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On locally biholomorphic surjective mappings

by Ewa Ligocka (Warszawa)

Abstract. We prove that each open Riemann surface can be locally biholomorphi-
cally (locally univalently) mapped onto the whole complex plane. We also study finite-to-
one locally biholomorphic mappings onto the unit disc. Finally, we investigate surjective
biholomorphic mappings from Cartesian products of domains.

0. Introduction. The motivation for writing this note came from the
book [6]. We find there the Gunning–Narasimhan theorem which says
that each open Riemann surface can be expressed as a Riemann domain
over C. Moreover, the whole book [6] is devoted to the study of holomorphic
functions on Riemann domains over Cn.

If X is a complex connected manifold and f is a locally biholo-
morphic map from X onto Cn, then the pair (X, f) forms a Riemann domain
over Cn.

The natural question arises: What can we say about the image of X
under a locally biholomorphic map f : X → Cn? In particular, for which X
can we find such an f with f(X) = Cn?

The main result of the present note is that for every open Riemann
surface there exists a locally biholomorphic mapping from X onto C. This
implies that every Cartesian product of n such surfaces can be thought of
as a Riemann domain over the whole Cn. We do not know if this is true for
every Riemann–Stein domain over Cn.

In the rest of this paper we study locally biholomorphic mappings with
finite fibers. We give geometric conditions on a domain D ⊂ C sufficient
for the existence of a locally biholomorphic mapping with finite fibers from
D onto the unit disc. The Fornæss–Stout theorem [1] implies that such a
domain can be mapped locally biholomorphically onto each Riemann surface
by a mapping with finite fibers.
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We shall use standard notations. The symbol 〈a, b〉 stands for the closed
interval with ends a and b. We deal with domains in Cn or n-dimensional
complex manifolds.

1. The case of n = 1. We start with the following

Theorem 1. For every entire function g 6= const and every domain
D ⊂ C there exists a homography h such that the function

F (z) = (exp(g ◦ h)− 1) exp(exp(g ◦ h))

maps D onto C. If g′(z) 6= 0 on C then F ′(z) 6= 0 on D and thus F is a
local biholomorphism.

Proof. The function ϕ(z) = (z−1)ez maps C\{0} onto C by the Picard
theorem. The derivative ϕ′(z) = zez vanishes only at zero. The function eg

has an essential singularity at∞. Hence eg(1/z) has an essential singularity at
zero. The Julia theorem ([7], see also [3, Ch. 2, §7, Th. 5]) implies that there
exists a halfline l with end at zero such that for every open neighborhood
U of zero and every open angle A with bisectrix l the function eg(1/x) takes
every value from C \ {0} on U ∩ A. Let l⊥ denote the line through zero
perpendicular to l, and let H be the half-plane with ∂H = l⊥ and l ⊂ H.

Now let D be a domain in C. If D = C then it suffices to put h(z) = z.
The function

F = ϕ ◦ eg = (exp g − 1) exp(exp g)

is as required.
If D 6= C then we can take a ∈ D and b ∈ ∂D such that

% = dist(a, ∂D) = |a− b|.
Let ∆ denote the open disc with center a and radius %. We can find a
homography h1 which maps ∆ onto H such that h1(b) = 0 (note that each
conformal map from a disc onto a half-plane must be a homography). Let
h = 1/h1. Then eg◦h maps D onto C \ {0} and hence

F = ϕ ◦ eg◦h = (exp(g ◦ h)− 1) exp(exp(g ◦ h))

maps D onto C. We have

F ′(z) = ϕ′(exp(g ◦ h)(z)) · exp(g ◦ h)(z) · g′(h(z)) · h′(z)

and F ′(z) = 0 if g′(h(z)) = 0.

Corollary 1. For each domain D ⊂ C there exists a homography h
such that

Fh(z) = (exph(z)− 1) exp(exph(z))

maps D onto C and F ′(z) 6= 0 for z ∈ D.

Proof. Put g(z) = z in Theorem 1.
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Corollary 2. LetX be a connected complex manifold and let f : X → C
be a nonconstant holomorphic function. There exists a homography h such
that the mapping Fh ◦ f maps X onto C.

Proof. Apply Corollary 1 to the domain D = f(X).

The term “open Riemann surface” will stand for “one-dimensional con-
nected, noncompact complex manifold”.

Our Corollary 2 yields in particular the following

Theorem 2. For each open Riemann surface X there exists a locally
biholomorphic map p from X onto C.

In other words, X can be represented as a Riemann domain over the
whole plane C.

Proof. By the Gunning–Narasimhan theorem ([4], see also [6, Ch. 1,
§1.11]) there exists a locally biholomorphic mapping ϕ from X into C. We
can now apply Corollary 2.

The mappings constructed in Theorems 1 and 2 were all infinite-to-
one. Thus a natural question arises: Does there exist a finite-to-one locally
biholomorphic mapping from X onto C?

We have the following

Proposition 1. Let D = C \ {0} and let f : C \ {0} → C be a locally
biholomorphic map onto C. Then for all w ∈ C except at most one, the set
f−1(w) is infinite.

To prove this we shall need the following

Lemma 1. If R is a rational function which maps C \ {0} onto C, then
there exists z0 ∈ C \ {0} such that R′(z0) = 0.

Proof of Lemma 1. The derivative R′(z) is rational and holomorphic on
C \ {0}. The Laurent series of R′(z) at zero has the form

R′(z) =
N∑

k=0

akz
k +

M∑

k=1

a−kz
−k.

If R′(z) 6= 0 on C\{0} then R′ must be zero either at 0 or at∞. In the first
case

R′(z) = aNz
N , R(z) =

aNz
N+1

N + 1
+ c

and therefore R(z) 6= c for z ∈ C \ {0}. In the second case

R′(z) = a−Mz
−M , M 6= 1, R(z) =

a−Mz−M+1

−M + 1
+ c

and againR(z) 6=c on C\{0}. In both cases we have obtained a contradiction.
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Proof of Proposition 1. If there exist two different values w1 and w2 such
that the sets {f−1(w1)} and {f−1(w2)} are finite then f has an essential
singularity neither at 0 nor at∞ (Picard theorem). Thus f must be rational,
which contradicts Lemma 1.

Definition 1. Let f : X onto−→ Y . We shall say that f is m-valent , m ∈ N,
if for each y ∈ Y the set {f−1(g)} has no more than m elements.

It turns out that the case of D = C \ {0} is in some sense exceptional:

Theorem 3. Let D be a finitely connected domain in C, not biholomor-
phic to C \ {0}. Then there exist m ∈ N and an m-valent locally biholomor-
phic mapping f from D onto C.

Proof. We shall consider several cases:

(a) D = C \ {a1, . . . , aN}, ai 6= aj , i 6= j, N ≥ 2. Let M ∈ N, M ≥ N ,
be chosen such that

M + 1
M + 2

· ai − a1

a2 − a1
6= 1 for 2 ≤ i ≤ N.

Let ϕ(z) = zM+1(z − 1) and let h be a linear mapping sending a1 to 0 and
a2 to M+1

M+2 . Put f = ϕ ◦ h. We have f ′(z) 6= 0 on D. Moreover 1 ∈ h(D)
and f(h−1(1)) = 0. Any other value w 6= 0 in C is taken by ϕ at ≥ M + 1
different points. Hence f maps D onto C. The mapping f is (M + 2)-valent.

(b) D = B(0, 1), the unit disc. We can construct f as the superposition
f = f4 ◦ f3 ◦ f2 ◦ f1, where f1 = h3, h is a biholomorphic map of B(0, 1)
onto the upper halfdisc and

f2(z) =
1
2

(
z +

1
z

)
, f3(z) =

z√
3
, f4(z) = z3 − z.

Note that f1 maps B(0, 1) onto B(0, 1) \ {0}, f3 ◦ f2 ◦ f1 maps B(0, 1) onto
C\〈−1/

√
3, 1/
√

3〉 and f4(z) = z3−z maps C\〈−1/
√

3, 1/
√

3〉 onto C. It is
easy to check that f ′(z) 6= 0 on D. Thus by the Riemann theorem we have
already proved the assertion of Theorem 3 for all simply connected domains.

(c) If D is a k-connected domain, k ≥ 2, and D is not biholomorphic to
any of the domains from (a) then by the Koebe theorem (see [3, Ch. 5, §6,
Th. 2 and remarks at the end of §6]), D is biholomorphic to the annulus
A = {z : 0 ≤ r < |z| < 1} with k − 2 closed disc or points removed.
There exists an open angle α, |α| = 2πk/q, k/q ∈ Q, such that α ∩ A =
α∩{biholomorphic image of D}. Hence g(z) = zq+1 maps the biholomorphic
image of D onto the whole annulus A. Thus we have obtained a locally
biholomorphic (q + 1)-valent mapping D onto A.

It now suffices to find m ∈ N and an m-valent locally biholomorphic
mapping A onto C. If r = 0 then A = B(0, 1) \ {0} and we can take the
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superposition f4◦f3◦f2, where fi, i = 2, 3, 4, are the mappings from item (b).
If r > 0 we can take the mapping ϕr(z) = z−r

1−rz , use the function ϕ3
r which

maps A onto B(0, 1) \ {0}, and proceed as before.

If our domain D is biholomorphic to a bounded domain we can ask
whether there exists an m-valent locally biholomorphic mapping f from D
onto the unit disc B(0, 1).

We start with the following

Proposition 2. Let D be a domain contained in B(0, 1). Assume that
there exist z0 ∈ ∂B(0, 1) and r > 0 such that

D ∩B(z0, r) = B(0, 1) ∩B(z0, r).

Then there exists a locally biholomorphic map f from D onto B(0, 1) which
is m-valent with m ≤ 24.

Proof. By the Riemann theorem we can find a biholomorphic mapping
h from B(0, 1) onto the strip

{
z : Re z < 0, |Im z| < 3

2π
}

which extends to B(0, 1) in such a way that the arc

B(z0, r) ∩ ∂B(0, 1)

is mapped onto
〈
−a− 3

2πi,− 3
2πi
〉
∪
〈
− 3

2πi,
3
2πi
〉
∪
〈

3
2πi,

3
2πi− a

〉
, a > 0.

Thus the set h(B(0, 1) ∩ B(z0, r)) contains a rectangle R with vertices(
−b − 3

2πi,− 3
2πi,

3
2πi,

3
2πi − b

)
for some b with 0 < b < a. By assump-

tion we have R ⊂ h(D). Hence g = eh is a 2-valent locally biholomorphic
mapping from D into B(0, 1) such that B(0, 1) \ g(D) ⊂ B(0, e−b). Let
r = max(|z| : z ∈ B(0, 1) \ g(D)) and let z0 ∈ B(0, 1) \ g(D) be such that
|z0| = r. Put

ϕ =
z − z0

1− z0z
.

Then ϕ3 is a 3-valent locally biholomorphic mapping from g(D) onto
B(0, 1) \ {0} (cf. (c) of the proof of Theorem 3).

Let ψ be a biholomorphic (conformal) map from B(0, 1) \ {0} onto
Ωl \ {q}, where Ωl is the rectangle with vertices

(
−l + 5

2πi,
5
2πi,−l − 1

2πi,− 1
2πi
)
, l > 0, q ∈ R ∩Ωl.

The map eψ sends B(0, 1) \ {0} onto the annulus

Al = {z : 1/el < |z| < 1}.
It is a 2-valent locally biholomorphic map.
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Let Bc, 0 < c < 1, denote the domain

B(0, 1) \ 〈0, c−1(1−
√

1− c2)〉.
We can find l and c such that the domains Al and Bc are biholomorphic
(conformally equivalent).

Let

Φc(z) = z · z − c
1− cz .

It maps B(0, 1) onto B(0, 1) because it is a Blaschke product. The derivative
Φ′c vanishes only at

z = (1−
√

1− c2)c−1.

We also have Φc(1) = Φc(−1) = 1. Hence Φc is a 2-valent locally biholomor-
phic map from Bc onto the unit disc.

Let D be a domain in C. We shall say that a closed connected set K ⊂
Ĉ \D is an isolated component of Ĉ \D if there exists an open set U such
that K ⊂ U and U \K ⊂ D.

As a consequence of Proposition 2 we get

Theorem 4. Let D ⊂ C be a domain such that Ĉ \D contains an iso-
lated component K not equal to a single point. Then there exists an m-
valent locally biholomorphic mapping f from D onto the unit disc such that
m ≤ 24.

Proof. By the Riemann theorem there exists a biholomorphic map
h from Ĉ \ K onto B(0, 1). Since K is a component of Ĉ \ K, the set
h((Ĉ \ D) \ K) is a compact subset of B(0, 1). Hence h(D) satisfies the
assumptions of Proposition 2.

Corollary 3. For every finitely connected domain D not equal to

C \ {a1, . . . , aM}, M ∈ N,

there exists an m-valent locally biholomorphic map f : D onto−→ B(0, 1) such
that m ≤ 24.

Corollary 4. Theorem 4 is valid for every “Swiss cheese” domain.

We can also prove the following

Theorem 5. Let D ⊂ C be a domain such that Ĉ\D contains a contin-
uum K not equal to a single point , for which the boundary of Ĉ\K is locally
connected , and Ĉ \ K is connected. Put K1 = ∂(Ĉ \ K) and assume that

K1∩(Ĉ \D) \K 6= K1. Then there exists an m-valent locally biholomorphic
mapping f from D onto the unit disc such that m ≤ 24.
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Proof. Let g be a biholomorphic map from B(0, 1) onto Ĉ \K. By the
Carathéodory theorem, g extends to a continuous map g̃ from B(0, 1) onto

Ĉ \K = (Ĉ \ K) ∪ K1. By assumption there exists a ∈ K1 and an open
neighborhood U of a (in Ĉ) such that

U ∩ [(Ĉ \D) \K] = ∅.
Hence g̃−1(U) is an open set in B(0, 1) containing boundary points of
B(0, 1). We have g−1(U) ⊂ g−1(D). Thus the assumptions of Proposition 2
are satisfied for the domain g−1(D).

Theorems 4 and 5 are very interesting in conjuction with the deep result
due to Fornæss and Stout [1]: For every n-dimensional paracompact complex
manifold X there exists an m-valent locally biholomorphic mapping from an
n-dimensional polydisc onto X such that m ≤ 4n(2n+ 1) + 2. This implies
the following

Theorem 6. If a domain D satisfies the assumptions of either Theo-
rem 4 or Theorem 5 then for each connected Riemann surface X (compact
or open) there exist m ∈ N and an m-valent locally biholomorphic mapping
f from D onto X for which m ≤ 12 · 2 · 14 = 336.

The following problem seems to be difficult.

Problem 1. Are the conclusions of Theorems 4, 5 and 6 valid for every
bounded domain D?

2. The case of n > 1. In this part we state some theorems concerning
Cartesian products of one-dimensional domains or manifolds.

Our Theorem 2 yields immediately

Theorem 7. Let X be an n-dimensional complex manifold biholomor-
phic to a Cartesian product of n open Riemann surfaces. Then there exists a
locally biholomorphic mapping from X onto Cn. Hence X can be represented
as a Riemann domain over the whole Cn.

A natural question arises: Which Riemann domains (X, p) admit locally
biholomorphic mappings from X onto Cn?

It is easy to see that if f : X → Cn is a locally biholomorphic map onto
Cn then also its extension f̃ : X̃ → Cn to the envelope of holomorphy (X̃, p̃)
of (X, p) is a locally biholomorphic mapping onto Cn.

Hence a correct statement of our problem is the following:

Problem 2. For which Riemann–Stein domains (X, p) over Cn does
there exist a locally biholomorphic mapping f : X → Cn?

We conjecture that the answer may be positive for every such (X, p).
Our conjecture is motivated by:
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Proposition 3. Let (X, p) be a Riemann–Stein domain over Cn. Then
for each compact subset K ⊂ X there exists an almost proper mapping
f : X → Cn such that f is locally biholomorphic on an open neighborhood
of K.

Note that an almost proper mapping must be surjective.

Proof. This follows from Theorem VIIC 2 of [5], which says that the
almost proper mappings from X onto Cn are dense in (H(X))n in the
compact-open topology because X is Stein. Since X is a Riemann domain
there exists a locally biholomorphic mapping from X into Cn.

There exists a sequence of almost proper mappings fk which tends to
p almost uniformly (uniformly on compact sets). Hence each point x ∈ X
has a neighborhood Ux such that the Jacobian of fk ◦ p−1 tends to the
Jacobian of p ◦ p−1 (which is equal to one) uniformly on p(Ux). Thus for
every compact K ⊂ X there exists k0 and an open neighborhood U of K
such that rank fk = n on U for every k > k0.

It should be mentioned here that Fornæss and Stout proved in [2] that
the unit ball in Cn can be mapped by an m(n)-valent locally biholomorphic
mapping onto each n-dimensional connected, paracompact complex mani-
fold.

In particular there exists an m(n)-valent locally biholomorphic mapping
from the unit ball onto Cn.

Our Theorems 4, 5 and 6 imply

Theorem 8. Let X = D1 × . . . × Dn where Di, i = 1, . . . , n, satisfy
the assumptions of either Theorem 4 or Theorem 5. Then for each connected ,
paracompact n-dimensional complex manifold Y there exists an m-valent
and locally biholomorphic mapping f from X onto Y such that m ≤
(24)n[(2n+ 1)4n + 2].

Proof. Theorems 4 and 5 imply that there exists such an f if Y is the
unit polydisc in Cn. Now the result of Fornæss and Stout [1] implies the
assertion.
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