homogeneous coordinates in CPN and zj,k :=
Zk/Zj in Uj = {Zj 6= 0}. (The set U0 is identified with CN and z0,k =:
zk, k = 1, . . . , N , are affine coordinates.) In these coordinates, let w̃(Z0 :
. . . : ZN ) = w(z1, . . . , zN )/|Z0| in U0, where w is nonnegative and upper
semicontinuous with {w > 0} nonpluripolar, but not necessarily satisfying
the boundedness condition. The expression W (Z) := ‖Z‖w̃(Z) defines a
homogeneous function of order 0 in CN+1 \ {Z0 = 0}. We have W (Z) =
ϕ0(z) + logw(z) for Z0 6= 0, where ϕ(z) = (1/2) log(1 + |z|2). To obtain an
upper semicontinuous function (still denoted by W ) globally on CPN , with
all values greater than or equal to 0, we take√

|Z1|2 + · · ·+ |ZN |2 w̃(0 : Z1 : . . . : ZN ) = lim sup
06=Y0→0, Yj→Zj

‖Y ‖w̃(Y )

for Y = (Y0, . . . , YN ).
The boundedness condition is equivalent to the property that this global

function is identically zero on the hyperplane {Z0 = 0}. This is because
lim|z|→∞ |z|w(z) = lim|z|→∞

√
1 + |z|2w(z). We will assume a weaker con-

dition, namely that W is bounded in CPN . The following example demon-
strates that the boundedness condition is too restrictive when constructing
a weighted pluripotential theory on complex manifolds.

Example 1. Let ωFS be the Fubini–Study Kähler form on X = CPN
with local potentials φj = (1/2) log(1+

∑
k 6=j |zj,k|2) in the coordinate neigh-

borhoods Uj = {Zj 6= 0} with j = 0, 1, . . . , N , and let K be a subset of
CN ⊂ CPN . For Z ∈ CPN define Qj(Z) = φj(Z), j = 0, . . . , N , so that
Q0(z) = log(

√
1 + ‖z‖2) for z ∈ CN . The natural 1-to-1 correspondence be-

tween PSH(X,ωFS) and the class L(CN ) of plurisubharmonic functions with
logarithmic growth at infinity, presented explicitly in Example 1.2 in [GZ1],
gives the following:

VK,Q0(x) = sup{u(x) : u ∈ L(CN ), u(z) ≤ log
√

1 + ‖z‖2 ∀z ∈ K}

= sup{u(x) : u ∈ L(CN ), u(z)− (1/2) log(1 + |z|2) ≤ 0 ∀z ∈ K}

= sup{v(x) + (1/2) log(1 + |x|2), v ∈ PSH(CPN , ωFS) : v|K ≤ 0}
= VK,ωFS

(x) + (1/2) log(1 + |x|2)

for every x ∈ CN . Assume now that K is not PSH(CPN , ωFS)-polar. Then
V ∗K,ωFS

∈ PSH(CPN , ωFS) and V ∗K,Q0
∈ L(CN ). For a point Z on the hyper-
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plane at infinity {Z0 = 0} we get

V ∗K,ωFS
(Z) = lim sup

x→Z, x∈CN

(V ∗K,Q0
(x)− (1/2) log(1 + |x|2)).

Note that the function w(z) = exp(−Q0(z)) in our example does not
satisfy the boundedness condition in CN . Indeed, the function ‖Z‖w̃(z) =
exp(−Qj(Z) + φj(Z)) for Z ∈ Uj , j = 0, . . . , N , is a constant function 1
on CPN . We draw the reader’s attention to the paper [Bl2], in which a
relation between weighted theory in CN and standard pluripotential theory
in CN+1 is outlined. Examples considered in Section 5 of that paper deal with
a weight function w which is given as the Hartogs radius of a domain with
balanced fibers in CN+1 (for the definition and basic properties, see [Sh]).
Such a function is upper semicontinuous, but as shown in [Bl2], does not
have to satisfy the boundedness condition on CN . Furthermore, the results
of [Si2] as well as [MS] were obtained without assuming the boundedness
condition. It thus seems reasonable to weaken this condition when working
on complex manifolds. In [Gu] a notion of a “convex” hull with respect to a
closed real (1, 1)-current T is considered where the functions f defining the
hull satisfy the condition that exp(f + φ) are continuous, with φ continuous
local potentials for T . We adopted an analogous condition as part of our
definition of a mild function.

The method demonstrated in Example 1 can also be used to prove the
following:

Proposition 4. Let K ⊂ CN ∼= {Z0 6= 0}. For a mild function Q on
CPN with respect to ω = ωFS define
q(z1, . . . , zN ) = q(Z1/Z0, . . . , ZN/Z0) = Q(Z)− log(‖Z‖/|Z0|), Z0 6= 0.

Conversely , for a lower semicontinuous q on CN , consider
Q(Z) = q(Z1/Z0, . . . , ZN/Z0) + log ‖Z‖+ log |Z0|,

together with its lower semicontinuous regularization as Z0 → 0. Then for
all x ∈ CN ,

VK,q(x) = VK,ω,Q(x)− (1/2) log(1 + ‖x‖2).

Consider now a holomorphic line bundle L over a compact Kähler mani-
fold X. Recall that a (singular) metric on L can be given (cf. [De], [DPS]) by
a collection of real-valued functions h = {hj} on X, defined in a trivializing
cover {Uj}, such that hj = hi + log |gij |, where gij are transition functions
for L. The metric is called positive if all hj are plurisubharmonic. (The no-
tion of positivity is used here in the weak sense.) In particular, a smooth
metric {φj} such that ω = ddcφj is a Kähler form will be positive.

If L is a positive line bundle and ω = [c1(L)], there is a 1-to-1 cor-
respondence between the family of all positive metrics on L and the class
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PSH(X,ω). In the case of X = CPN with the Fubini–Study form ω, this
correspondence is equivalent to the H-principle due to Siciak ([Si3]).

Proposition 5 (cf. [Gu, property (iv), p. 456]). Let h be a logarithmi-
cally homogeneous plurisubharmonic nonnegative function on CN+1. Then h
defines a positive metric on CPN . Conversely , each positive metric on CPN
defines a logarithmically homogeneous psh function on CN+1.

Proof. By logarithmic homogeneity we have

v(Z0/Zk, . . . , 1, . . . , ZN/Zk) = v(Z)− log |Zk| in {Zk 6= 0}.

Hence vk = vi + log |Zk/Zi| in Ui ∩ Uk and all vi are plurisubharmonic.
To prove the converse, take h0 = h|U0 . The function v(Z) = h0(Z) +
log |Z0| in U0, and v(0, Z1, . . . , ZN ) = lim supY0→0, Yj→Zj

v(Y0, Y1, . . . , YN )
is plurisubharmonic. Since it also satisfies v(λZ) = v(Z) + log |λ| for λ ∈ C,
our proof is complete.

By Example 1.2 in [GZ1], the class L(CN ) corresponds in a 1-to-1 manner
to the class of PSH(CPN , ω) functions, which in turn correspond in a 1-to-1
manner to positive metrics on the (positive) hyperplane bundle over CPN .
Thus Proposition 5 establishes a 1-to-1 correspondence between logarithmi-
cally homogeneous functions ṽ on CN+1 and functions v in the class L(CN )
so that ṽ(1, z) = v(z) for z ∈ CN , that is, the H-principle. This well-known
correspondence has been utilized in many works, most recently in [Be3].

If L is a positive line bundle over X, then its dual L′ is negative ([GF,
Prop. VI.6.1 and VI.6.2]). Hence there exists a system of trivializations θi :
L′|Ui → Ui × C with transition functions Gik = g−1

ik = gki and a smooth
metric {hi} on L such that the smooth function χh : L′ → R, defined as
χh ◦ θ−1

i (x, t) = Hi(x) · |t|2, is strictly plurisubharmonic outside the zero
section of L′, where Hi(x) = exp 2hi(x), x ∈ Ui. As a simple example of
a negative line bundle we can take the universal line bundle over CPN ,
O(−1) := {([Z], ξ) ∈ CPN × CN : ξ ∈ C · Z, Z ∈ CN+1 \ {0}, [Z] = C∗ · Z}.
That is, the fiber of O(−1) over a point [Z] ∈ CPN is the complex line in
CN+1 generated by (Z0, . . . , ZN ). The function χ◦θ−1

i (Z, t) = |t|2|Zi|−2‖Z‖2
for Zi 6= 0, associated with the Fubini–Study metric on the dual line bundle
O(1) over CPN , is plurisubharmonic.

The above characterization of negative line bundles as those whose zero
section has a strongly pseudoconvex neighborhood (due to Grauert, see [Gr])
leads to the following generalization of Siciak’s H-principle:

Theorem 1 (cf. [GF, Prop. VI.6.1]). Let L be a positive line bundle
over a compact Kähler manifold X and let d > 0. Let H+

d denote the family
of all functions χ ∈ PSH(L′) which are nonnegative, not identically 0 and
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absolutely homogeneous of order d in each fiber. Then there is a one-to-one
correspondence between H+

d and the class of positive metrics on L.

Proof. Consider a system of trivializations θi : L′|Ui → Ui × C with
transition functions Gik = gki = 1/gik. Let χ ∈ H+

d . For x ∈ Ui, t 6= 0 define

Hi(x) := χ ◦ θ−1
i (x, t)/|t|d.

Note that this expression does not depend on t. We have χ ◦ θ−1
i (x, t) =

χ ◦ θ−1
k (x,Gki(x)t), hence by absolute homogeneity of order d, Hk(x) =

|Gki(x)|dHi(x) in Ui ∩Uk. Taking hi = (1/d) logHi in Ui we get a collection
of plurisubharmonic functions satisfying hk = log |gik| + hi, i.e., a positive
metric on L. Conversely, let {hi} be a metric on L. The function χ on L′

defined as χ ◦ θ−1
i (x, t) = exp(dhi(x)) · |t|d is plurisubharmonic if and only if

the hi are, so for a positive metric the associated function χ is in H+
d .

Unless otherwise indicated, we will work with H+ := H+
1 . Note that

if we take L′ in Theorem 1 to be the universal line bundle U over CPN ,
then the trivialization θi : π−1(Ui) → Ui × C is given as θi(t(Z)) = ([Z0 :
. . . : ZN ], tZi). Hence for a function χ ∈ H+ we have χ ◦ θ−1

i ([Z0 : . . . :
ZN ], t) = hi([Z0 : . . . : ZN ]) + log |Zi| + log |t| for Zi 6= 0, where the hi
define a metric on CPN . By Proposition 5, over the chart Z0 6= 0 we get
χ(tZ) = v(Z1/Z0, . . . , ZN/Z0) + log |t| for t 6= 0 with v plurisubharmonic.
That is, χ defines a logarithmically homogeneous psh function on CN+1.

For a positive holomorphic line bundle L over a compact Kähler manifold
X there is a precise relation between the weighted pluricomplex Green func-
tion with respect to ω = [c1(L)] of a Borel set K in X and an H+-envelope
of some associated set K̃ in the dual bundle L′. It generalizes the formulas
obtained by Bloom in [Bl2].

For the weight Q on X consider the collection qi = Q − φi, where ω =
ddcφi in Ui and the Ui form a trivializing cover for L. For K ⊂ X define
K̃ ⊂ L′ by taking

K̃ ∩ π−1(Ui) = {θ−1
i (x, t) : x ∈ Ui ∩K, |t| = exp(−qi(x))}.

This set is well defined, since θ−1
k (x, t) = θ−1

i (x,Gki(x)t). Hence if x ∈
Ui ∩ Uk ∩K, then |Gki(x)t| = exp(−qi(x)) if and only if |t| = exp(−qk(x)).
Consider

H eK = sup{u ∈ PSH(L′) : expu ∈ H+, u| eK ≤ 0}.
The following theorem gives the relationship between the functions H eK and
VK,ω,Q.

Theorem 2 (cf. [Bl2, Thm. 2.1]). For all i,

H eK ◦ θ−1
i (x, t) = VK,ω,Q(x) + log |t|+ φi(x).
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Proof. By Theorem 1,

H eK = sup{u : u ◦ θ−1
i (x, t) = hi(x) + log |t|, u|Ui∩K ≤ 0}

= sup{u : u ◦ θ−1
i (x, t) = hi(x) + log |t|, hi(x) ≤ qi, ∀i}

where the hi define a positive metric on L. Hence, for such hi,

H eK ◦ θ−1
i (x, t) = sup{hi(x) : hi(x)|K∩Ui ≤ qi}+ log |t|

= sup{v(x) + φi(x) : v ∈ PSH(X,ω), v|K ≤ Q}+ log |t|
= VK,ω,Q(x) + log |t|+ φi(x), ∀i.

Theorem 2 allows us to study the behavior of the weighted pluricomplex
Green functions as we vary the weight. Namely, we have the following:

Proposition 6 (cf. [Bl2, Cor. 2.2]). Let K ⊂ X be a Borel set. Sup-
pose {Qn}, Q0 are mild functions with Qn ↗ Q0. Then limn→∞ VK,ω,Qn =
VK,ω,Q0 .

Proof. Consider the sets Kn,Mn ⊂ L′, where

Mn ∩ π−1(Ui) = {θ−1
i (x, t) : x ∈ Ui ∩K, |t| ≤ exp(−q(n)

i (x))},

Kn ∩ π−1(Ui) = {θ−1
i (x, t) : x ∈ Ui ∩K, |t| = exp(−q(n)

i (x))},

and q(n)
i = Qn − φi, n ≥ 0. The sequence Mn is decreasing, with

⋂∞
n=1Mn

= M̃0. By the maximum principle (applied in each fiber), HMn = HKn for
n ≥ 0 (here we use the assumption of all Qn being mild). For a function
u ∈ H+ such that u ≤ 0 on M0 and an arbitrary ε > 0, there exists an n0

such that for all n ≥ n0 we have Mn ⊂ {u < ε}. The function u − ε is in
H+ and for n ≥ n0 it satisfies u − ε ≤ HMn ≤ limn→∞HMn ≤ HM0 , hence
limn→∞HMn = HK0 . By Theorem 2, limn→∞ VK,ω,Qn = VK,ω,Q0 .

Proposition 7 (cf. [Bl2, Cor. 2.4]). Let Qn, n ≥ 0, be mild functions
on X such that Qn ↘ Q0. Then VK,ω,Q0 = limn→∞ VK,ω,Qn.

Proof. Since the potentials φi of ω are continuous, we have H∗eK ◦θ−1
i (x, t)

= V ∗K,ω,Q0
+log |t|+φi for all i. We can assume that the setM1 (see Proposi-

tion 6) is not ω-polar. By Proposition 2, H∗K0
is plurisubharmonic on L′. Let

H = limn→∞HMn . The function H is in H+ and satisfies H ≤ 0 on K0 \P ,
where P is some pluripolar set. Hence H ≤ H∗K0

.

Corollary 1. The conclusion of Proposition 6 holds when the conver-
gence Qn ↗ Q0 takes place quasi-everywhere on X, that is, outside some
ω-polar set.

Corollary 2. The conclusion of Proposition 7 holds when the conver-
gence Qn ↘ Q0 takes place quasi-everywhere on X.
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2. Approximation and pullbacks by holomorphic maps. In stan-
dard pluripotential theory in CN and its weighted generalization there is
a function ΦK such that logΦK = VK,Q. The function ΦK is given as the
supremum of certain functions with “regular” growth, that is, polynomials
(when Q ≡ 0) or weighted polynomials (see Theorem 6.2 in [Si1], The-
orem 2.8 in [Bl1], and Théorème 5.1 in [Ze]). In [GZ1] it is proven that
VK,ω(x) = sup{(1/n) log ‖s‖nϕ(x) : n ≥ 1, s ∈ Γ (X,Ln), supK ‖s‖nϕ ≤ 1},
where L is a positive holomorphic line bundle over a compact manifold X,
ω = ddcϕj in a trivializing cover Uj is a (global) Kähler form and the
norm ‖s‖nϕ of a section s of the tensor power Ln is computed as follows:
‖s‖nϕ = |sj | exp(−nϕj) in Uj . All such theorems are based on the possibility
of approximation of general plurisubharmonic functions by so-called Hartogs
functions, which are obtained by certain operations from functions of the
type log |f | with f holomorphic (cf. [Kl, Theorem 5.1.6]). Such approxima-
tion may not always be possible, but is possible for example in pseudocon-
vex domains in CN , as shown in [Bre]. Below, we will work in pseudoconvex
neighborhoods of the zero section of L′ to prove the following:

Theorem 3. Let X, L, ϕ, ω be as above. Let Q be a mild function on X
and let K be a compact subset of X. Then

VK,ω,Q = logΦK,ω,Q where ΦK(x) = sup
n≥1

(Φn(x))1/n

with

Φn(x) = sup{‖s‖nϕ(x) : n ≥ 1, s ∈ Γ (X,Ln), sup
K

exp(−nQ)‖s‖nϕ ≤ 1}.

Unlike [GZ1], in which the theorem was proved for Q ≡ 0, we will not use
L2-estimates for the ∂-operator. Instead, we will apply the Approximation
Lemma (see below), which we will prove using an argument that can be
traced back to [Bre]. Similar lemmas, e.g. [Ze, Lemme 5.2] and [Be1, Lemma
2.1 and 3.2], were proved for Stein manifolds. However, a neighborhood of the
zero section of a negative line bundle L′ cannot be Stein (since it contains
the zero section as a compact complex submanifold), so an extra effort is
needed to make the argument work in our case. This is achieved by blowing
down the zero section, as shown below.

Approximation Lemma. Let X, ω, L be as above and let v∈PSH(X,ω)
∩ C∞ be such that ddcv + ω is strictly positive. Then for every ε > 0 and
every compact K ⊂ X there exist N1, . . . , Nm and s1, . . . , sm such that sj ∈
Γ (X,LNj ), j = 1, . . . ,m, and

v(x)− ε ≤ sup
1≤j≤m

(1/Nj) log ‖sj(x)‖Njϕ ≤ v(x) for all x ∈ K,

where the norm of the section sj is computed as above.
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Proof. Let ϕi be local potentials for the Kähler form ω, [ω] = [c1(L)],
and let h = {hi = v + ϕi} be the positive metric corresponding to v. The
inequality in the statement of the lemma is equivalent to

hi − ε ≤ sup
1≤j≤m

(1/Nj) log |sj(x)| ≤ |hi(x)|, x ∈ K ∩ Ui, i = 1, . . . , l,

where | · | is the usual absolute value of a complex number. Let r ∈ (0, 1) and
let χr be the function in the class H+ on L′ associated with the metric r ·h.
For every r the set Ωr = {χr < 1} is a strictly pseudoconvex neighborhood
of the zero section in L′ (cf. [GF, VI.6.1]). Fix a point x0 ∈ K and ζ0 =
θ−1
i (x0, 1). Then |t| < χr(ζ0) if and only if (x0, t) ∈ Ω := Ωr. The function
f(t) =

∑∞
n=1(χr(ζ0))

ntn, |t| < 1/χr(ζ0), f(0) = 0, is holomorphic on the
analytic set (Ω ∩ L′x0

) ∪X and is identically 0 on X.
Let us consider the Remmert reduction of Ω (see [Gr, Theorem 1], or

[P, Theorem 2.7 and preceding discussion]). That is, we have a Stein space
Y and a proper surjective holomorphic map Φ : Ω → Y with the following
properties: (i) Φ has connected fibers; (ii) Φ∗(OΩ) = OY ; (iii) the canonical
map OY (Y )→ OΩ(Ω) is an isomorphism; (iv) if σ : Ω → Z is a holomorphic
map into a Stein space Z then there exists a uniquely determined holomor-
phic map τ : Y → Z such that τ ◦ Φ = σ. The map Φ blows down the zero
section of L′. Note that the set A = Φ(L′x0

∪X) = Φ(L′x0
) is analytic in Y

(by Remmert’s proper mapping theorem) and the function f̃(Φ(t)) := f(t)
is holomorphic on A (by property (ii) of Remmert’s reduction). Every ana-
lytic set in a complex space is the support of a closed complex subspace (cf.
[GR, A.3.5]), so we can apply Theorem V.4.4 of [GR] to conclude that the
function f̃ is the restriction to A of a function F̃ that is holomorphic on the
Stein space Y .

By the properties (ii) and (iii) above, there exists a function F holo-
morphic on Ω such that F̃ ◦ Φ = F . For t 6= 0 one can represent F
as F ◦ θ−1

i (x, t) =
∑∞

n=1 F
(i)
n (x)tn, with F

(i)
n holomorphic in Ui. We have

F ◦ θ−1
k (x, t) = F ◦ θ−1

i (x,Gik(x)t), which gives F (i)
n (x) = (gik(x))nF

(k)
n (x),

i.e., Fn are cocycles corresponding to holomorphic sections of the tensor
product Ln over Ωr.

Considering the domain of convergence of the representation for F ◦ θ−1
k ,

k = 1, . . . , l, we get lim supn→∞ |Fn(x)|1/n ≤ exp rh(x), x ∈ X. Let δ > 0.
By Hartogs’s lemma, there exists an nδ > 1 such that (1/n) log |Fn(x)| ≤
r ·h(x)+ δ, x ∈ K, n ≥ nδ. For the estimate from below, note that Fn(x0) =
χr(ζ0) = rh(x0) for all n. Since rh = r(v + ϕ) is continuous, there exists
an n0 ≥ nδ and a neighborhood Wx0 of x0 such that (1/n0) log |Fn0(x)| >
rh(x) − δ, x ∈ Wx0 . Compactness of K and suitable relations between ε, δ
and r give holomorphic sections satisfying the conclusion of the lemma.
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Proof of Theorem 3. We mimic the method of proof of Theorem 2.8(i)
in [Bl1]. Let u ∈ PSH(X,ω), u|K ≤ Q. By Theorem 7.1 in [GZ1], there is a
sequence uk ∈ PSH(X,ω) ∩ C∞(X) such that uk ↘ u. Let ε > 0. By Dini’s
theorem, there exists an integer k0 such that u(x) ≤ uk(x) ≤ Q(x)+ε for all
x ∈ K, k ≥ k0. By adding a small multiple of a local Kähler potential in some
coordinate neighborhood, we can assume that ddcuk + ω is strictly positive.
By the Approximation Lemma, there exist s(k)j ∈ Γ (X,LN

(k)
j ), j = 1, . . . ,mk,

such that

uk − 3ε ≤ sup
j=1,...,mk

log |exp(−2N (k)
j εs

(k)
j )|/N (k)

j ≤ (1/n) logΦn(x),

where n = maxj N
(k)
j , j = 1, . . . ,mk. Hence u − 4ε ≤ logΦ. The reverse

inequality is obvious, since (1/N) log ‖s‖Nϕ defines a positive singular metric
on L.

Under the assumptions of Theorem 3 we also have the following:

Proposition 8. Let Ψ(x) = limn→∞ ψn(x) = supn≥1 ψn(x), with

ψn(x) = sup{‖s‖nϕ(x), s ∈ Γ (X,Ln), sup◦
K

(exp(−nQ)‖s‖nϕ) ≤ 1}

and sup◦K(f) := inf{supK\P (f) : P ⊂ K, P is PSH(X,ω)-polar}. Then

V ∗K,ω,Q = (logΨK)∗.

The proof proceeds exactly like that of [Bl1, Theorem 2.8(ii)], provided
we have the domination principle on a compact Kähler manifold of dimension
N (cf. [Kl, Cor. 3.7.5 and Prop. 5.5.1], [BT1, Cor. 4.5], [Ta] for versions on
open subsets of CN ). In our proof we will assume that one of the functions is
in L∞(X), since this is the case we need. A more general version was recently
proved independently as Proposition 2.7 in [BB]. Proofs of the domination
principle rely on the comparison principle, which was established in [GZ2]
for the class of functions E(X,ω) defined therein, which contains L∞(X) (cf.
also [Ko1], [Ko2], [HKH] for proofs in the case of L∞-functions on manifolds).
Recall the following result, which allows us to apply the comparison and
domination principles in the weighted theory:

Proposition 9. If K is not PSH(X,ω)-polar and Q is continuous, then
V ∗K,ω,Q ∈ PSH(X,ω) ∩ L∞(X). In particular , the complex Monge–Ampère
operator (ωVK,Q

)n is well defined and satisfies (ωVK,Q
)N = 0 in X \K.

Proof. The proof proceeds as that of [GZ1, Theorem 4.2.2], and uses
Proposition 2.

Now we may state and prove the required domination principle.
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Theorem 4 (Domination principle). Let u, v ∈ PSH(X,ω) with v ∈
L∞(X) be such that �

{u<v}

(ω + ddcu)N = 0.

Then u ≥ v in X.

Proof. The following argument was communicated to us by Ahmed Ze-
riahi. It is enough to prove that u ≥ v on a set of full ω-volume in X.
We can assume that v is negative everywhere on X. Then for all s, t > 0,
{u− v ≤ −s− t} ⊂ {u− v ≤ −s− tv}, which for small t is still a subset of
{u− v < 0}. Then, by Lemma 2.2 in [EGZ],

0 =
�

{u−v<−s−tv}

(ω + ddcu)N ≥ tNCap{u− v ≤ −s− t},

where Cap is the Monge–Ampère capacity defined in [Ko1] (see also [GZ1,
Definition 2.4]. Proposition 2.5(1) in [GZ1] implies that Vol{u− v ≤ −s− t}
= 0 for s, t > 0, t small, hence Vol{u− v < 0} = 0.

In Section 1 we referred to the definition of “polynomial convexity” with
respect to a positive closed current ω of bidegree (1, 1) on a complex manifold
X introduced in [Gu]. When X is projective algebraic and [ω] = [c1(L)],
ω = ddcφ for a positive holomorphic line bundle L over X, this definition is
equivalent to the following one:

Definition 3 ([Gu, Definition 3.1 and Proposition 3.2]). Let K be a
compact subset of X. The ω-polynomial hull of K is

K̂ω = {x ∈ X : ‖s‖nφ(x) ≤ sup
K
‖s‖nφ ∀s ∈ Γ (X,Ln) ∀n ∈ N}.

Directly from Theorem 3 we obtain the following:

Corollary 3. For every compact K ⊂ X and for every mild function
Q on X we have

VK,Q,ω = V bKω ,Q,ω
.

Finally, we are interested in how weighted pluricomplex Green functions
change under a holomorphic map f : X → X, where X is a compact Käh-
ler manifold (not necessarily projective algebraic) with a closed real (1, 1)-
current ω on X with continuous local potentials (not necessarily a Kähler
form). Proposition 4.4.5 in [GZ1] states that if f : X → X is holomorphic,
and K ⊂ X is a Borel set, then Vf(K),ω ◦ f ≤ VK,f∗ω. The proof applies also
to the weighted pluricomplex Green function and gives the following:

Proposition 10. Let X,ω,K be as above and let Q be a mild function
on X. Then Vf(K),ω,Q ◦ f ≤ VK,f∗ω,Q◦f in X.
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Below, we establish a relation between the pullback of VK,ω,Q by a sur-
jective holomorphic map f : X → X and V

f−1(K),ω, eQ with an appropriate

function Q̃. For a function u : X → R ∪ {−∞} let us define f∗u(x) =
sup{u(y) : y ∈ f−1(x)}. This is a well-defined function, since f−1(x) is com-
pact. Also, let f∗u = u ◦ f . The following theorem generalizes Theorem 2.12
in [Bra] and Theorem 1 in [St1] (it yields both as special cases):

Theorem 5. Assume that there exist α and β, 1 < α ≤ β, such that

αf∗(PSH(X,ω)) ⊂ PSH(X,ω), f∗(PSH(X,ω)) ⊂ β · PSH(X,ω).

Then for every Borel set K ⊂ X and every mild function Q on X,

αVf−1(K),ω,f∗Q/α(x) ≤ VK,ω,Q ◦ f(x) ≤ βVf−1(K),ω,f∗Q/β.

Proof. Let u ∈ PSH(X,ω) be such that αu ≤ f∗Q on f−1(K). Then
v = αf∗u is in PSH(X,ω) and satisfies v ≤ Q on X. Moreover, αu(x) ≤
v(f(x)) ≤ VK,ω,Q(f(x)), which gives the first inequality. For the second
one, if u ∈ PSH(X,ω) satisfies u ≤ Q on K, then by assumption (1/β)f∗u
is in PSH(X,ω) and (1/β)f∗u ≤ (1/β)f∗Q on f−1(K), which gives the
conclusion.

On X = CPN , the assumptions of Theorem 5 are equivalent to assump-
tions about growth of f made in Theorem 2.12 in [Bra] or its unweighted
counterpart, Theorem 5.3.1 in [Kl]. Details may be found in Theorem 1 in
[St1] and its proof. The main theorem in [St2] has conditions equivalent to
the assumption αf∗PSH(X,ω) ⊂ PSH(X,ω) when X ↪→ CPN is a projec-
tive algebraic manifold and ω is the pullback of the Fubini–Study form by
the embedding ↪→. One of the conditions is that f has an attracting divisor
in X, so in fact the assumption is quite strong.
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