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A short note on Seshadri constants
and packing constants

by Halszka Tutaj-Gasińska (Kraków)

Abstract. The note is about a connection between Seshadri constants and packing
constants and presents another proof of Lazarsfeld’s result from [Math. Res. Lett. 3 (1996),
439–447].

1. Introduction. This note concerns certain connections between the
local positivity of line bundles on algebraic varieties and the symplectic pack-
ing of balls into symplectic manifolds. On the one hand we have a smooth,
complex, projective variety X with an ample line bundle L. Local positivity
of the bundle may be measured by Seshadri constants (see [13], [20], [8]),
which, roughly speaking, say how large the degree of a curve must be if the
curve passes through given points with given multiplicities. On the other
hand, a variety as above may be treated as a symplectic manifold. The sym-
plectic packing problem concerns the existence of a symplectic embedding
of a disjoint union of (Euclidean) balls into X. The amount of the volume
of X which may be filled by the symplectic images of balls is measured
by symplectic packing constants (see [10], [14], [5]). Analogously we may
consider symplectic and holomorphic packing constants (see [12]). It seems
that there exists a close connection between Seshadri constants and packing
constants. This connection was first observed in [14] and then in [5], [6], [12]
and other papers. Lazarsfeld in [12] proved a bound on Seshadri constants
by means of symplectic and holomorphic packing constants. The aim of this
note is to give another proof of this bound using the fact that holomorphic
curves are minimal surfaces.

2. Seshadri constants. Let X be a projective algebraic manifold with
an ample line bundle L. Let P1, . . . , Pr be r different points on X. Seshadri
constants are defined as follows.
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Definition 2.1. The Seshadri constant of L in P1, . . . , Pr is defined as
the number

ε(X,L, P1, . . . , Pr) := inf
{

LC

multP1 C + · · ·+ multPr C

}
,

where the infimum is taken over the curves C on X passing through at least
one Pi. Equivalently

ε(X,L, P1, . . . , Pr) := sup{ε | π∗L−ε(E1+· · ·+Er) is numerically effective},
where π : X̃ → X is the blow-up of X in P1, . . . , Pr with the exceptional
divisors E1, . . . , Er.

If the points P1, . . . , Pr are very general on X we will write ε(X,L, r)
instead of ε(X,L, P1, . . . , Pr); if X is clear from the context we will write
ε(L,P1, . . . , Pr) or respectively ε(L, r).

Remark 2.2. For an ample line bundle L on X we have (see [13])

0 < ε(L,P1, . . . , Pr) ≤ n
√
Ln/r.

Finding the exact values of Seshadri constants is in most cases a difficult
problem. For P2 with L = OP2(1) the exact values of ε(L, r) are known only
if r ≤ 9 or r = k2, k ∈ N. The famous conjecture of Nagata states that
ε(OP2(1), r) =

√
1/r (so it is maximal possible) for r ≥ 10 (cf. [11]). The

generalized conjecture, called the Nagata–Biran–Szemberg Conjecture, says
that for any algebraic surface X with an ample line bundle L there exists a
number N such that for all r ≥ N , ε(L, r) =

√
L2/r (cf. e.g. [19]).

So far, all known values of Seshadri constants are rational. In general,
it is hard to find the value of a Seshadri constant even at one point. For
example, in the case of surfaces, if we can prove the existence of so-called
submaximal curves, i.e. curves C on X such that

LC

multP1 C + · · ·+ multPr C
<

√
L2

r
,

then the Seshadri constant is necessarily rational and less than the maximal
value

√
L2/r (see e.g. [17]).

On the other hand, there are (so far) not many ways of proving the
nonexistence of submaximal curves. This makes it difficult to prove that the
Seshadri constants are maximal. One way to attack the problem is to give
lower bounds on the Seshadri constants.

3. Packing constants. Let us recall that a symplectic manifold is a
smooth real manifold, of dimension 2n, with a closed nondegenerate differ-
ential 2-form ω. The volume of X is given by (1/n!)

	
X ω∧n. The classical

example of a symplectic manifold is R2n with the 2-form ω0 := dx1 ∧ dy1 +
· · ·+ dxn ∧ dyn.
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Another example is given by a complex algebraic variety X (of dimen-
sion n), with an ample line bundle L. This variety may be treated as a real
(2n-dimensional) manifold with the closed nondegenerate differential 2-form
given by the first Chern class of L, ωL = c1(L). Thus, X is a symplectic
manifold, with the volume given as vol(X) = (1/n!)Ln.

If (X1, ω1) and (X2, ω2) are two symplectic manifolds, we define a sym-
plectic embedding of X1 to X2 as follows.

Definition 3.1. We say that f : X1 → X2 is a symplectic embedding if
f is a C∞-diffeomorphism onto its image and

f∗ω2 = ω1.

We will use the notation

f : (X1, ω1) s→ (X2, ω2).

Let (X,ω) be a symplectic manifold of dimension 2n and let (B2n(R), ω0)
be a ball of radius R in R2n with the standard symplectic form ω0 =
dx1∧dy1 + · · ·+dxn∧dyn. We may consider the so-called symplectic packing
problem: find a maximal radius R such that there exists a symplectic em-
bedding of the disjoint union of r balls of radius R into a given symplectic
manifold (X,ω),

f :
r∐

i=1

(B2n(R), ω0) s→ (X,ω).

If the volume of X is finite, then there is an obvious upper bound on R:

r · vol(B2n(R)) ≤ vol(X).

However, even if the volume of X is infinite, there may be obstructions
for packing balls into X. For example the famous Gromov Nonsqueezing
Theorem (see [10]) says that if there exists a symplectic embedding of a ball
B2n(R) into (B2(ε)× R2n−2, ω0), then R ≤ ε.

From now on assume that the volume of a symplectic manifold X is
finite. To measure how much of the volume of (X,ω) we may pack with the
symplectic images of balls we define so-called packing constants (or packing
numbers) (cf. [5], [14], [10]).

Definition 3.2. Let (X,ω) be a symplectic manifold and let r be a
natural number. The symplectic packing constant is defined as

vr := sup
{
r vol(B2n(R))

vol(X)

}
,

where the supremum is taken over all R such that there exists a symplectic
packing f :

∐r
i=1(B2n(R), ω0) s→ (X,ω).

If vr = 1 we say that a full packing exists.
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We may, following Lazarsfeld [12], define similar constants for embed-
dings being both symplectic and holomorphic:

Definition 3.3. Let (X,ω) be a symplectic and holomorphic manifold
and let r be a natural number. The symplectic and holomorphic packing
constant is defined as

vh
r := sup

{
r vol(B2n(R))

vol(X)

}
,

where the supremum is taken over all R such that there exists a symplectic
and holomorphic packing f :

∐r
i=1(B2n(R), ω0)

s, hol−−−→ (X,ω).

There are many interesting results about the constants vr; see e.g. [5],
[6], [14]. In his famous paper [6], Biran proved the following theorem (here
restricted to algebraic surfaces with the symplectic form ωL):

Theorem 3.4. Let (X,L) be a projective algebraic surface, treated as
a four-dimensional symplectic manifold with the symplectic form ωL. Then
there exists a number N0 such that for any r ≥ N0 there exists a full packing,
i.e. vr = 1. Moreover, this N0 can be taken equal to k2

0L
2 where k0 is such

that the linear system |k0L| contains a curve C of genus at least one.

It seems that there exists a close connection between Seshadri constants
and packing numbers. This connection was first observed in [14] and then
in [5, 6, 12] and other papers.

Consider the following example. Let X = P2 with L = OP2(1). For
r = 1, . . . , 9 we have ε(L, r) = 1, 1

2 ,
1
2 ,

1
2 ,

2
5 ,

2
5 ,

3
8 ,

6
17 ,

1
3 respectively. In the

same range of r, we have (cf. [5]) vr = 1, 1
2 ,

3
4 , 1,

20
25 ,

24
25 ,

63
64 ,

288
289 , 1, so ε(L, r) =√

L2vr/r here. For r ≥ 10 we know by the results of Biran [6, 5] that vr = 1,
whereas ε(L, r) is still unknown (unless r is the square of a natural number,
in which case ε(L, r) = 1/

√
r, cf. e.g. [11]). As mentioned above, Nagata’s

conjecture says that ε(L, r) = 1/
√
r for all r > 9 (cf. e.g. [16], [11], [19]), so

conjecturally ε(L, r) =
√
vrL

2/r for P2 with L = OP2(1) and for any r.
In [7, Theorem G] Biran and Cieliebak noted the following upper bound

on Seshadri constants:

Theorem 3.5. For a projective manifold X with an ample line bundle L,
n
√
vrLn/r ≥ ε(L, r).

On the other hand, holomorphic and symplectic packing constants give
a lower bound. Lazarsfeld [12] proved the following theorem:

Theorem 3.6. LetX be a projective manifold with an ample line bundle L
and the symplectic form ωL. Let vh

r be the symplectic and holomorphic packing
constant, and let ε(L, r) be the Seshadri constant of L in r general points
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of X. Then

ε(L, r) ≥ n

√
vh
rL

n/r.

Remark 3.7. Lazarsfeld’s proof of this result is based on the construc-
tion of a symplectic blowing up (cf. [14]). The theorem in [12] is actually
stated for r = 1, but it can be generalized to r ≥ 1.

It is in general not true that for any projective variety M with an ample
line bundle L and symplectic form given by c1(L) the following equality
holds:

ε(L, r) = n
√
vrLn/r,

but anyway, it would be useful to understand when and why it does (or does
not) hold.

Remark 3.8. Note that the above formula also holds for P1×P1 with the
line bundle of type (1, 1), for any r ≤ 8. Then ε(L, r) = 1, 1, 2

3 ,
2
3 ,

3
5 ,

4
7 ,

8
15 ,

1
2

and vr = 1
2 , 1,

2
3 ,

8
9 ,

9
10 ,

48
49 ,

224
225 , 1 for r = 1, . . . , 8 respectively (see for example

[5], [19]).

Other examples of manifolds (X,L), for which the equality ε(L, r) =
n
√
vrLn/r holds may be given by principally polarized abelian surfaces in

case r = 2k2. We know from [6] that for these surfaces vr = 1 if r > 1. On
the other hand, there is the following result of Roé and Ross [18] (here we
give a slightly restricted version):

Theorem 3.9. Let X be a projective variety of dimension n with an
ample line bundle L. Let s,N be integers. Then

ε(X,L, sN) ≥ ε(X,L, s)ε(Pn,OPn(1), N).

If X is an abelian surface with L of type (1, 1), then ε(X,L, 2) = 1,
moreover ε(P2,OP2(1), k2) = 1/k. The above theorem implies that then

ε(X,L, 2k2) ≥ ε(X,L, 2)ε(P2,OP2(1), k2) = 1/k.

From this it follows that ε(X,L, 2k2) = 1/k and the conjectural equality
holds here.

From [2], [3], [4] we know the Seshadri constant (at one point) for some
abelian or K3 surfaces, but v1 remains to be computed for them.

4. A proof of Theorem 3.6. In this section we present the proof of
Theorem 3.6, using some facts from Geometric Measure Theory (cf. [15],
[9], [1]).

Definition 4.1. Let S be a surface in R2n. We say that S is minimal
if the mean curvature of S is zero.

Remark 4.2. Any analytic curve in Cn is a minimal surface.
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Let now S be an analytic curve in Cn. Let S pass through a point
P ∈ Cn. As S is analytic, the multiplicity of S in P is defined. Assume
that multP S = m. Take then a ball B2n(R) with center P . By the volume
of S ∩B2n(R) we mean the area of S (in the Euclidean metric) in B2n(R).
Wirtinger’s Theorem says that in this situation, the volume of a surface
equals the integral of the symplectic form on S:

Remark 4.3 (Wirtinger’s Theorem, see [9]). 1. In the situation as above,
vol(S ∩B2n(R)) =

	
S∩B2n(R) ω0.

2. If C is an analytic curve in a polarized variety (X,L), then we have
vol(C) = LC.

The following fact will be crucial for us.

Theorem 4.4 (Monotonicity Lemma, see [15, Theorem 9.3]). In the
situation described above,

vol(S ∩B2n(R)) ≥ mπR2.

Let now (X,L) be a smooth projective variety, with an ample line bundle
L and a symplectic form ωL. Take R such that there exists a symplectic and
holomorphic embedding f of r disjoint balls of radius R into X.

Let f(Q1), . . . , f(Qr) be the images of the centers of these balls. Take
an algebraic curve C on X, passing through f(Q1), . . . , f(Qr) with mul-
tiplicities m1, . . . ,mr respectively. Let Si := f−1(C ∩ f(B(Qi, R))), where
B(Qi, R) denotes the ball of radius R with center Qi. As f is symplectic and
holomorphic, Si is an analytic curve in B(Qi, R). Moreover, multQi Si = mi.
From the Monotonicity Lemma it follows that vol(Si) ≥ miπR

2.
Thus,

LC = vol(C) ≥
r∑

i=1

vol(C ∩ f(B(Qi, R)))
f sympl.

=
r∑

i=1

vol(Si)

Monot. Lemma
≥

r∑
i=1

miπR
2.

From this,
LC∑r
i=1mi

≥ πR2

for any R such that a symplectic and holomorphic embedding exists. Thus

ε(L, r) ≥ πR2

and from the definition of vh
r , and the fact that the volume of the ball of

radius R in (R2n, ω0) is (πR2)n/n!, we get the required inequality

ε(L, r) ≥ n

√
Lnvh

r /r.
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