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Abstract. In IMUJ Preprint 2009/05 we investigated the quasianalytic perturbation
of hyperbolic polynomials and symmetric matrices by applying our quasianalytic version
of the Abhyankar–Jung theorem from IMUJ Preprint 2009/02, whose proof relied on
a theorem by Luengo on ν-quasiordinary polynomials. But those papers of ours were
suspended after we had become aware that Luengo’s paper contained an essential gap. This
gave rise to our subsequent article on quasianalytic perturbation theory, which developed,
however, different methods and techniques. A recent paper by Parusiński–Rond validates
Luengo’s result, which allows us to resume our previous approach.

1. Introduction. Our papers [7, 8] were devoted to carrying over to the
quasianalytic settings the results by Kurdyka–Paunescu [4] concerning the
perturbation of hyperbolic polynomials and symmetric matrices with ana-
lytic coefficients. Our proofs of those results relied on the following theorem
on splitting of hyperbolic quasiordinary polynomials (Theorem 1∗ from [8]):

Main Theorem. Let Ω be an open, simply connected subset of Rm.
Then every hyperbolic quasiordinary polynomial

f(x; t) = tn + an−1(x)tn−1 + · · ·+ a0(x) ∈ Q(Ω)[t]
with quasianalytic coefficients splits into linear factors of the form

f(x; t) =
n∏
i=1

(t− ψi(x)), x ∈ Ω,

where ψi(x) are smooth (C∞) functions quasisubanalytic on Ω.
The proof of this theorem given in [8] was quite long and technically

complicated, making use, inter alia, of the technique of global (canonical)
desingularization. The proof presented in [7] was much more elementary,
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but it applied a quasianalytic version of the Abhjankar–Jung theorem from
our paper [6]. The latter was based on a theorem by Luengo [5] about
ν-quasiordinary polynomials, which contained, however, an essential gap
(cf. [3]). The recent paper [9] by Parusiński–Rond validates Luengo’s result,
allowing us to resume our previous approach. Actually, [9] gives a short, ele-
mentary proof that Luengo’s result is equivalent to the formal version of the
Abhyankar–Jung theorem.

This paper is organized as follows. The second section recalls the version of
the Abhyankar–Jung theorem for certain henselian k[x]-algebras, established
in [6]. In Section 3, we demonstrate how the Main Theorem follows from it.

2. The Abhyankar–Jung theorem for henselian subrings of for-
mal power series. We call a polynomial

f(x; t) = tn + an−1(x)tn−1 + · · ·+ a0(x) ∈ k[[x]][t], x = (x1, . . . , xm),

quasiordinary if its discriminant D(x) is a normal crossing:

D(x) = xγ · u(x) with γ ∈ Nm, u(x) ∈ k[[x]], u(0) 6= 0.

We say that f(x; t) is a Weierstrass polynomial if its coefficients ai(x) belong
to the maximal ideal of k[[x]], i.e. ak(0) = 0. Let us write

f(x; t) =
∑
α∈Nm

n∑
k=0

aα,k · xαtk

and put
E(f) := {(α1, . . . , αm, k) ∈ Nm+1 : aα,k 6= 0}.

By the Newton polyhedron N(f) of the polynomial f(x; t) we mean the con-
vex hull of E(f) + Nm+1. We say, after Hironaka [2], that the polynomial
f(x; v) is ν-quasiordinary with an exponent δ = (δ1 . . . , δm) ∈ Qm if

1) N(f) ⊂ S + [0,∞)m+1 and S ∩ E(f) 6= ∅, where S is the segment
joining the points (0, . . . , 0, n) and (δ1, . . . , δm, 0);

2) the polynomial
P (x; t) :=

∑
(α,k)∈S

aα,kx
αtk

is not a power of a linear form.

The first condition means that the projection of the set N(f) ∩ {t < n}
from the point (0, . . . , 0, n) onto the hyperplane t = 0 is exactly δ+[0,∞)m.

Now let us recall the following result due to Luengo [5, Theorem 1] (see
also [9, Theorem 1.2]):

Proposition. Every quasiordinary Weierstrass polynomial

f(x; t) = tn + an−2(x)tn−2 + · · ·+ a0(x) ∈ k[[x]][t], x = (x1, . . . , xm),

i.e. with vanishing coefficient of tn−1, is ν-quasiordinary.
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Since an−1(x) ≡ 0, only condition 1) from the above definition needs a
verification in the proof of the Proposition. By means of the Tschirnhausen
transformation

t′ = t+ 1/n · an−1(x),

one can always come to the case of a polynomial with vanishing coefficient of
tn−1 without changing the discriminant. The converse is not true, as shown
in the following example from [5].

Example. The polynomial

g(x1, x2; t) := t4 − 2x1x
2
2 · t2 + x4

1x
4
2 + x2

1x
7
2

is ν-quasiordinary but not quasiordinary since its discriminant D(x1, x2) is
divisible by x1x2(x2

1 + x3
2).

Remark 1. Since the discriminant of a monic polynomial is a weighted
polynomial in its coefficients, the discriminant D(x) of the foregoing ν-
quasiordinary polynomial f(x; t) with exponent δ is divisible by x(n−1)δ.
Therefore, if the discriminant D(x) is a normal crossing D(x) = xγ · u(x),
then γ ≥ (n−1)δ, i.e. γi ≥ (n−1)δi for all i = 1, . . . ,m. In particular, δi = 0
whenever γi = 0.

Let k be an algebraically closed field of characteristic zero. Consider
a henselian k[x]-subalgebra k〈x〉 of the formal power series ring k[[x]],
x = (x1, . . . , xm), which is closed under reciprocal (whence it is a local
ring), power substitution and division by a coordinate. For positive integers
r1, . . . , rm put

k〈x1/r1
1 , . . . , x1/rm

m 〉 := {a(x1/r1
1 , . . . , x1/rm

m ) : a(x) ∈ k〈x〉};
when r1 = · · · = rm = r, we shall denote the above algebra by k〈x1/r〉.

Abhyankar–Jung Theorem. Under the above assumptions, every
quasiordinary polynomial

f(x; t) = tn + an−1(x)tn−1 + · · ·+ a0(x) ∈ k〈x〉[t]
has all its roots in k〈x1/r〉, for some r ∈ N; actually, one can take r = n!.

The proof is by induction with respect to the degree of the polynomial
f(x; t). Performing the Tschirnhausen transformation, we may assume that
an−1(x) ≡ 0. If f(x; t) is not a Weierstrass polynomial, then f(0; t) is not a
power of a linear form. Since the ring k〈x〉 of coefficients is henselian, the
polynomial f(x; t) is reducible: f(x; t) = f1(x; t)f2(x; t). The theorem thus
follows from the induction hypothesis.

Otherwise, f(x; t) is a Weierstrass polynomial, and then, by the Propo-
sition, f(x; t) is a ν-quasiordinary polynomial with an exponent δ ∈ Qm.
Take any multi-index (β1, . . . , βm, l) ∈ E(f) that lies on the segment S from
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the definition of ν-quasiordinarity. This property of the polynomial f(x; t)
implies immediately the inequalities

(n− l)α ≥ (n− k)δ for all (α, k) ∈ E(f).

Moreover, for at least one multi-index from E(f) ∩ S, we have equality.
Therefore, in the new coordinates

x1 = yn−l1 , . . . , xm = yn−lm , t = w · yδ11 · · · y
δm
m ,

each ak(x) = ak(yn−l1 , . . . , yn−lm ), k = 0, 1, . . . , n− 2, is divisible by

y
(n−k)δ1
1 · · · y(n−k)δm

m .

Hence
f(x; t) = f(yn−l, . . . , yn−lm ; t)

= tn + an−2(yn−l1 , . . . , yn−lm ) · tn−2 + · · ·+ a0(yn−l1 , . . . , yn−lm )

= tn + y2δ1
1 · · · y2δm

m · bn−2(y) · tn−2 + · · ·+ ynδ11 · · · ynδmm · b0(y),
with bk(y) ∈ k〈y〉. Moreover, at least one coefficient from among bk(y),
k = 0, . . . , n− 2, is a unit: bk(0) 6= 0. We thus get

f(x; t) = ynδ11 · · · ynδmm · g(y;w),

where
g(y;w) = wn + bn−2(y)wn−2 + · · ·+ b0(y) ∈ k〈y〉[w].

Consequently, the polynomial g(0;w) is not a power of a linear form. Since
the ring k〈y〉 of coefficients is henselian, the polynomial g(y;w) is reducible:
g(y;w) = g1(y;w) · g2(y;w). Therefore the proof is complete again by the
induction hypothesis.

Remark 2. Suppose that the discriminantD(x) of the polynomial f(x; t)
is a normal crossing of the form

D(x) = xγ11 · · ·x
γp
p · u(x) with u(0) 6= 0, 0 ≤ p ≤ m.

Then δp+1 = · · · = δm = 0 (cf. Remark 1), and thus the inequalities
(n − l)α ≥ (n − k)δ from the above proof are trivially satisfied for all α
and k. It is therefore sufficient to change only the first p from among the
variables x. Consequently, all the roots of the polynomial f(x; v) belong to
k〈x1/r

1 , . . . , x
1/r
p , xp+1, . . . , xm〉.

3. Proof of the Main Theorem. Denote by Qm = R〈x〉 the ring of
germs at 0 ∈ Rm of smooth quasi-subanalytic functions, and put

C〈x〉 := Qm ⊗R C = R〈x〉 ⊗R C;

here m ∈ N and x = (x1, . . . , xm). Of course, C〈x〉 may be regarded as a
henselian C[x]-subalgebra of the formal power series ring C[[x]], which is
closed under reciprocal, power substitution and division by a coordinate.
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The Abhyankar–Jung theorem from Section 2 yields immediately the
following two corollaries.

Corollary 1. Consider a quasiordinary polynomial

h(x; t) = tn + an−1(x)tn−1 + · · ·+ a0(x) ∈ C〈x〉[t].
Then there exists an r ∈ N such that for each closed orthant Qk in Rm,
k = 1, . . . , 2m, we have in the vicinity of 0 ∈ Rm a factorization of the form

h(x; t) =
n∏
i=1

(t− ϕik(|x1|1/r, . . . , |xm|1/r)) for x ∈ Qk,

where ϕik ∈ C〈x〉; actually, one can take r = n!.

Corollary 2 (A real version of the Abhyankar–Jung theorem). Let

f(x; t) = tn + an−1(x)tn−1 + · · ·+ a0(x) ∈ R〈x〉[t]
be a quasiordinary polynomial. Then there exists an r ∈ N such that for each
closed orthant Qk in Rm, k = 1, . . . , 2m, we have in the vicinity of 0 ∈ Rm

a factorization of the form

f(x; t) =
p∏
i=1

(t−ϕik(|x|1/r))
q∏
j=1

(t2−αjk(|x|1/r)t+β2
jk(|x|1/r)) for x ∈ Qk,

where p + 2q = n, ϕik, αjk, βjk ∈ R〈x〉 and |x|1/r = (|x1|1/r, . . . , |xm|1/r);
actually, one can take r = n!.

Before turning to hyperbolic polynomials, we still need to look more care-
fully at Corollary 1. For any closed subset A ⊂ Rm, let C(A) and D(A) be the
R-algebras of those quasi-subanalytic functions on A which are, respectively,
continuous and smooth in a neighbourhood of A; put

C(A,C) := C(A)⊗R C and D(A,C) := D(A)⊗R C.
By symmetry, we may confine our considerations to the first closed orthant
Q = Q1 = [0,∞)m. The quasianalytic function germs

ϕi(x1/r) := ϕi1(x
1/r
1 , . . . , x1/r

m )

have representatives which belong to C([0, δ]m,C) with δ > 0 small enough;
denote by ϕ̂i(x1/r) their Puiseux series. Let ε be a primitive rth root of unity.
It is easy to check that each algebraic conjugate

ϕ̂i(εα1x
1/r
1 , . . . , εαmx1/r

m ), α = (α1, . . . , αm) ∈ Nm,

of any ϕ̂i(x1/r) is the Puiseux series ϕ̂j(x1/r) of some ϕj(x1/r). In other
words, the Puiseux series ϕ̂i(x1/r), i = 1, . . . , n, are preserved under algebraic
conjugacy.

We call a monic polynomial

f(x; t) = tn + an−1(x)tn−1 + · · ·+ a0(x) ∈ R〈x〉[t]
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hyperbolic if, for each value of the parameters x, all its roots are real. This
is an abbreviation for a “quasianalytic family of hyperbolic polynomials”.

Now, we can readily turn to the proof of the Main Theorem on splitting
of hyperbolic quasiordinary polynomials. Since the splitting problem is local,
we can confine ourselves to considering quasianalytic function germs ai(x),
i = 0, 1, . . . , n − 1, at zero. Without loss of generality, we may assume that
they have representatives which are quasianalytic in a neighbourhood of
[−δ, δ]m for some δ > 0 small enough, and that the discriminant D(x) of
the polynomial f(x; t) is of the form D(x) = xγ · u(x), where γ ∈ Nm and
u(x) 6= 0 for x ∈ [−δ, δ]m.

With the foregoing notation, it is clear that the Puiseux series ϕ̂i(x1/r),
i = 1, . . . , n, of the roots ϕi(x1/r) of the hyperbolic quasiordinary polynomial
f(x; t) are real series. Since they are preserved under algebraic conjugacy,
we get ϕ̂i(x1/r) ∈ R[[x]].

The above reasoning about Puiseux series may be repeated at each point
from [0, δ]m. Therefore it follows from Glaeser’s composite function theorem
(cf. [1]) that the functions ψi(x) := ϕi(x1/r) are smooth:

ψi(x) = ϕi(x1/r) ∈ D([0, δ]m), i = 1, . . . , n.

Note that we applied, in fact, a very special case of Glaeser’s theorem. Denote
by Taψi(x) the Taylor series at a point a ∈ Q1 of the smooth function ψi,
i = 1, . . . , n.

For each closed orthant Qk in Rm, k = 1, . . . , 2m, we thus have in the
vicinity of 0 ∈ Rm a factorization of the form

f(x; t) =
n∏
i=1

(t− ψik(x)) for all x ∈ Qk ∩ [−δ, δ]m,

where ψik ∈ D(Qk ∩ [−δ, δ]m) with δ > 0 small enough. But for every
k = 1, . . . , 2m, the roots ψik(x) of the polynomial f(x; t) determine common
Taylor series ϕ̂i(x1/r) ∈ R[[x]], i = 1, . . . , n. Consequently, those roots can be
glued together to n smooth functions definable in the cube [−δ, δ]m. Indeed,
consider two adjacent orthants Qk, Ql with common face F , and next fix
i = 1, . . . , n and put

Fj := {a ∈ F : Taψi,k(x) = Taψj,l(x)}, j = 1, . . . , n.

It is clear that F1, . . . , Fn are closed, pairwise disjoint subsets of F such that
F = F1 ∪ · · · ∪ Fn. Since F is a connected set, we get F = Fj(i) for a unique
j(i) = 1, . . . , n. This means that the functions ψi,k(x) and ψj(i),l can be glued
together to a smooth quasi-subanalytic function, which completes the proof.
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