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Complete pluripolar graphs in CN

by Nguyen Quang Dieu and Phung Van Manh (Hanoi)

Abstract. Let F be the Cartesian product of N closed sets in C. We prove that there
exists a function g which is continuous on F and holomorphic on the interior of F such that
Γg(F ) := {(z, g(z)) : z ∈ F} is complete pluripolar in CN+1. Using this result, we show
that if D is an analytic polyhedron then there exists a bounded holomorphic function
g such that Γg(D) is complete pluripolar in CN+1. These results are high-dimensional
analogs of the previous ones due to Edlund [Complete pluripolar curves and graphs, Ann.
Polon. Math. 84 (2004), 75–86] and Levenberg, Martin and Poletsky [Analytic disks and
pluripolar sets, Indiana Univ. Math. J. 41 (1992), 515–532].

1. Introduction. One of traditional problems in complex analysis is the
question of holomorphic propagation, like for instance finding the maximal
holomorphic object containing a given one. For example, let f be a holo-
morphic function defined on a domain D in CN ; we search for its holomor-
phic continuation on a larger domain. A natural counterpart of holomorphic
propagation in pluripotential theory is the theory of pluripolar hull. We now
recall briefly some elements of pluripotential theory leading to the concept
of pluripolar hull.

An upper semicontinuous function u, u 6≡ −∞, defined on a domain D ⊂
CN is said to be plurisubharmonic if, for every complex line l, the restriction
of u to each connected component of D ∩ l is either a subharmonic function
or identically equal to −∞. A subset E of D is said to be pluripolar if locally
E is included in the −∞ locus of plurisubharmonic functions. According to
a well-known result of Josefson, every pluripolar set E is contained in the
singular locus of some global plurisubharmonic function u on CN .

Given a pluripolar subset E of D, following Poletsky and Levenberg [8]
we define the pluripolar hull of E relative to D as follows:

E∗D := {z ∈ D : ∀u ∈ PSH(D), u|E ≡ −∞⇒ u(z) = −∞}.
Here PSH(D) denotes the cone of plurisubharmonic functions on D. It is
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clear that E∗D is pluripolar. It is also obvious that if E is complete pluripolar
in D, i.e. E coincides with the −∞ locus of an element u ∈ PSH(D), then
E∗D = E. Conversely, Zeriahi proved in [11] that if E∗D = E with E being
Fσ and Gδ and D being pseudoconvex, then E must be complete pluripolar
in D. Recall that a domain D ⊂ CN is said to be pseudoconvex if D admits
a plurisubharmonic exhaustion function.

This article focuses on the problem of constructing functions defined on a
given set such that their graphs are complete pluripolar. In the univariate case,
let∆ be the unit disk in C; Levenberg, Martin and Poletsky [7], continuing the
work of Sadullaev [10], showed that if f(z) =

∑
k≥0 an(k)z

n(k) is a gap series
with radius of convergence 1 and with gaps satisfying limk→∞ n(k)/n(k+ 1)
= 0, then Γf (∆) is complete pluripolar in C2. In this paper, for a subset X
of CN and a function f defined on X, the graph of f over X is defined by

Γf (X) := {(z, f(z)) : z ∈ X}.
Moreover, in the case where the gap series satisfy some additional conditions,
Γf (∆) is also complete pluripolar. Edlund [5] generalized the latter result.
More precisely, he showed that if F is a nonempty closed set in the complex
plane, then there exists a continuous function f on F such that Γf (F ) is com-
plete pluripolar inC2. Using the method of Edlund, we construct a continuous
function g defined on the Cartesian product F of N univariate closed sets
such that ΓF (g) is complete pluripolar. Moreover, the function can be chosen
to be holomorphic in the interior of F . It is our first main result, Theorem 2.1.

The second result, Theorem 2.2, is a generalization of the above-mentioned
theorem of Levenberg, Martin and Poletsky. Namely, for any connected an-
alytic polyhedron D ⊂ CN we construct a holomorphic function g on D
such that Γg(D) is complete pluripolar in CN+1. For the proof, we first use
Theorem 2.1 to get a holomorphic function h on ∆k continuous up to the

boundary such that Γh(∆
k
) is complete pluripolar in Ck+1. Next we let g be

the composition of h with the analytic mapping that defines D as an analytic
polyhedron. Then by a theorem of Colţoiu on the equivalence between closed
locally complete pluripolar sets and closed globally complete pluripolar sets,
we conclude that Γg(D) is complete pluripolar in CN+1. Finally, we invoke
a version of [4, Theorem 4.6] to conclude that the pluripolar hull of Γg(D) is
disjoint from the cylinder ∂D×C. So by Zeriahi’s theorem we get complete
pluripolarity of Γg(D) in CN+1.

The next main result of the paper concerns the problem of determining
the pluripolar hull. For a simple explicit example of pluripolar hull, we can
take E = 0 × {|z| = 1} ⊂ C2 and D = C2. Then it is easy to check, using
the fact that the circle |z| = 1 is non-polar in C, that the pluripolar hull is
E∗D = {0} × C. Nevertheless, given a pluripolar set E ⊂ D, it is quite hard
in general to determine E∗D. A typical object in the study of pluripolar hull
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is the graph Γf (D) of a holomorphic function f over a domain D ⊂ CN .
Using techniques from pluripotential theory, Edigarian and Wiegerinck [4]
completely solved the problem of describing the pluripolar hull of {(z, f(z)) :
z ∈ D \ E} in D × C where E is a closed polar subset of a domain D in C
and f is holomorphic on D \E. They proved in [4, Theorem 5.10] that, for
all z0 ∈ E, (Γf (D\E))∗D×C intersects the line {z0}×C in at most one point.
Later using the rapidly convergent method, Poletsky and Wiegerinck [9,
Theorem 3.6] constructed a Cantor compact set K ⊂ C and a holomorphic
function f on D := C \ K such that (Γf (D))∗C2 is two-sheeted over D.
Other examples of holomorphic functions with multiple sheeted pluripolar
hulls can be found in [2], [3] and [6]. Motivated by the above-mentioned
results, we want to determine the additional points of the pluripolar hull of
graphs. In Proposition 3.3, we prove that if f is a holomorphic function on a
domain D ⊂ C such that the complement of Γf (D) in (Γf (D))∗C2 ∩ (D×C)
is contained in A×C where A is a countable set, then (Γf (D))∗C2∩(D×C) =
Γf (D). We suspect that the above result is true in a more general context
where D is a domain in CN and A is a pluripolar subset of D. However, our
methods only give this partial result.

2. Graphs of continuous functions and holomorphic functions.
The main results of this section are the following generalizations of the
theorems due to Edlund [5] and Levenberg, Martin and Poletsky [7].

Theorem 2.1. Let F1, . . . , FN be non-empty closed subsets of C and
F = F1×· · ·×FN . Then there exists a function g which is continuous on F
and holomorphic on the interior of F such that Γg(F ) is complete pluripolar
in CN+1.

Theorem 2.2. Let Ω be a domain in CN and D be a connected analytic
polyhedron relatively compact in Ω, i.e.

D := {z ∈ Ω : |f1(z)| < 1, . . . , |fk(z)| < 1},
where f1, . . . , fk are holomorphic on Ω. Then there exists a function g such
that

(i) g is continuous on D and holomorphic on D,
(ii) Γg(D) and Γg(D) are complete pluripolar in CN+1.

Since the interior of the set F described in Theorem 2.1 and the do-
main D given in Theorem 2.2 are pseudoconvex, it is plausible to make the
following

Conjecture. Let D be a bounded open pseudoconvex subset of CN .
Then there exists a continuous function g on D which is holomorphic on D
and such that Γg(D) is complete pluripolar in CN+1.
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For the proof of Theorem 2.1, we will rely on the method given in [5]; in
that article the case N = 1 was considered. It is convenient to first present
some technical lemmas, in which we always assume that Fm is a proper closed
subset of C for every 1 ≤ m ≤ N . More precisely, for each 1 ≤ m ≤ N ,
we choose a sequence of distinct points Tm = {βmj}∞j=1 ⊂ C \ Fm and a
sequence {rmj}∞j=1 of radii such that

(1) rmj < 1 for all j ≥ 1 and rmj ≤ rm1 for all j > 1;
(2) for each compact set K ⊂ C \ Fm, there exist finitely many (open)

disks ∆(βmj , rmj) intersecting K;
(3)

⋃∞
j=1∆(βmj , rmj) = C \ Fm.

Let us choose positive constants Ck such that

Ck > max{|βmj | : 1 ≤ m ≤ N, 1 ≤ j ≤ k}+ k ∀1 ≤ m ≤ N,

and choose an increasing sequence {nj}∞j=1 of natural numbers with the
following properties:

(4) nj+1 ≥ j3nj for all j ≥ 1;
(5) the series

∑∞
k=1(knk/nk+1) logCk is convergent;

(6) the series
∑∞

k=1(nk/nk+1) logDmk is convergent for allm = 1, . . . , N ,

where Dmk =
∏k
i=1 dist(βmi, Fm) and dist(βmi, Fm) is the Euclidean

distance from βmi to Fm.

Put

(2.1) a
(m)
1j = (rm1(1−1/j))nj , a

(m)
ij = (a

(m)
1i )j(rmi(1−1/j))nj for i > 1.

It is easy to see that log a
(m)
ij = njO(1) as j →∞. Thanks to (4), we obtain

(2.2)

∞∑
k=1

log a
(m)
ik

nk+1
> −∞, ∀i ≥ 1, ∀1 ≤ m ≤ N.

We define the following polynomials and rational functions:

qmk(ξ) =
k∏
i=1

(ξ − βmi)nk , fmk(ξ) =

k∑
i=1

k∑
j=1

a
(m)
ij

(ξ − βmi)nj
, ξ ∈ C, k ≥ 1.

Now we present several results of Edlund [5] that are useful for proving
our main theorems.

Lemma 2.3. The function fm defined by

(2.3) fm(ξ) =
∞∑
i=1

∞∑
j=1

a
(m)
ij

(ξ − βmi)nj
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is continuous and bounded on Fm. Moreover the estimate

(2.4) |fm(ξ)− fmk(ξ)| ≤ 8k

(
1− 1

k + 1

)nk+1

holds uniformly for ξ ∈ Fm for all sufficiently large natural numbers k. In
particular, fm is holomorphic on the interior of Fm.

Proof. The above facts are basically contained in Lemma 4 of [5]. It
remains to check boundedness of fm on Fm. We set

(2.5) ã1j = (1− 1/j)nj , ãij = (ã1i)
j ã1j for i > 1.

Fix ξ ∈ Fm; then rmi/|ξ − βmi| < 1. Combining (2.1) and (2.3) we obtain

|f(ξ)| ≤
∞∑
i=1

∞∑
j=1

ãij =
∞∑
j=1

ã1j +
∞∑
i=2

∞∑
j=1

(ã1i)
j ã1j(2.6)

=

∞∑
j=1

ã1j

(
1 +

∞∑
i=2

(ã1i)
j
)
.

Since ni ≥ i3 for all i ≥ 1,
∑∞

i=2 ã
j
1i converges to σj > 0 for all j ≥ 1.

Moreover, the sequence {σj} is decreasing. Hence,

(2.7) |f(ξ)| ≤
∞∑
j=1

ã1j(1 + σj) ≤ (1 + σ1)

∞∑
j=1

ã1j <∞.

The result below is essentially Lemma 5 in [5].

Lemma 2.4. If ξ ∈ C \ (Tm ∪ Fm), then |fmk(ξ)| → ∞ as k →∞.

In the next lemma, the first part comes from [5, proof of Lemma 6]. The
second one follows directly from the definition of Dmk and the observation
that |ξ − βmi| ≥ dist(βmi, Fm) for all ξ ∈ Fm. The last two assertions are
shown in [5, Lemma 7]. Note also that (d) follows directly from the inequality
|ξ − βmi| > γξ > 0 for all i, given in [5, p. 83].

Lemma 2.5.

(a) For r > 0, |ξ| < r and sufficiently large k,

|qmk(ξ)| ≤ (Ck)
knk and |qmk(ξ)fmk(ξ)| ≤ k2(Ck)knk .

(b) If ξ ∈ Fm, then

|qmk(ξ)| ≥ (Dmk)
nk .

(c) If ξ = βmi ∈ Tm, then there exists δξ > 0 that is independent of k
and such that

|qmk(ξ)fmk(ξ)| ≥ a
(m)
ik (δξ)

(k−1)nk

for all sufficiently large k.
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(d) If ξ ∈ C \ (Tm ∪ Fm), then there exists γξ > 0 that is independent of
k and such that

|qmk(ξ)| ≥ (γξ)
knk .

Since the sequence {fmk} of continuous functions converges uniformly on
Fm to fm as k → ∞, and fm is bounded on Fm, we can choose a constant
M > 0 such that

(2.8) ‖fm‖ := sup
ξ∈Fm

|fm(ξ)| ≤M − 1, ‖fmk‖ := sup
ξ∈Fm

|fmk(ξ)| ≤M − 1,

for all m = 1, . . . , N and k = 1, 2, . . . . Let Pk denote the polynomial

(2.9) Pk(z, w) =

N∏
m=1

qmk(zm)
( N∏
m=1

(fmk(zm) +M)− w
)
, z=(z1, . . . , zN ).

Then
uk(z, w) :=

1

nk+1
log |Pk(z, w)|

is a plurisubharmonic function on CN+1.

Lemma 2.6. The function u defined by

(2.10) u(z, w) =

∞∑
k=1

max{uk(z, w),−1}, z ∈ CN , w ∈ C,

is a plurisubharmonic function on CN+1. Moreover, if uk(z, w) ≥ αk for all
k ≥ k0 and

∑∞
k=k0

αk is convergent, then u(z, w) > −∞.
Proof. We first claim that for all r > 0, the series in (2.10) converges

on the polydisk ∆N+1(0, r) to a plurisubharmonic function. For (z, w) ∈
∆N+1(0, r), using Lemma 2.5(a) we have, when k is sufficiently large,∣∣∣w N∏

m=1

qmk(zm)
∣∣∣ ≤ r(Ck)Nknk

and

|qmk(zm)(fmk(zm) +M)| ≤ (M + k2)(Ck)
knk , 1 ≤ m ≤ N.

Hence

uk(z, w) ≤ log(r + (r + k2)N )

nk+1
+N

knk logCk
nk+1

, k ≥ k0.

The two series corresponding to the two terms on the right hand side are
convergent in view of the conditions (4) and (5). The claim follows.

Now, the first assertion of the lemma is a consequence of the definition
of u. For the second one, we see that limk→∞ αk = 0. Thus

max{uk(z, w),−1} ≥ max{αk,−1} = αk

for all sufficiently large k. Hence u(z, w) ≥ const +
∑∞

k=k1
αk > −∞.
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Now, we set

(2.11) gk(z) =
N∏
m=1

(fmk(zm) +M), g(z) =
N∏
m=1

(fm(zm) +M), z ∈ F.

Note that g is continuous on F and holomorphic on the interior of F . We
will prove that Γg(F ) is complete pluripolar in CN+1. To this end, we need
to estimate the error between g and its partial sum gk.

Lemma 2.7. The estimate

(2.12) |g(z)− gk(z)| ≤ 8N(2M)N−1k

(
1− 1

k + 1

)nk+1

holds uniformly for z ∈ F for all sufficiently large k.

Proof. Using (2.8) we get

|fmk(zm)+M |<2M, |fm(zm)+M |<2M, ∀m = 1, . . . , N, k ≥ 1, zm∈Fm.

Hence, Lemma 2.3 yields

|g(z)− gk(z)| =
∣∣∣ N∏
m=1

(fm(zm) +M)−
N∏
m=1

(fmk(zm) +M)
∣∣∣

≤
N∑
m=1

(∣∣∣m−1∏
i=1

(fi(zi) +M)
∣∣∣

×|fm(zm)− fmk(zm)|
N∏

i=m+1

(fik(zi) +M)|
)

≤ (2M)N−1
N∑
m=1

|fm(zm)− fmk(zm)|

= 8N(2M)N−1k

(
1− 1

k + 1

)nk+1

.

Proof of Theorem 2.1. First, we assume that Fm is a proper subset of C
for all m = 1, . . . , N . Let g be the function defined in (2.11). We will prove
that the graph of g over F is complete pluripolar in CN+1. More precisely,
we will show

Γg(F ) = {(z, w) ∈ CN+1 : u(z, w) = −∞}.

Here u is the function constructed in Lemma 2.6. The proof is divided into
several steps.

Step 1: We prove that u(z, g(z)) = −∞ for all z ∈ F . Using Lemmas
2.5(a) and 2.7 we obtain the following estimates for uk(z, g(z)) when k is
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large enough:

uk(z, g(z)) =
1

nk+1
log
∣∣∣ N∏
m=1

qmk(zm)(gk(z)− g(z))
∣∣∣

≤ 1

nk+1
log

(
(Ck)

Nknk

[
8N(2M)N−1k

(
1− 1

k + 1

)nk+1
])

=
log(8N(2M)N−1k)

nk+1
+N

knk logCk
nk+1

+ log

(
1− 1

k + 1

)
.

Therefore, there exists a natural number k0 such that

u(z, g(z)) ≤ const +
∞∑

k=k0

max

{
log(8N(2M)N−1k)

nk+1

+N
knk logCk
nk+1

+ log

(
1− 1

k + 1

)
,−1

}
≤ const +

∞∑
k=k0

(
log(8N(2M)N−1k)

nk+1
+N

knk logCk
nk+1

)

+
∞∑

k=k0

max

{
log

(
1− 1

k + 1

)
,−1

}
= −∞.

Here we use the inequality max{a+ t,−1} ≤ a+ max{t,−1} for a > 0. The
middle series converges by (4) and (5), whereas the last one is divergent
to −∞.

Step 2: We show that u(z, w) > −∞ for z ∈ F and w 6= g(z). Indeed,
since

|gk(z)− w| ≥ |g(z)− w| − |gk(z)− g(z)|,

we can choose δ > 0 and k0 > 0 such that

(2.13) |gk(z)− w| ≥ δ, ∀k ≥ k0.

Combining (2.13) with Lemma 2.5(b) we obtain

uk(z, w) =
1

nk+1
log
∣∣∣ N∏
m=1

qmk(zm)(gk(z)− w)
∣∣∣

≥ 1

nk+1
log
(
δ

N∏
m=1

(Dmk)
nk

)
=

log δ

nk+1
+

N∑
m=1

nk
nk+1

logDmk.

Thanks to (4) and (6), the two series corresponding to the last two terms
above are convergent. Thus Lemma 2.6 implies that u(z, w) > −∞.
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Step 3: For w ∈ C and z = (z1, . . . , zN ) /∈ F such that zm ∈ Tm
for some m, we will verify that u(z, w) > −∞. Let us partition the set
{1, . . . , N} into three parts I1, I2, I3 by setting

I1 = {m : zm ∈ Tm}, I2 = {m : zm∈Fm}, I3 = {m : zm∈ C\(Fm∪Tm)}.
Note that I1 is non-empty, but I2 and I3 may be empty. Next, we will find
a lower bound of the polynomial

|qmk(zm)(fmk(zm) +M)|
separately for m belonging to I1, I2, I3 .

For m ∈ I1, there exists im ≥ 1 such that zm = βmim . Hence qmk(zm) = 0
for sufficiently large k, say k ≥ k0. By Lemma 2.5(c) we can choose δzm > 0
so that

|qmk(zm)(fmk(zm) +M)| = |qmk(zm)fmk(zm)|(2.14)

≥ a(m)
imk

(δzm)(k−1)nk , k ≥ k0.

Since I1 6= ∅, the product w
∏N
m=1 qmk(zm) contains at least one vanishing

factor. Thus

(2.15) w

N∏
m=1

qmk(zm) = 0, k ≥ k0.

Next we treat the case m ∈ I2. Since ‖fmk‖ := sup{|fmk(zm)| : zm ∈ Fm}
≤M−1, we have |fmk(zm)+M | ≥ 1 for all k ≥ 1. Now using Lemma 2.5(b)
again, we obtain

(2.16) |qmk(zm)(fmk(zm) +M)| ≥ |qmk(zm)| ≥ (Dmk)
nk .

Finally, if m ∈ I3, then Lemma 2.4 gives |fmk(zm)| → ∞ as k → ∞. Thus
|fmk(zm) + M | ≥ 1 for all k ≥ k1. Now, Lemma 2.5(d) implies that there
exists γzm > 0 such that

(2.17) |qmk(zm)(fmk(zm) +M)| ≥ |qmk(zm)| ≥ (γzm)knk , ∀k ≥ k1.
Collecting the above estimates, we get, for all k ≥ max(k0, k1),

uk(z, w) =
1

nk+1
log
∣∣∣ N∏
m=1

qmk(zm)(gk(z)− w)
∣∣∣

=
1

nk+1
log
∣∣∣ N∏
m=1

(qmk(zm)(fmk(zm) +M))
∣∣∣

≥ 1

nk+1
log
( ∏
m∈I1

a
(m)
imk

(δzm)(k−1)nk ·
∏
m∈I2

(Dmk)
nk ·

∏
m∈I3

(γzm)knk

)
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=
∑
m∈I1

(
a
(m)
imk

nk+1
+

(k − 1)nk
nk+1

log δzm

)
+
∑
m∈I2

nk
nk+1

logDmk +
∑
m∈I3

knk
nk+1

log γzm

:= αk,

where we use (2.15) to get the second equality, and (2.14), (2.16) and (2.17)
to get the inequality. Moreover, using (4), (6) and (2.2) we deduce that∑∞

k=max(k0,k1)
αk <∞. Therefore, Lemma 2.10 implies that u(z, w) > −∞.

Step 4: We will prove that if w ∈ C and z /∈ F is such that zm /∈ Tm
for all m = 1, . . . , N , then u(z, w) > −∞. Indeed, proceeding as in Step 3,
we divide the set {1, . . . , N} into

J1 = {m : zm ∈ Fm}, J2 = {m : zm ∈ C \ (Fm ∪ Tm)}.
Notice that J2 6= ∅. Using the same arguments as in Step 3, we get
|fmk(zm) +M | ≥ 1 for all m ∈ I1, but |fmk(zm) +M | → ∞ for all m ∈ I2.
Therefore we can take k0 such that

|gk(z)− w| ≥
N∏
m=1

|fmk(zm) +M | − |w|

=
∏
m∈J1

|fmk(zm) +M |
∏
m∈J2

|fmk(zm) +M | − |w| ≥ 1, ∀k ≥ k0.

On the other hand, if m ∈ J1, then

|qmk(zm)| ≥ (Dmk)
nk ,

and if m ∈ J2, then we can choose γzm > 0 so that

|qmk(zm)| ≥ (γzm)knk .

Hence, we obtain for all k ≥ k0 the following estimates:

uk(z, w) =
1

nk+1
log
( k∏
m=1

|qmk(zm)| |gk(z)− w|
)

≥ 1

nk+1
log
( ∏
m∈J1

(Dmk)
nk ·

∏
m∈J2

(γzm)knk

)
=
∑
m∈J1

nk
nk+1

logDmk +
∑
m∈J2

(log γzm)
knk
nk+1

.

Again by the same reasoning as in Step 3, we have u(z, w) > −∞. This step
finishes the proof of the special case when Fm is a proper subset of C for all
m = 1, . . . , N .



Complete pluripolar graphs in CN 95

Next, we treat the general case. The assertion is trivial if Fm = C for all
m = 1, . . . , N . Assume that F1, . . . , Fm are proper closed subsets of C and
Fm+1 = · · · = FN = C. By the special case considered above, we can find
a function h defined on F1 × · · · × Fm such that ΓF1×···×Fm(h) is complete
pluripolar in Cm+1. Thus there exists v ∈ PSH(Cm+1) such that

ΓF1×···×Fm(h) = {(z1, . . . , zm, w) ∈ Cm+1 : v(z1, . . . , zm, w) = −∞}.

The function g defined on F by g(z1, . . . , zN ) = h(z1, . . . , zm) is continuous
on F and holomorphic on the interior of F . On the other hand, the function
ṽ(z1, . . . , zN , w) = v(z1, . . . , zm, w) is in PSH(CN+1). We easily check that

ΓF (g) = {(z, w) ∈ CN+1 : ṽ(z, w) = −∞}.

Thus ΓF (g) is complete pluripolar in CN+1. This completes the proof of
Theorem 2.1.

For the proof of Theorem 2.2, we need the following fact whose proof
will be postponed until the end of this paper.

Lemma 2.8. Let E be an Fσ pluripolar subset of Cn and let F be a
holomorphic mapping from an open neighborhood U of E∗Cn to C such that
F (E) ⊂ ∆ and F (E∗Cn) ⊂ ∆. Then F (E∗Cn) ⊂ ∆.

Proof of Theorem 2.2. We have

D = {z ∈ Ω : |f1(z)| < 1, . . . , |fk(z)| < 1},

where f1, . . . , fk are holomorphic on Ω. According to Theorem 2.1, we can

find a continuous function h on ∆k, holomorphic on ∆k, such that Γh(∆
k
) is

complete pluripolar in Ck+1. Let F := (f1, . . . , fk) and g := h◦F . Obviously,
g is continuous on D and holomorphic on D. We will show that X := Γg(D)
is complete pluripolar in CN+1.

To see this, we first claim that X = Γg(D) is complete pluripolar in
CN+1. Indeed, let u be a plurisubharmonic function on Ck+1 such that

u = −∞ precisely on Γh(∆
k
). Consider ϕ(z, w) := u(F (z), w). Then ϕ is

plurisubharmonic on Ω×C and ϕ = −∞ exactly on X. Since X is closed in
CN+1, by a result of Colţoiu [1] about equivalence between locally complete
pluripolarity and globally complete pluripolarity, we see that X is complete
pluripolar in CN+1. This proves the claim.

Next, we show X∗CN+1 = X. By the above reasoning X∗CN+1 ⊂ X. For
every 1 ≤ j ≤ k, consider the map Fj : Ω × C→ C defined by

Fj(z1, . . . , zN , w) = fj(z1, . . . , zN ).

Then Fj is holomorphic on an open neighborhood of X∗CN+1 and

Fj(X
∗
CN+1) ⊂ Fj(X) ⊂ ∆.
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Observe that Fj(X) ⊂ ∆, so we may apply Lemma 2.8 to conclude that

Fj(X
∗
CN+1) ⊂ ∆.

Since this is true for every 1 ≤ j ≤ k, we infer X∗CN+1 = X.

Since X = X \ Γg(∂D) and Γg(∂D) is closed we deduce that X is a Gδ
set. Finally, since X is also Fσ, we apply Zeriahi’s theorem to conclude that
X is complete pluripolar in CN+1. The proof of Theorem 2.2 is complete.

Remark. If D is a simply connected, proper subdomain in C with real
analytic boundary, then by Riemann’s mapping theorem we can find a bijec-
tive holomorphic map f from D onto ∆. Since D has real analytic boundary,
the map f extends to a larger neighborhood Ω of D. Thus D is a connected
analytic polyhedron in Ω, and so by Theorem 2.2 we can find a continuous
function g on D which is holomorphic on D and such that Γg(D) and Γg(D)
are complete pluripolar in C2.

3. The pluripolar hulls of graphs. We recall some major tools that
will be used in the study of pluripolar hulls. According to Levenberg and
Poletsky [8], the negative pluripolar hull E−D of a pluripolar set E ⊂ D is
defined by

E−D =
⋂
{z ∈ D : u(z) = −∞ if u ∈ PSH(D), u < 0, u|E = −∞}.

The following result (Theorem 2.4 in [8]) gives a relation between the pluri-
polar hull and the negative pluripolar hull.

Theorem 3.1. Let D be a pseudoconvex domain in Cn. Let {Dj} be an
increasing sequence of relatively compact subdomains with

⋃∞
j=1Dj = D.

Let E ⊂ D be pluripolar. Then

E∗D =

∞⋃
j=1

(E ∩Dj)
−
Dj
.

Now for every subset E of D we define the pluriharmonic measure of E
relative to D by

ω(z, E,D) = − sup
{
u(z) : u ∈ PSH(D), u ≤ 0 on D

and lim sup
D3ξ→w

u(ξ) ≤ −1 for w ∈ E
}
, z ∈ D.

The following connection between the pluriharmonic measure and negative
pluripolar hull is again due to Levenberg and Poletsky [8]:

(3.1) E−D = {z ∈ D : ω(z, E,D) > 0}.
The estimate of pluriharmonic measures given below, due to Levenberg and
Poletsky (Lemma 3.4 in [8]), is useful in studying pluripolar hulls.
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Lemma 3.2. Let D ⊂⊂ G be a domain in Cn. Let E ⊂ D be compact,
and let V be a domain in G that contains a point z ∈ D and does not
intersect E. Let K = ∂V ∩D. Then there exists a point w ∈ K such that

ω(z, E,D) ≤ ω(w,E,G).

The following proposition is the main result of this section.

Proposition 3.3. Let D be a domain in C and f be holomorphic on D.
Assume that there exists a countable subset A of D satisfying

(Γf (D))∗C2 ∩ (D × C) ⊂ Γf (D) ∪ (A× C).

Then (Γf (D))∗C2 ∩ (D × C) = Γf (D).

For the proof, we first need the following

Lemma 3.4. Let f be a holomorphic function on a bounded domain D
in C. Assume that there exists a polar subset E of D such that

(Γf (D))∗C2 ∩ (D × C) ⊂ Γf (D) ∪ (E × C).

Let (z0, w0) ∈ (Γf (D))∗C2 \ Γf (D) with z0 ∈ E, w0 6= f(z0). Then for every
neighborhood U of z0 in C we can find z′ ∈ E ∩ U , z′′ ∈ U \ {z′} such that
(z′, f(z′′) ∈ (Γf (D))∗C2 and f(z′) 6= f(z′′).

Proof. Choose a closed disk S in D such that z0 6∈ S. For j ≥ 1 we set

∆2
j := {(z, w) ∈ C2 : |z| < j, |w| < j}.

Then from Theorem 3.1 we get the relation

(z0, w0) ∈ (Γf (D))∗C2 = (Γf (S))∗C2 =
⋃
j≥1

(Γf (S) ∩∆2
j )
−
∆2

j
.

So we can choose j0 so large that the following properties hold:

(1) Γf (S) ⊂ ∆2
j0
, D b {|z| < j0};

(2) (z0, w0) ∈ (ΓS(f))−
∆2

j0

.

Since z0 6∈ S, we see that E is polar, and since f is non-constant, we can
choose an open disk D′ around z0 satisfying the following conditions:

(3) D′ ∩ S = ∅, w0 6∈ f(D′);
(4) ∂D′ ∩ E = ∅;
(5) f(z0) 6∈ f(∂D′).

In view of (5) we can choose another disk D′′ b D′ such that z0 ∈ D′′,
f(∂D′) ∩ f(D′′) = ∅ and ∂D′′ ∩ E = ∅.

Now we consider the open set

V := D′′ × {{w ∈ C : |w| < j0 + 1} \ f(D′)}.
It follows from (3) that (z0, w0) ∈ V and V ∩ Γf (S) = ∅. So we may apply

Lemma 3.2 to obtain a point ξ = (ξ1, ξ2) ∈ (∂V ) ∩∆2
j0
⊂ (∂V ) ∩∆2

j0
such
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that
0 < ω((z0, w0), ΓS(f), ∆2

j0) ≤ ω(ξ, ΓS(f), ∆2
j0+1);

here we use (2) and (3.1) to get the first inequality. Hence, we may use
Theorem 3.1 and get

ξ ∈ (Γf (S))−
∆2

j0+1
⊂ (Γf (S))∗C2 = (Γf (D))∗C2 .

Since ξ1 ∈ D, in view of our assumption we have

ξ ∈ ((∂V ) ∩∆2
j0

) ∩ (Γf (D) ∪ (E × C)).

It is easy to see that ∂V = A1 ∪A2 ∪A3 where

A1 = ∂D′′ × ({w ∈ C : |w| < j0 + 1} \ f(D′)),

A2 = ∂D′′ × ({w ∈ C : |w| = j0 + 1} ∪ f(∂D′)),

A3 = D′′ × ({w ∈ C : |w| = j0 + 1} ∪ f(∂D′)).

Since ∂D′′ ∩ E = ∅, we find that A1 ∩ (E × C) = ∅. This implies

A1 ∩ (Γf (D) ∪ (E × C)) = ∅.
In the same way, we have

A2 ∩∆2
j0

= (∂D′′ × f(∂D′)) ∩∆2
j0
.

Using the facts that f(∂D′) ∩ f(D′′) = ∅ and ∂D′′ ∩ E = ∅ we obtain

A2 ∩ (Γf (D) ∪ (E × C)) = ∅.
Now we observe that

A3 ∩∆2
j0

= (D′′ × f(∂D′)) ∩∆2
j0
.

Since f(∂D′) ∩ f(D′′) = ∅, we have (D′′ × f(∂D′)) ∩ Γf (D) = ∅.
Putting all this together we deduce that

ξ ∈ (D′′ × f(∂D′)) ∩ (E × C).

This means that ξ1 ∈ D′′ ∩ E and ξ2 = f(η), where η ∈ ∂D′. By letting D′

shrink towards z0 we complete the proof.

We also need the next result (Theorem 3.4 in [2]) in the proof of Propo-
sition 3.3.

Proposition 3.5. Let Ω be a domain in Cn and E be a pluripolar subset
of Ω such that E ∩H = ∅, where H is the hyperplane z1 = 0. Then E∗Ω ∩H
is pluripolar (relative to H).

Proof of Proposition 3.3. Suppose that there exists a point (a, b) ∈
(Γf (D))∗C2 with b 6= f(a). It follows that f is non-constant and a ∈ A.
Let S be a closed ball contained in D, A ∩ S = ∅ and G := Γf (S). Then
G ∩ (A× C) = ∅ and G∗C2 = (Γf (D))∗C2 . Since A is countable, using Propo-
sition 3.5, we deduce that the set T := {w ∈ C : (z, w) ∈ G∗C2 , z ∈ A} is
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pluripolar. Since f is non-constant we deduce f−1(T ) is polar in D. So we
can choose a disk D′ ⊂ D around a such that

D′ ∩ S = ∅, b 6∈ f(D′), f(a) 6∈ f(∂D′), ∂D′ ∩ f−1(T ) = ∅.
We also take a smaller disk D′′ relatively compact in D′ such that a ∈ D′′
and f(∂D′) ∩ f(D′′) = ∅. Then, following the proof of Lemma 3.4, we can
find a point (a′, b′) ∈ G∗C2 where a′ ∈ D′′ ∩A and b′ ∈ f(∂D′). In particular
b′ ∈ T . This contradicts our choice of the set D′.

We end up this paper by giving the announced proof of Lemma 2.8.

Proof of Lemma 2.8. This result can be deduced from the proof of
Theorem 4.6 in [3]. For the reader’s convenience, we give some details.
Assume that there exists a point z0 ∈ E∗Cn such that F (z0) ∈ ∂∆. Fix
0 < r < 1 and R > 1. For δ > 0 we let ∆δ := {z ∈ C : |z| < δ} and
Uδ := {z ∈ U : F (z) ∈ ∆1+δ}. The key observation is that if ε > 0,
then Uε is an open neighborhood of E∗Cn . In particular ∂Uε ∩ E∗Cn = ∅.
Set BR := {z ∈ Cn : |z| < R}. By applying the localization principle of
Edigarian and Wiegerinck [3, Theorem 4.1], for every ε > 0 we have

0 ≤ ω(z0, E ∩ F−1(∆r) ∩ BR,BR) = ω(z0, E ∩ F−1(∆r) ∩ BR,BR ∩ Uε)
≤ ω(F (z0), ∆r, ∆1+ε).

By letting ε→ 0 we get

ω(z0, E ∩ F−1(∆r) ∩ BR,BR) = 0.

So
z0 /∈ (E ∩ F−1(∆r) ∩ BR,BR)−BR

.

Since F (E) ⊂ ∆, by letting r → 1 we infer that z0 6∈ (E ∩ BR,BR)−BR
.

Finally, since R > 1 is arbitrarily large, by Theorem 3.1 we get z0 6∈ E∗Cn ,
a contradiction.
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