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3-K-contact Wolf spaces

by Włodzimierz Jelonek (Kraków)

Abstract. The aim of this paper is to give an easy explicit description of 3-K-contact
structures on SO(3)-principal fibre bundles over Wolf quaternionic Kähler manifolds.

1. Introduction. In 1965 Wolf constructed examples of symmetric
quaternionic Kähler manifolds W (G),W (G)∗ associated with every simple
Lie group G (except SU(2)). This construction is based on the properties of
the highest roots in a compact, simple Lie algebra. Every space W (G) is a
compact symmetric space and W (G)∗ is its non-compact dual space. It has
been known since 1975 [K] that any quaternionic Kähler manifold (M,g0)
of positive scalar curvature admits a natural SO(3)-principal fibre bundle
p : P →M such that (P, g) is a 3-Sasakian manifold and p is a Riemannian
submersion. However, for a long time the analogous construction for quater-
nionic Kähler manifolds of negative scalar curvature was not given. Recently
S. Tanno [T] proved that also in the case of negative scalar curvature the
natural SO(3)-principal bundle admits a structure similar to a 3-Sasakian
structure, called by him the nS-structure (compare also [J-1]).

In this paper we give an elementary description of the positive and neg-
ative 3-K-contact structures related to Wolf quaternionic Kähler spaces. We
show that 3-K-contact structures are related to the real form so(3)α of the
Lie algebra sl(2,C)α ⊂ gC generated by the highest root α of g. We also give
an alternative proof of the result of Bielawski [Bi] who, using Kronheimer’s
ideas, first explicitly described the metric of 3-Sasakian Wolf spaces (see [B-
G]). We also remove a (slight) incorrectness of Bielawski’s result (Bielawski
gave the metric which is only homothetic to a 3-Sasakian metric) and give
the description of negative 3-K-contact Wolf structures not considered by
Bielawski. Our method is more elementary and in the spirit of Wolf’s paper.
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2. Preliminaries. For the general facts concerning 3-K-contact and
3-Sasakian structures and quaternionic Kähler geometry we refer to [S], [B-
G], [K], [Ku], [Sw], [T], [J-1], [J-2], [B]. We shall recall several facts proved
by Wolf in [W]. Let g be a compact, simple real Lie algebra and gC its com-
plexification. By 〈·, ·〉K we denote the Killing form on gC and let σ be a real
structure giving a compact real form g of gC. Let h be a Cartan subalgebra
of gC. Fix a system of roots ∆ with positive roots ∆+. We write gβ for the
root space of β ∈ ∆, i.e. gβ = {E ∈ gC : [H,E] = β(H)E for all H ∈ h}. Let
α ∈ ∆+ be a highest root; it is characterized by the condition [Eα, Eβ ] = 0
for all β ∈ ∆+. The following characterization of a highest root was given
by Wolf [W]:

Proposition 1. Let α be a root of a complex simple Lie algebra gC

relative to a Cartan subalgebra h. Then α is the maximal root for some
choice of ∆+ if and only if the eigenvalues of ad(Hα) are − 1

2 |α|2, 0, 1
2 |α|2

off gα ⊕ g−α. In that case the centralizer of Hα in gC is a direct sum
z1 ⊕ {Hα} of ideals, where z1 centralizes gα ⊕ g−α.

The centralizer z of Hα in gC is

z = h⊕
∑

β∈Φ
gβ

where Φ = {β ∈ ∆ : 〈α, β〉 = 0}.
A quaternionic Kähler structure on a 4n-dimensional manifold M , n > 1,

consists of a metric g and a real rank-three subbundle G of End(TM) pre-
served by the Levi-Civita connection and locally generated by almost Her-
mitian structures I, J,K behaving under composition like the multiplica-
tive pure imaginary quaternions. An equivalent definition of a quaternionic
Kähler manifold (M,g) is that the holonomy group of g reduces to the group
Sp(n) Sp(1).

Of course, a hyper-Kähler manifold may be regarded as a special type of
a quaternionic Kähler manifold with zero scalar curvature. We shall exclude
this case, assuming that a quaternionic Kähler manifold is of non-zero scalar
curvature.

If n = 1 then a 4-dimensional manifold (M,g) will be called quaternionic
Kähler if (M,g) is Einstein and self-dual with non-zero scalar curvature.

Let (M,g) be a Riemannian manifold and let ξ be a unit Killing vector
field on M . Define a tensor field φ by φ(X) = −∇Xξ and a 1-form η(X) :=
g(ξ,X). Then we call (M,g, ξ, φ, η) a K-contact structure if the following
relation is satisfied:

(K) φ2 = − id +η ⊗ ξ.
Assume that ξ is a Killing vector field of unit length on M . We shall find
conditions under which the Killing vector field ξ defines a K-contact metric
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structure. Denote by H = ker η = {X : g(ξ,X) = 0} the distribution of
horizontal vectors on M . The following lemma is well known.

Lemma 1. Under the above assumptions the Killing vector field ξ gives
a K-contact structure on M if and only if the tensor J = φ|H is an almost
complex structure on the bundle H, i.e. J2 = − id|H .

A K-contact structure (M,g, ξ) is called Sasakian if

(S) R(X, ξ)Y = g(ξ, Y )X − g(X,Y )ξ

where R is the curvature tensor of (M,g).
A Riemannian manifold (M,g) with an almost complex structure J ∈

End(TM) is said to be an almost Hermitian manifold if g(JX, JY ) =
g(X,Y ) for all X,Y ∈ TM . The 2-form Ω(X,Y ) = g(JX, Y ) is called
the Kähler form of an almost Hermitian manifold (M,g, J). An almost Her-
mitian manifold is called almost Kähler if its Kähler form is closed: dΩ = 0.

If (M,g, ξ) is a regular K-contact structure (i.e. there exists a quotient
manifold M∗ = M/ξ) then (M,g∗, J∗) is an almost Kähler manifold, where
g∗ means an induced metric and J∗ an induced almost complex structure.
In that case (M,g, ξ) is Sasakian if and only if (M,g∗, J∗) is Kähler, i.e. if
∇∗Ω∗ = 0 where ∇∗ is the Levi-Civita connection of (M,g∗) and Ω∗ is the
Kähler form of (M,g∗, J∗).

Now let us recall the definition of (positive and negative) 3-K-contact
structures (see [J-1]).

Definition. Let (P, g) be a Riemannian manifold that admits three
distinct K-contact structures (φi, ξi, ηi) such that

(2.1) (a) g(ξi, ξj) = δij , (b) [ξi, ξj ] = 2εijkξk, (c) φiξj = −εijkξk,
where φi = ∇ξi and ηi(X) = g(ξi,X). Denote by H the horizontal distribu-
tion H = ker η1 ∩ ker η2 ∩ ker η3 =

⋂
ker ηi and define the almost complex

structures Ji on H by the formulas Ji = −φi|H . We call (P, ξ1, ξ2, ξ3) a
3-K-contact structure (or positive 3-K-contact structure) if (for i 6= j)

(2.2a) Ji ◦ Jj = εijkJk,

and a negative 3-K-contact structure if (for i 6= j)

(2.2b) Ji ◦ Jj = −εijkJk.
A Riemannian manifold (P, g) with a positive (resp. negative) 3-K-con-

tact structure is called a positive (resp. negative) 3-K-contact manifold. Note
that arbitrary unit Killing vector fields ξi satisfying (2.1)(c) and one of condi-
tions (2.2) define K-contact structures on (P, g) (this follows from Lemma 1)
so it is not necessary to include this condition in the definition above.
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If each structure (M,g, ξi) is Sasakian and conditions (2.1) are satis-
fied then (2.2a) are automatically satisfied and we call such a positive 3-K-
contact structure a 3-Sasakian structure.

In our paper [J-1] we have shown that if dimP 6= 11 then every positive
3-K-contact structure on P is 3-Sasakian and every negative structure is a
Tanno nS-structure.

3. 3-K-contact Wolf spaces. Let G be a compact centreless Lie group.
Choose a maximal torus T of G and denote by g and t the Lie algebras of G
and T respectively. Let gC and h be the respective complexifications of g and
t. It is clear that h is a Cartan subalgebra of a simple complex Lie algebra
gC. Let ∆ be the set of roots of gC with respect to h and fix a set of positive
roots ∆+. Let α ∈ ∆+ be a highest root. Then α(X) = 〈Hα,X〉 for some
Hα ∈ it ⊂ h. After rescaling the Killing form we can assume that 〈·, ·〉 =
(4/|α|2K)〈·, ·〉K is an ad-invariant metric on gC such that |α|2 = 〈Hα,Hα〉=4.
Note that |α|2K =〈Hα,Hα〉>0 and 〈·, ·〉 = c〈·, ·〉K where c > 0. We can choose
vectors Eα ∈ gα, E−α ∈ g−α such that Eα = σ(E−α) and 〈Eα, E−α〉 = −1.
Note that 〈Eα, Eα〉 = 〈E−α, E−α〉 = 0. It is easy to check that [Eα, E−α] =
−Hα. Let us write Xα = (1/(

√
2i))(Eα − E−α), Yα = (1/

√
2)(Eα + E−α),

Zα = 1
2 iHα. Then Xα, Yα, Zα ∈ g and the following equalities hold:

(3.1) [Xα, Yα] = 2Zα, [Xα, Zα] = −2Yα, [Yα, Zα] = 2Xα.

It follows that a = spanR{Xα, Yα, Zα} is a real subalgebra of g isomorphic
to so(3). If α is a highest root then ad(Eα)2 = 0 and ad(E−α)2 = 0 on the
space

∑
β∈∆+, β 6=α(gβ ⊕ g−β) (see e.g. [K-S]).

Proposition 2. Let m =
∑
β∈∆+, β 6=α, 〈β,α〉6=0 g ∩ (gβ ⊕ g−β). Then

ad(Xα)m ⊂ m, ad(Yα)m ⊂ m, ad(Zα)m ⊂ m and J1 = ad(Xα)|m, J2 =
ad(Yα)|m, J3 = ad(Zα)|m define on m three complex structures which give a
quaternion structure on m, i.e. Ji ◦ Jj = εijkJk if i 6= j.

Proof. Since Xα, Yα, Zα ∈ g it is enough to prove that the analogous
statement holds on mC =

∑
β∈∆+,β 6=α,〈β,α〉6=0(gβ ⊕ g−β). Let γ ∈ ∆, γ 6= α

and 〈γ, α〉 6= 0. Then Z = [Eα, Eγ ] ∈ γα+γ and if Z 6= 0 then −γ ∈ ∆+.
Since from Proposition 1 we get

〈α+ γ, α〉 = 〈α, α〉+ 〈γ, α〉 = |α|2 − 1
2 |α|2 = 1

2 |α|2 6= 0

it follows that ad(Eα)mC⊂mC. Similarly one can prove that ad(E−α)mC

⊂ mC. Thus ad(Xα)mC ⊂ mC and ad(Yα)mC ⊂ mC. Note that ad(Hα)Eγ =
〈α, γ〉Eγ = ± 1

2 |α|2Eγ . Thus ad(Zα)Eγ = ±iEγ and J2
3 = − idm. We also

have

ad(Eα+E−α)2 = ad(Eα)2+ad(E−α)◦ad(Eα)+ad(Eα)◦ad(E−α)+ad(E−α)2.
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Both ad(Eα)2 and ad(E−α)2 vanish on mC. Hence ad(Eα + E−α)2(Eγ) =
[Eα, [E−α, Eγ ]] + [E−α, [Eα, Eγ ]].

Now assume that γ ∈ ∆+. Then

[Eα, [E−α, Eγ ]] + [E−α, [Eα, Eγ ]] = −[Eγ , [Eα, E−α]] + 2[E−α, [Eα, Eγ ]]

= −[Eγ , [Eα, E−α]] = [Eγ ,Hα]

= −〈α, γ〉Eγ = − 1
2 |α|2Eγ

where we used the fact that if α ∈ ∆+ is a highest root and γ ∈ ∆+,
〈α, γ〉 6= 0 then 〈α, γ〉 > 0 since otherwise α+ γ would be a positive root, a
contradiction. If −γ ∈ ∆+ then

[Eα, [E−α, Eγ ]] + [E−α, [Eα, Eγ ]] = −[Eγ , [E−α, Eα]] + 2[Eα, [Eα, Eγ ]]

= [Eγ , [Eα, E−α]] = −[Eγ ,Hα]

= 〈α, γ〉Eγ = − 1
2 |α|2Eγ .

Recall that |α|2 = 4. Consequently, ad(Eα+E−α)2
|m = −2 id|m and ad(Yα)2

|m
= − id|m. Thus J2

2 = − id|m. Analogously one can prove that J2
1 = − id|m.

Now we show that J1 ◦ J2 = −J3. We have

[Eα − E−α, [Eα +E−α, Eγ ]] = [Eα, [E−α, Eγ ]]− [E−α, [Eα, Eγ ]]

= −[Eγ , [Eα, E−α]] = −[Hα, Eγ ]

and consequently J1 ◦ J2 = J3. It follows easily that Ji ◦ Jj = εijkJk if
i 6= j.

Now consider the group G with the bi-invariant metric g induced by
−〈·, ·〉. Note that g is positive definite. Write l = {H ∈ t : α(H) = 0} ⊕∑
β∈∆+, 〈α,β〉=0 g∩ (gβ ⊕ g−β). Then l is a Lie subalgebra of g and [a, l] = 0.

Note that g = l ⊕ a ⊕ m and [l ⊕ a,m] ⊂ m, [m,m] ⊂ l ⊕ a. Let L,A
be the connected subgroups of G corresponding to the Lie subalgebras l, a
respectively. Let t > 0 and let gt be a left-invariant metric on G defined
by (we identify gt with a metric on g) gt = g0 + g1 + tg2 where g0 = g|l,
g1 = g|a, g2 = g|m. Let p : G → G/L be the natural projection. Then
the metric g1 + tg2 on a ⊕ m induces an invariant metric ht on the coset
space G/L such that p : (G, gt) → (G/L, ht) is a Riemannian submersion.
The left-invariant vector fields Xα, Yα, Zα ∈ g are Killing vector fields with
respect to the metric gt.

In fact it is easy to check that ifA∈a then gt(ad(A)X,Y )+gt(X, ad(A)Y )
= 0 for all X,Y ∈ g. Since they are horizontal with respect to the Rieman-
nian submersion p and [l, a] = 0 it follows that there exist Killing vector
fields ξ1, ξ2, ξ3 on G/L which are p-related to Xα, Yα, Zα respectively.

We show that for an appropriate choice of t the fields ξ1, ξ2, ξ3 define on
M = G/L a positive 3-K-contact structure (in fact Sasakian). Define the
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three 1-forms on G by

θ1(X) = gt(Xα,X), θ2(X) = gt(Yα,X), θ3(X) = gt(Zα,X).

Note that the forms θi are left-invariant, θi(Y ) = 0 if Y ∈ l and ad∗l (θi) = θi
for any l ∈ L. Thus (see for example [O-T, p. 139]) θi = p∗ηi where ηi are
the one-forms on M defined by ηi(X) = ht(ξi,X). Let X,Y ∈ l⊕ a. Then

(3.2) dθi(X,Y ) = −θi([X,Y ]).

The group A is a totally geodesic subgroup of (G, gt). Consequently, the
orbits of the action of A on M are totally geodesic submanifolds of M (the
fundamental Killing vector fields of A have constant length). From (3.2) we
get (setting T1 = Xα, T2 = Yα, T3 = Zα)

(3.3) dθi(X,Y ) = −gt(Ti, [X,Y ]).

Note that dθi(X,Y ) = 0 if X ∈ a and Y ∈ m. We also have

(3.4a) dθi(X,Y ) = 〈Ti, [X,Y ]〉 = −〈ad(X)Ti, Y 〉 = gt(ad(X)Ti, Y )

if X,Y ∈ a,

(3.4b) dθi(X,Y ) = 〈Ti, [X,Y ]〉 = −〈ad(X)Ti, Y 〉 =
1
t
gt(ad(X)Ti, Y )

if X,Y ∈ m.

Thus if X,Y ∈ m ⊕ a and g ∈ G and x = p(g) ∈ M then p(Xg) ∈ TxM ,
p(Yg) ∈ TxM and

dηi(p(X), p(Y ))x) = gt(ad(X)Ti, Y ) if X,Y ∈ a,(3.5a)

dηi(p(X), p(Y ))x =
1
t
gt(ad(X)Ti, Y ) if X,Y ∈ m.(3.5b)

Consequently, since p∗dηi = dθi and dηi(X,Y ) = 2ht(∇tXξi, Y ) we ob-
tain (note that p : (G, gt)→ (M,ht) is a Riemannian submersion)

∇tp(X)ξi = −1
2
p(ad(Ti)(X)) if X ∈ a,(3.6a)

∇tp(X)ξi = − 1
2t
p(ad(Ti)(X)) if X ∈ m,(3.6b)

where by ∇t we denote the Levi-Civita connection of (M,ht). If we identify
the space TxM with a⊕m by means of p then

∇tξi|a = −1
2

ad(Ti)|a,(3.7a)

∇tξi|m = − 1
2t

ad(Ti)|m.(3.7b)

Note that if p(g) = p(g1) then g1 = gl where l ∈ L. Thus if we identify
(a ⊕ m)g = deLg(a ⊕ m)⊂ TgG and (a ⊕ m)g1 = deLg1(a ⊕ m)⊂ Tg1G with
TgLG/L by means of p and X ∈ a ⊕ m then a vector p(Xg) ∈ TgLG/L is
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represented by a vector (Ad(l)X)g1 ∈ mg1 . However [L,A] = {e} and conse-
quently (3.7) does not depend on the choice of the isomorphism (a⊕m)g =
TgLG/L.

Now consider the Lie algebra g0 = l ⊕ a⊕ im ⊂ gC. To this Lie algebra
corresponds a connected Lie subgroup G0 of the Lie group GC. We call
G0 the dual group of G. On the group GC we have a bi-invariant metric g
induced by the Killing form 〈·, ·〉K on gC, i.e.

g(X,Y )e = − 1
|α|2 〈X,Y 〉K = −〈X,Y 〉.

Let t > 0 and let gt be a left-invariant metric on G0 defined by (we identify
gt with a metric on g0) gt = g0+g1+tg2 where g0 = g|l, g1 = g|a, g2 = −g|im.
Note that gt is a positive-definite metric on G0. Let p0 : G0 → G0/L be a
natural projection. Then the metric g1 + tg2 on a⊕ m induces an invariant
metric ht on the coset space G0/L such that p0 : (G0, gt)→ (G0/L, ht) is a
Riemannian submersion. The left-invariant vector fields Xα, Yα, Zα ∈ a ⊂ g0

are Killing vector fields with respect to the metric gt on G0. It follows that
there exist Killing vector fields ξ1, ξ2, ξ3 on M0 = G0/L which are p0-related
to T1, T2, T3 respectively.

Define three 1-forms on G by θi(X) = gt(Ti,X). Note that the forms θi
are left-invariant, θi(Y ) = 0 if Y ∈ l and ad∗l θi = θi for any l ∈ L. Thus
θi = p∗ηi where ηi are one-forms on M defined by ηi(X) = ht(ξi,X). Let
X,Y ∈ l⊕ a. Then as above

(3.8) dθi(X,Y ) = −θi([X,Y ]) = −gt(Ti, [X,Y ]).

Note that dθi(X,Y ) = 0 if X ∈ a and Y ∈ im. We also have

(3.9a) dθi(X,Y ) = 〈Ti, [X,Y ]〉 = −〈ad(X)Ti, Y 〉 = gt(ad(X)Ti, Y )

if X,Y ∈ a,

(3.9b) dθi(X,Y ) = 〈Ti, [X,Y ]〉 = −〈ad(X)Ti, Y 〉 = −1
t
gt(ad(X)Ti, Y )

if X,Y ∈ im.
Thus if X,Y ∈ im⊕a and g ∈ G0 and x = p0(g) ∈M0 then p0(Xg) ∈ TxM0,
p0(Yg) ∈ TxM0 and

dηi(p0(X), p0(Y ))x) = gt(ad(X)Ti, Y ) if X,Y ∈ a,(3.10a)

dηi(p0(X), p0(Y ))x = −1
t
gt(ad(X)Ti, Y ) if X,Y ∈ im.(3.10b)

Consequently, since dηi = p∗0dθi and dηi(X,Y ) = 2ht(∇tXξi, Y ) we ob-
tain (note that p0 : (G0, gt)→ (M0, ht) is a Riemannian submersion and we
identify TM0 with a⊕ im by means of p0)

∇tξi|a = −1
2

ad(Ti)|a,(3.11a)
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∇tξi|im =
1
2t

ad(Ti)|im.(3.11b)

Hence we can prove

Theorem 1. Let G be a compact , simple and centreless Lie group and
let G0 be its dual group. Then (G/L, ht, ξ1, ξ2, ξ3) is a positive 3-K-contact
structure and (G0/L, ht, ξ1, ξ2, ξ3) is a negative 3-K-contact structure if and
only if t = 1/2.

Proof. Note that in both cases considered above we have ∇tξiξj = εijkξk.
Thus conditions (2.1) of the definition of 3-K-contact structure are satisfied.
If we identify TxM with a ⊕ m (respectively TxM0 with a ⊕ im) by means
of p (resp. p0) then the space H described in the definition coincides with m
(resp. im). With this identification Ji = ∇tξi|H equals

∇tξi|m = − 1
2t

ad(Ti)|m

in the first case and

∇tξi|im =
1
2t

ad(Ti)|im

in the second case. From Proposition 2 it follows that if t = 1/2 then ∇tξi
defines on the space Hi = {X ∈ TM(TM0) : ht(ξi,X) = 0} an almost
complex structure (i.e. (∇tξi|Hi)2 = − idHi). Consequently, each field ξi
defines a K-contact structure on (M,h1/2) (resp. on (M0, h1/2)).

Now from (3.7) and (3.11) it follows that for t = 1/2 we have

−∇tξi|m =
1
2t

ad(Ti)|m = Ji

and respectively

−∇tξi|im = − 1
2t

ad(Ti)|im = iJii

where Ji is defined in Proposition 2 and iJii(X) = i(Ji(iX)) for X ∈ im.
Consequently, it follows from Proposition 2 that (M,h1/2, ξ1, ξ2, ξ3) is a
positive 3-K-contact structure and that (M0, h1/2, ξ1, ξ2, ξ3) is a negative
3-K-contact structure.

Note that the spaces G/L are SO(3) or Sp(1) bundles over the symmetric
quaternionic spaces W (G), and G/L are exactly the spaces

Sp(n)/Sp(n− 1) = S4n−1, SU(m)/S(U(m− 2)× U(1)),

SO(k)/SO(k − 4)× Sp(1), G2/Sp(1), F4/Sp(3),

E6/SU(6), E7/Spin(12), E8/E7,

where n ≥ 1, m ≥ 3, k ≥ 7, and G/L is an Sp(1) bundle only in the first
case of Sp(n)/Sp(n−1) = S4n−1. Note that this space admits a Z2 quotient
Sp(n)/Sp(n− 1)× Z2 = RP4n−1 which is also a 3-Sasakian space.
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The holonomy representation of W (G) with symmetric metric is the rep-
resentation ad of the group LA on the space m with quaternionic structure
given by J1, J2, J3 where A = Sp(1) and the action A 3 a 7→ Ad(a)|m coin-
cides with the standard representation of the group Sp(1) = {q ∈ H : qq = 1}
on the space Hn where n = 1

4 dim m. Consequently, LSp(1) ⊂ Sp(n) Sp(1).
Now our aim is to give a precise description of twistor spaces of Wolf

spaces (see [S], [Sw], [J-1]). In the negative case we obtain homogeneous
almost Kähler manifolds which are not Kähler. In the positive case we get
Einstein Kähler spaces G/LT of positive scalar curvature where T is the
one-dimensional torus group. We only give the proof for the negative case,
the positive case being similar.

Proposition 3. The homogeneous spaces G0/LT , where T is the one-
parameter subgroup of Sp(1) = A generated by Zα ∈ a with metric in-
duced by the metric m = g|a1 − 1

2 g|im on the space m0 = a1 ⊕ im where
g = −(4/|α|2K)〈·, ·〉K and a1 = spanR{Xα, Yα}, are strictly almost Kähler
homogeneous spaces.

Proof. Let π∗ be the natural projection π∗ : G0/L → G0/LT . Since
G0/LT is the quotient of G0/L by the one-parameter group of isometries
generated by the Killing vector field ξ3 and ((G0/L, h1/2), ξ3) is a K-contact
structure it follows that G0/LT with the induced metric g∗ and an almost
Hermitian structure J∗ such that g(J∗π∗X,π∗(Y )) = dη1(X,Y ) is an al-
most Kähler manifold with a Kähler form Ω∗(X,Y ) = g∗(J∗X,Y ). It is not
Sasakian, since R(X, ξi)ξj = 2εijkφk(X) for a horizontal vector X.

Remark. Note that the metric on the 3-K-contact space is uniquely
determined as gt = g0 +g1 +tg2 where g = (4/|α|2K)〈·, ·〉K, g0 = g|l, g1 = g|a,
g2 = εg|m1 with ε = 1 and m1 = m in the case of a positive 3-K-contact
space G/L and ε = −1 and m1 = im in the case of a negative 3-K-contact
space G0/L, whereas the metric on the almost Kähler space G0/LT is given
up to homothety, i.e. we can also choose the metric m = g|a1 − 1

2g|im on
the space m0 = a1 ⊕ im where g = −〈·, ·〉K and the twistor space with this
metric is still almost Kähler.

Our last aim is to give a precise description of the reduction of the
principal bundle SO(M) of orthonormal oriented frames of the Wolf spaces
W (G),W (G)∗ to the LA-structure P (LA,M), and to describe the Levi-
Civita connection in P . We denote by g∗ the symmetric metric on W (G) or
W (G)∗, i.e. g∗ is induced by the metric −〈·, ·〉 on m or 〈·, ·〉 on im. Write
K = LA and denote by k the Lie algebra of K. By π : G/K → M or
π : G0/K →M we mean the natural projection.

Define P = G in the positive case and P = G0 in the negative case. Define
the horizontal distribution H ⊂ TG (resp. TG0) by Hg = deLg(m1) and the
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vertical distribution by Vg = deLg(k). Let θC be a Cartan form on G (resp.
G0) defined on X ∈ TgG (resp. TgG0) as follows: θC(X) = deLg−1(X) ∈ g
(resp g0). Denote by pk, pm1 the projections onto k,m1 with respect to the
decomposition g = k⊕m and g0 = k⊕ im. Then the connection form ω with
horizontal distribution H is defined by ω = pk ◦ θC.

We shall treat G (resp. G0) as a subbundle of the bundle SO(M) by
identifying an element g ∈ G with the mapping ug : m1 → TgKM given
by ug(X) = π(deLg(X)). Then the canonical form of P ⊂ SO(M) is θ =
pm1 ◦ θC(X) since

θ(X) = u−1
g (π(X)) = pm1 ◦ θC(X).

Since [m1,m1] ⊂ k it follows easily that Θ(X,Y ) = dθ(hX, hY ) = 0 where
hX ∈ H denotes the H-component of X with respect to the decomposition
TG = V ⊕H.

Thus the connection Γ given by ω is a torsionless connection in the
principal bundle of oriented orthonormal frames, i.e. Γ is the Levi-Civita
connection of (M,g∗). Note that we treat K as a subgroup of SO(m1) (where
on m1 we have the metric −〈·, ·〉 if m1 = m, and 〈·, ·〉 if m1 = im), via the
representation Ad : K → SO(m1).

Let G1 = G or G1 = G0 and (a, b) 3 t 7→ xt ∈ M be a smooth path in
M such that

x(a) = eK = x0 ∈ G1/K = M

and let Y ∈ Tx0M . Then there exists Y ∗ ∈ m1 ⊂ g = TeG1 such that
Y = π(Y ∗). Let gt be a horizontal lift of xt to the K-principal bundle G1

over M with connection Γ , i.e. π(gt) = xt and ω(ġt) = 0. Then Yt = π(Y ∗t )
is a parallel field along xt where Y ∗t = deLgt(Y

∗) ∈ Hgt . Note that Ya = Y .
If xa = xb = x0 then gb = k ∈ K and under the identification He = Hk we
obtain Y ∗b = ad(k)Y ∗.

Consequently, the holonomy group coincides exactly with K and the
holonomy representation is K 3 k 7→ ad(k)|m1 ∈ SO(m1) (for the details
see [H, p. 207]). Recall that the endomorphisms Ji : m1 → m1 are described
in Proposition 2. It is easy to see that the bundle G ⊂ End(TM) of en-
domorphisms defining the quaternionic structure on M is generated by the
endomorphisms π(Ji◦u−1

g ) where ug ∈ G1, i ∈ {1, 2, 3} (see the construction
of G in [J-1], [J-2]). We have

Proposition 4. The principal bundle SO(M) and the Levi-Civita con-
nection of a quaternionic Kähler Wolf space W (G) (resp. W (G)∗) admit a
reduction to a K-structure G1 ⊂ SO(M) with Levi-Civita connection form
ω = pk ◦ θC. The bundle G is generated by the endomorphisms π(Ji ◦ u−1

g )
where i ∈ {1, 2, 3}.
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It follows that our construction of positive and negative 3-K-contact
structures coincides with the one given in [J-2]. The only difference is that we
consider a K-reduction G,G0 ⊂ SO(M) instead of an Sp(n) Sp(1)-reduction
Q ⊂ SO(M). It is clear that K ⊂ Sp(n) Sp(1). Consequently, the positive
structure is 3-Sasakian and the negative structure is the Tanno nS-structure.
In the case 4n 6= 8 this also follows directly from [J-1]. Let us remark
here that K coincides with Sp(n) Sp(1) only in the case of M = HPn =
Sp(n+ 1)/Sp(n) Sp(1) and its dual Wolf space (see [A]).
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