3-K-contact Wolf spaces

by Włodzimierz Jelonek (Kraków)

Abstract. The aim of this paper is to give an easy explicit description of 3-K-contact structures on SO(3)-principal fibre bundles over Wolf quaternionic Kähler manifolds.

1. Introduction. In 1965 Wolf constructed examples of symmetric quaternionic Kähler manifolds $W(G), W(G)^*$ associated with every simple Lie group G (except SU(2)). This construction is based on the properties of the highest roots in a compact, simple Lie algebra. Every space W(G) is a compact symmetric space and $W(G)^*$ is its non-compact dual space. It has been known since 1975 [K] that any quaternionic Kähler manifold (M, g_0) of positive scalar curvature admits a natural SO(3)-principal fibre bundle $p: P \to M$ such that (P, g) is a 3-Sasakian manifold and p is a Riemannian submersion. However, for a long time the analogous construction for quaternionic Kähler manifolds of negative scalar curvature was not given. Recently S. Tanno [T] proved that also in the case of negative scalar curvature the natural SO(3)-principal bundle admits a structure similar to a 3-Sasakian structure, called by him the nS-structure (compare also [J-1]).

In this paper we give an elementary description of the positive and negative 3-K-contact structures related to Wolf quaternionic Kähler spaces. We show that 3-K-contact structures are related to the real form $\mathfrak{so}(3)_{\alpha}$ of the Lie algebra $\mathfrak{sl}(2, \mathbb{C})_{\alpha} \subset \mathfrak{g}^{\mathbb{C}}$ generated by the highest root α of \mathfrak{g} . We also give an alternative proof of the result of Bielawski [Bi] who, using Kronheimer's ideas, first explicitly described the metric of 3-Sasakian Wolf spaces (see [B-G]). We also remove a (slight) incorrectness of Bielawski's result (Bielawski gave the metric which is only homothetic to a 3-Sasakian metric) and give the description of negative 3-K-contact Wolf structures not considered by Bielawski. Our method is more elementary and in the spirit of Wolf's paper.

²⁰⁰⁰ Mathematics Subject Classification: 53C05, 53C20, 53C25.

 $Key\ words\ and\ phrases:$ quaternionic Kähler manifold, Sasakian manifold, contact manifold.

The paper was supported in part by KBN grant 2P03A 023 24.

2. Preliminaries. For the general facts concerning 3-K-contact and 3-Sasakian structures and quaternionic Kähler geometry we refer to [S], [B-G], [K], [Ku], [Sw], [T], [J-1], [J-2], [B]. We shall recall several facts proved by Wolf in [W]. Let \mathfrak{g} be a compact, simple real Lie algebra and $\mathfrak{g}^{\mathbb{C}}$ its complexification. By $\langle \cdot, \cdot \rangle_{\mathrm{K}}$ we denote the Killing form on $\mathfrak{g}^{\mathbb{C}}$ and let σ be a real structure giving a compact real form \mathfrak{g} of $\mathfrak{g}^{\mathbb{C}}$. Let \mathfrak{h} be a Cartan subalgebra of $\mathfrak{g}^{\mathbb{C}}$. Fix a system of roots Δ with positive roots Δ_+ . We write \mathfrak{g}_{β} for the root space of $\beta \in \Delta$, i.e. $\mathfrak{g}_{\beta} = \{E \in \mathfrak{g}^{\mathbb{C}} : [H, E] = \beta(H)E$ for all $H \in \mathfrak{h}\}$. Let $\alpha \in \Delta_+$ be a highest root; it is characterized by the condition $[E_{\alpha}, E_{\beta}] = 0$ for all $\beta \in \Delta_+$. The following characterization of a highest root was given by Wolf [W]:

PROPOSITION 1. Let α be a root of a complex simple Lie algebra $\mathfrak{g}^{\mathbb{C}}$ relative to a Cartan subalgebra \mathfrak{h} . Then α is the maximal root for some choice of Δ_+ if and only if the eigenvalues of $\operatorname{ad}(H_{\alpha})$ are $-\frac{1}{2}|\alpha|^2, 0, \frac{1}{2}|\alpha|^2$ off $\mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{-\alpha}$. In that case the centralizer of H_{α} in $\mathfrak{g}^{\mathbb{C}}$ is a direct sum $\mathfrak{z}_1 \oplus \{H_{\alpha}\}$ of ideals, where \mathfrak{z}_1 centralizes $\mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{-\alpha}$.

The centralizer \mathfrak{z} of H_{α} in $\mathfrak{g}^{\mathbb{C}}$ is

$$\mathfrak{z}=\mathfrak{h}\oplus\sum_{eta\in arPmi}\mathfrak{g}_{eta}$$

where $\Phi = \{\beta \in \Delta : \langle \alpha, \beta \rangle = 0\}.$

A quaternionic Kähler structure on a 4n-dimensional manifold M, n > 1, consists of a metric g and a real rank-three subbundle \mathcal{G} of $\operatorname{End}(TM)$ preserved by the Levi-Civita connection and locally generated by almost Hermitian structures I, J, K behaving under composition like the multiplicative pure imaginary quaternions. An equivalent definition of a quaternionic Kähler manifold (M, g) is that the holonomy group of g reduces to the group $\operatorname{Sp}(n) \operatorname{Sp}(1)$.

Of course, a hyper-Kähler manifold may be regarded as a special type of a quaternionic Kähler manifold with zero scalar curvature. We shall exclude this case, assuming that a quaternionic Kähler manifold is of non-zero scalar curvature.

If n = 1 then a 4-dimensional manifold (M, g) will be called *quaternionic* Kähler if (M, g) is Einstein and self-dual with non-zero scalar curvature.

Let (M, g) be a Riemannian manifold and let ξ be a unit Killing vector field on M. Define a tensor field ϕ by $\phi(X) = -\nabla_X \xi$ and a 1-form $\eta(X) := g(\xi, X)$. Then we call (M, g, ξ, ϕ, η) a *K*-contact structure if the following relation is satisfied:

(K)
$$\phi^2 = -\operatorname{id} + \eta \otimes \xi.$$

Assume that ξ is a Killing vector field of unit length on M. We shall find conditions under which the Killing vector field ξ defines a K-contact metric structure. Denote by $H = \ker \eta = \{X : g(\xi, X) = 0\}$ the distribution of horizontal vectors on M. The following lemma is well known.

LEMMA 1. Under the above assumptions the Killing vector field ξ gives a K-contact structure on M if and only if the tensor $J = \phi_{|H}$ is an almost complex structure on the bundle H, i.e. $J^2 = -\operatorname{id}_{|H}$.

A K-contact structure (M, g, ξ) is called *Sasakian* if

(S)
$$R(X,\xi)Y = g(\xi,Y)X - g(X,Y)\xi$$

where R is the curvature tensor of (M, g).

A Riemannian manifold (M, g) with an almost complex structure $J \in$ End(TM) is said to be an *almost Hermitian manifold* if g(JX, JY) =g(X, Y) for all $X, Y \in TM$. The 2-form $\Omega(X, Y) = g(JX, Y)$ is called the *Kähler form* of an almost Hermitian manifold (M, g, J). An almost Hermitian manifold is called *almost Kähler* if its Kähler form is closed: $d\Omega = 0$.

If (M, g, ξ) is a regular K-contact structure (i.e. there exists a quotient manifold $M_* = M/\xi$) then (M, g_*, J_*) is an almost Kähler manifold, where g_* means an induced metric and J_* an induced almost complex structure. In that case (M, g, ξ) is Sasakian if and only if (M, g_*, J_*) is Kähler, i.e. if $\nabla^* \Omega_* = 0$ where ∇^* is the Levi-Civita connection of (M, g_*) and Ω_* is the Kähler form of (M, g_*, J_*) .

Now let us recall the definition of (positive and negative) 3-K-contact structures (see [J-1]).

DEFINITION. Let (P,g) be a Riemannian manifold that admits three distinct K-contact structures (ϕ_i, ξ_i, η_i) such that

(2.1) (a)
$$g(\xi_i, \xi_j) = \delta_{ij}$$
, (b) $[\xi_i, \xi_j] = 2\varepsilon_{ijk}\xi_k$, (c) $\phi_i\xi_j = -\varepsilon_{ijk}\xi_k$,

where $\phi_i = \nabla \xi_i$ and $\eta_i(X) = g(\xi_i, X)$. Denote by H the horizontal distribution $H = \ker \eta_1 \cap \ker \eta_2 \cap \ker \eta_3 = \bigcap \ker \eta_i$ and define the almost complex structures J_i on H by the formulas $J_i = -\phi_{i|H}$. We call (P, ξ_1, ξ_2, ξ_3) a 3-K-contact structure (or positive 3-K-contact structure) if (for $i \neq j$)

(2.2a)
$$J_i \circ J_j = \varepsilon_{ijk} J_k,$$

and a negative 3-K-contact structure if (for $i \neq j$)

(2.2b)
$$J_i \circ J_j = -\varepsilon_{ijk} J_k.$$

A Riemannian manifold (P, g) with a positive (resp. negative) 3-K-contact structure is called a *positive* (resp. *negative*) 3-K-contact manifold. Note that arbitrary unit Killing vector fields ξ_i satisfying (2.1)(c) and one of conditions (2.2) define K-contact structures on (P, g) (this follows from Lemma 1) so it is not necessary to include this condition in the definition above.

W. Jelonek

If each structure (M, g, ξ_i) is Sasakian and conditions (2.1) are satisfied then (2.2a) are automatically satisfied and we call such a positive 3-Kcontact structure a 3-Sasakian structure.

In our paper [J-1] we have shown that if dim $P \neq 11$ then every positive 3-K-contact structure on P is 3-Sasakian and every negative structure is a Tanno nS-structure.

3. 3-K-contact Wolf spaces. Let G be a compact centreless Lie group. Choose a maximal torus T of G and denote by \mathfrak{g} and \mathfrak{t} the Lie algebras of G and T respectively. Let $\mathfrak{g}^{\mathbb{C}}$ and \mathfrak{h} be the respective complexifications of \mathfrak{g} and \mathfrak{t} . It is clear that \mathfrak{h} is a Cartan subalgebra of a simple complex Lie algebra $\mathfrak{g}^{\mathbb{C}}$. Let Δ be the set of roots of $\mathfrak{g}^{\mathbb{C}}$ with respect to \mathfrak{h} and fix a set of positive roots Δ_+ . Let $\alpha \in \Delta_+$ be a highest root. Then $\alpha(X) = \langle H_\alpha, X \rangle$ for some $H_\alpha \in i\mathfrak{t} \subset \mathfrak{h}$. After rescaling the Killing form we can assume that $\langle \cdot, \cdot \rangle = (4/|\alpha|_{\mathrm{K}}^2)\langle \cdot, \cdot \rangle_{\mathrm{K}}$ is an ad-invariant metric on $\mathfrak{g}^{\mathbb{C}}$ such that $|\alpha|^2 = \langle H_\alpha, H_\alpha \rangle = 4$. Note that $|\alpha|_{\mathrm{K}}^2 = \langle H_\alpha, H_\alpha \rangle > 0$ and $\langle \cdot, \cdot \rangle = c\langle \cdot, \cdot \rangle_{\mathrm{K}}$ where c > 0. We can choose vectors $E_\alpha \in \mathfrak{g}_\alpha, E_{-\alpha} \in \mathfrak{g}_{-\alpha}$ such that $E_\alpha = \sigma(E_{-\alpha})$ and $\langle E_\alpha, E_{-\alpha} \rangle = -1$. Note that $\langle E_\alpha, E_\alpha \rangle = \langle E_{-\alpha}, E_{-\alpha} \rangle = 0$. It is easy to check that $[E_\alpha, E_{-\alpha}] = -H_\alpha$. Let us write $X_\alpha = (1/(\sqrt{2}i))(E_\alpha - E_{-\alpha}), Y_\alpha = (1/\sqrt{2})(E_\alpha + E_{-\alpha}), Z_\alpha = \frac{1}{2}iH_\alpha$. Then $X_\alpha, Y_\alpha, Z_\alpha \in \mathfrak{g}$ and the following equalities hold:

$$(3.1) \qquad [X_{\alpha}, Y_{\alpha}] = 2Z_{\alpha}, \qquad [X_{\alpha}, Z_{\alpha}] = -2Y_{\alpha}, \qquad [Y_{\alpha}, Z_{\alpha}] = 2X_{\alpha}.$$

It follows that $\mathfrak{a} = \operatorname{span}_{\mathbb{R}} \{X_{\alpha}, Y_{\alpha}, Z_{\alpha}\}$ is a real subalgebra of \mathfrak{g} isomorphic to $\mathfrak{so}(3)$. If α is a highest root then $\operatorname{ad}(E_{\alpha})^2 = 0$ and $\operatorname{ad}(E_{-\alpha})^2 = 0$ on the space $\sum_{\beta \in \Delta_+, \beta \neq \alpha} (\mathfrak{g}_{\beta} \oplus \mathfrak{g}_{-\beta})$ (see e.g. [K-S]).

PROPOSITION 2. Let $\mathfrak{m} = \sum_{\beta \in \Delta_+, \beta \neq \alpha, \langle \beta, \alpha \rangle \neq 0} \mathfrak{g} \cap (\mathfrak{g}_{\beta} \oplus \mathfrak{g}_{-\beta})$. Then ad $(X_{\alpha})\mathfrak{m} \subset \mathfrak{m}, \operatorname{ad}(Y_{\alpha})\mathfrak{m} \subset \mathfrak{m}, \operatorname{ad}(Z_{\alpha})\mathfrak{m} \subset \mathfrak{m} \text{ and } J_1 = \operatorname{ad}(X_{\alpha})_{|\mathfrak{m}}, J_2 =$ ad $(Y_{\alpha})_{|\mathfrak{m}}, J_3 = \operatorname{ad}(Z_{\alpha})_{|\mathfrak{m}}$ define on \mathfrak{m} three complex structures which give a quaternion structure on $\mathfrak{m}, i.e. J_i \circ J_j = \varepsilon_{ijk} J_k$ if $i \neq j$.

Proof. Since $X_{\alpha}, Y_{\alpha}, Z_{\alpha} \in \mathfrak{g}$ it is enough to prove that the analogous statement holds on $\mathfrak{m}^{\mathbb{C}} = \sum_{\beta \in \Delta_+, \beta \neq \alpha, \langle \beta, \alpha \rangle \neq 0} (\mathfrak{g}_{\beta} \oplus \mathfrak{g}_{-\beta})$. Let $\gamma \in \Delta, \gamma \neq \alpha$ and $\langle \gamma, \alpha \rangle \neq 0$. Then $Z = [E_{\alpha}, E_{\gamma}] \in \gamma_{\alpha+\gamma}$ and if $Z \neq 0$ then $-\gamma \in \Delta_+$. Since from Proposition 1 we get

$$\langle \alpha + \gamma, \alpha \rangle = \langle \alpha, \alpha \rangle + \langle \gamma, \alpha \rangle = |\alpha|^2 - \frac{1}{2}|\alpha|^2 = \frac{1}{2}|\alpha|^2 \neq 0$$

it follows that $\operatorname{ad}(E_{\alpha})\mathfrak{m}^{\mathbb{C}}\subset\mathfrak{m}^{\mathbb{C}}$. Similarly one can prove that $\operatorname{ad}(E_{-\alpha})\mathfrak{m}^{\mathbb{C}}\subset\mathfrak{m}^{\mathbb{C}}$. Thus $\operatorname{ad}(X_{\alpha})\mathfrak{m}^{\mathbb{C}}\subset\mathfrak{m}^{\mathbb{C}}$ and $\operatorname{ad}(Y_{\alpha})\mathfrak{m}^{\mathbb{C}}\subset\mathfrak{m}^{\mathbb{C}}$. Note that $\operatorname{ad}(H_{\alpha})E_{\gamma} = \langle \alpha, \gamma \rangle E_{\gamma} = \pm \frac{1}{2}|\alpha|^{2}E_{\gamma}$. Thus $\operatorname{ad}(Z_{\alpha})E_{\gamma} = \pm iE_{\gamma}$ and $J_{3}^{2} = -\operatorname{id}_{\mathfrak{m}}$. We also have

$$\mathrm{ad}(E_{\alpha}+E_{-\alpha})^{2}=\mathrm{ad}(E_{\alpha})^{2}+\mathrm{ad}(E_{-\alpha})\circ\mathrm{ad}(E_{\alpha})+\mathrm{ad}(E_{\alpha})\circ\mathrm{ad}(E_{-\alpha})+\mathrm{ad}(E_{-\alpha})^{2}.$$

Both $\operatorname{ad}(E_{\alpha})^2$ and $\operatorname{ad}(E_{-\alpha})^2$ vanish on $\mathfrak{m}^{\mathbb{C}}$. Hence $\operatorname{ad}(E_{\alpha} + E_{-\alpha})^2(E_{\gamma}) =$ $[E_{\alpha}, [E_{-\alpha}, E_{\gamma}]] + [E_{-\alpha}, [E_{\alpha}, E_{\gamma}]].$

Now assume that $\gamma \in \Delta_+$. Then

$$\begin{split} [E_{\alpha}, [E_{-\alpha}, E_{\gamma}]] + [E_{-\alpha}, [E_{\alpha}, E_{\gamma}]] &= -[E_{\gamma}, [E_{\alpha}, E_{-\alpha}]] + 2[E_{-\alpha}, [E_{\alpha}, E_{\gamma}]] \\ &= -[E_{\gamma}, [E_{\alpha}, E_{-\alpha}]] = [E_{\gamma}, H_{\alpha}] \\ &= -\langle \alpha, \gamma \rangle E_{\gamma} = -\frac{1}{2} |\alpha|^2 E_{\gamma} \end{split}$$

where we used the fact that if $\alpha \in \Delta_+$ is a highest root and $\gamma \in \Delta_+$, $\langle \alpha, \gamma \rangle \neq 0$ then $\langle \alpha, \gamma \rangle > 0$ since otherwise $\alpha + \gamma$ would be a positive root, a contradiction. If $-\gamma \in \Delta_+$ then

$$[E_{\alpha}, [E_{-\alpha}, E_{\gamma}]] + [E_{-\alpha}, [E_{\alpha}, E_{\gamma}]] = -[E_{\gamma}, [E_{-\alpha}, E_{\alpha}]] + 2[E_{\alpha}, [E_{\alpha}, E_{\gamma}]]$$
$$= [E_{\gamma}, [E_{\alpha}, E_{-\alpha}]] = -[E_{\gamma}, H_{\alpha}]$$
$$= \langle \alpha, \gamma \rangle E_{\gamma} = -\frac{1}{2} |\alpha|^2 E_{\gamma}.$$

Recall that $|\alpha|^2 = 4$. Consequently, $\operatorname{ad}(E_{\alpha} + E_{-\alpha})^2_{|\mathfrak{m}|} = -2 \operatorname{id}_{|\mathfrak{m}|}$ and $\operatorname{ad}(Y_{\alpha})^2_{|\mathfrak{m}|}$ $= -\mathrm{id}_{|\mathfrak{m}|}$. Thus $J_2^2 = -\mathrm{id}_{|\mathfrak{m}|}$. Analogously one can prove that $J_1^2 = -\mathrm{id}_{|\mathfrak{m}|}$.

Now we show that $J_1 \circ J_2 = -J_3$. We have

$$\begin{split} [E_{\alpha} - E_{-\alpha}, [E_{\alpha} + E_{-\alpha}, E_{\gamma}]] &= [E_{\alpha}, [E_{-\alpha}, E_{\gamma}]] - [E_{-\alpha}, [E_{\alpha}, E_{\gamma}]] \\ &= -[E_{\gamma}, [E_{\alpha}, E_{-\alpha}]] = -[H_{\alpha}, E_{\gamma}] \end{split}$$

and consequently $J_1 \circ J_2 = J_3$. It follows easily that $J_i \circ J_j = \varepsilon_{ijk} J_k$ if $i \neq j$.

Now consider the group G with the bi-invariant metric g induced by $-\langle \cdot, \cdot \rangle$. Note that g is positive definite. Write $\mathfrak{l} = \{H \in \mathfrak{t} : \alpha(H) = 0\} \oplus$ $\sum_{\beta \in \Delta_+, \langle \alpha, \beta \rangle = 0} \mathfrak{g} \cap (\mathfrak{g}_{\beta} \oplus \mathfrak{g}_{-\beta}).$ Then \mathfrak{l} is a Lie subalgebra of \mathfrak{g} and $[\mathfrak{a}, \mathfrak{l}] = 0.$ Note that $\mathfrak{g} = \mathfrak{l} \oplus \mathfrak{a} \oplus \mathfrak{m}$ and $[\mathfrak{l} \oplus \mathfrak{a}, \mathfrak{m}] \subset \mathfrak{m}, [\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{l} \oplus \mathfrak{a}$. Let L, Abe the connected subgroups of G corresponding to the Lie subalgebras l, arespectively. Let t > 0 and let g_t be a left-invariant metric on G defined by (we identify g_t with a metric on \mathfrak{g}) $g_t = g_0 + g_1 + tg_2$ where $g_0 = g_{|\mathfrak{l}|}$ $g_1 = g_{|\mathfrak{a}}, g_2 = g_{|\mathfrak{m}}$. Let $p: G \to G/L$ be the natural projection. Then the metric $g_1 + tg_2$ on $\mathfrak{a} \oplus \mathfrak{m}$ induces an invariant metric h_t on the coset space G/L such that $p: (G, g_t) \to (G/L, h_t)$ is a Riemannian submersion. The left-invariant vector fields $X_{\alpha}, Y_{\alpha}, Z_{\alpha} \in \mathfrak{g}$ are Killing vector fields with respect to the metric g_t .

In fact it is easy to check that if $A \in \mathfrak{a}$ then $g_t(\mathrm{ad}(A)X, Y) + g_t(X, \mathrm{ad}(A)Y)$ = 0 for all $X, Y \in \mathfrak{g}$. Since they are horizontal with respect to the Riemannian submersion p and $[\mathfrak{l},\mathfrak{a}]=0$ it follows that there exist Killing vector fields ξ_1, ξ_2, ξ_3 on G/L which are *p*-related to $X_{\alpha}, Y_{\alpha}, Z_{\alpha}$ respectively.

We show that for an appropriate choice of t the fields ξ_1, ξ_2, ξ_3 define on M = G/L a positive 3-K-contact structure (in fact Sasakian). Define the three 1-forms on G by

 $\theta_1(X) = g_t(X_\alpha, X), \quad \theta_2(X) = g_t(Y_\alpha, X), \quad \theta_3(X) = g_t(Z_\alpha, X).$

Note that the forms θ_i are left-invariant, $\theta_i(Y) = 0$ if $Y \in \mathfrak{l}$ and $\operatorname{ad}_l^*(\theta_i) = \theta_i$ for any $l \in L$. Thus (see for example [O-T, p. 139]) $\theta_i = p^* \eta_i$ where η_i are the one-forms on M defined by $\eta_i(X) = h_t(\xi_i, X)$. Let $X, Y \in \mathfrak{l} \oplus \mathfrak{a}$. Then

(3.2)
$$d\theta_i(X,Y) = -\theta_i([X,Y]).$$

The group A is a totally geodesic subgroup of (G, g_t) . Consequently, the orbits of the action of A on M are totally geodesic submanifolds of M (the fundamental Killing vector fields of A have constant length). From (3.2) we get (setting $T_1 = X_{\alpha}, T_2 = Y_{\alpha}, T_3 = Z_{\alpha}$)

(3.3)
$$d\theta_i(X,Y) = -g_t(T_i,[X,Y]).$$

Note that $d\theta_i(X, Y) = 0$ if $X \in \mathfrak{a}$ and $Y \in \mathfrak{m}$. We also have

$$(3.4a) \quad d\theta_i(X,Y) = \langle T_i, [X,Y] \rangle = -\langle \operatorname{ad}(X)T_i, Y \rangle = g_t(\operatorname{ad}(X)T_i, Y)$$
 if $X, Y \in \mathfrak{a}$,

(3.4b)
$$d\theta_i(X,Y) = \langle T_i, [X,Y] \rangle = -\langle \operatorname{ad}(X)T_i, Y \rangle = \frac{1}{t} g_t(\operatorname{ad}(X)T_i, Y)$$

if $X, Y \in \mathfrak{m}$.

Thus if $X, Y \in \mathfrak{m} \oplus \mathfrak{a}$ and $g \in G$ and $x = p(g) \in M$ then $p(X_g) \in T_x M$, $p(Y_g) \in T_x M$ and

(3.5a)
$$d\eta_i(p(X), p(Y))_{x} = g_t(\mathrm{ad}(X)T_i, Y) \quad \text{if } X, Y \in \mathfrak{a},$$

(3.5b)
$$d\eta_i(p(X), p(Y))_x = \frac{1}{t} g_t(\mathrm{ad}(X)T_i, Y) \quad \text{if } X, Y \in \mathfrak{m}.$$

Consequently, since $p^* d\eta_i = d\theta_i$ and $d\eta_i(X, Y) = 2h_t(\nabla_X^t \xi_i, Y)$ we obtain (note that $p: (G, g_t) \to (M, h_t)$ is a Riemannian submersion)

(3.6a)
$$\nabla_{p(X)}^{t}\xi_{i} = -\frac{1}{2}p(\operatorname{ad}(T_{i})(X)) \quad \text{if } X \in \mathfrak{a},$$

(3.6b)
$$\nabla_{p(X)}^{t}\xi_{i} = -\frac{1}{2t}p(\mathrm{ad}(T_{i})(X)) \quad \text{if } X \in \mathfrak{m},$$

where by ∇^t we denote the Levi-Civita connection of (M, h_t) . If we identify the space $T_x M$ with $\mathfrak{a} \oplus \mathfrak{m}$ by means of p then

(3.7a)
$$\nabla^t \xi_{i|\mathfrak{a}} = -\frac{1}{2} \operatorname{ad}(T_i)_{|\mathfrak{a}},$$

(3.7b)
$$\nabla^t \xi_{i|\mathfrak{m}} = -\frac{1}{2t} \operatorname{ad}(T_i)_{|\mathfrak{m}}.$$

Note that if $p(g) = p(g_1)$ then $g_1 = gl$ where $l \in L$. Thus if we identify $(\mathfrak{a} \oplus \mathfrak{m})_g = d_e L_g(\mathfrak{a} \oplus \mathfrak{m}) \subset T_g G$ and $(\mathfrak{a} \oplus \mathfrak{m})_{g_1} = d_e L_{g_1}(\mathfrak{a} \oplus \mathfrak{m}) \subset T_{g_1} G$ with $T_{gL}G/L$ by means of p and $X \in \mathfrak{a} \oplus \mathfrak{m}$ then a vector $p(X_g) \in T_{gL}G/L$ is

represented by a vector $(\operatorname{Ad}(l)X)_{g_1} \in \mathfrak{m}_{g_1}$. However $[L, A] = \{e\}$ and consequently (3.7) does not depend on the choice of the isomorphism $(\mathfrak{a} \oplus \mathfrak{m})_g = T_{qL}G/L$.

Now consider the Lie algebra $\mathfrak{g}_0 = \mathfrak{l} \oplus \mathfrak{a} \oplus \mathfrak{im} \subset \mathfrak{g}^{\mathbb{C}}$. To this Lie algebra corresponds a connected Lie subgroup G_0 of the Lie group $G^{\mathbb{C}}$. We call G_0 the *dual group* of G. On the group $G^{\mathbb{C}}$ we have a bi-invariant metric g induced by the Killing form $\langle \cdot, \cdot \rangle_{\mathrm{K}}$ on $g^{\mathbb{C}}$, i.e.

$$g(X,Y)_e = -\frac{1}{|\alpha|^2} \langle X,Y \rangle_{\mathcal{K}} = -\langle X,Y \rangle.$$

Let t > 0 and let g_t be a left-invariant metric on G_0 defined by (we identify g_t with a metric on \mathfrak{g}_0) $g_t = g_0 + g_1 + tg_2$ where $g_0 = g_{|\mathfrak{l}|}, g_1 = g_{|\mathfrak{a}|}, g_2 = -g_{|\mathfrak{i}\mathfrak{m}|}$. Note that g_t is a positive-definite metric on G_0 . Let $p_0 : G_0 \to G_0/L$ be a natural projection. Then the metric $g_1 + tg_2$ on $\mathfrak{a} \oplus \mathfrak{m}$ induces an invariant metric h_t on the coset space G_0/L such that $p_0 : (G_0, g_t) \to (G_0/L, h_t)$ is a Riemannian submersion. The left-invariant vector fields $X_\alpha, Y_\alpha, Z_\alpha \in \mathfrak{a} \subset \mathfrak{g}_0$ are Killing vector fields with respect to the metric g_t on G_0 . It follows that there exist Killing vector fields ξ_1, ξ_2, ξ_3 on $M_0 = G_0/L$ which are p_0 -related to T_1, T_2, T_3 respectively.

Define three 1-forms on G by $\theta_i(X) = g_t(T_i, X)$. Note that the forms θ_i are left-invariant, $\theta_i(Y) = 0$ if $Y \in \mathfrak{l}$ and $\operatorname{ad}_l^* \theta_i = \theta_i$ for any $l \in L$. Thus $\theta_i = p^* \eta_i$ where η_i are one-forms on M defined by $\eta_i(X) = h_t(\xi_i, X)$. Let $X, Y \in \mathfrak{l} \oplus \mathfrak{a}$. Then as above

(3.8)
$$d\theta_i(X,Y) = -\theta_i([X,Y]) = -g_t(T_i,[X,Y]).$$

Note that $d\theta_i(X, Y) = 0$ if $X \in \mathfrak{a}$ and $Y \in i\mathfrak{m}$. We also have

(3.9a)
$$d\theta_i(X,Y) = \langle T_i, [X,Y] \rangle = -\langle \operatorname{ad}(X)T_i, Y \rangle = g_t(\operatorname{ad}(X)T_i, Y)$$

if $X, Y \in \mathfrak{a}$,

(3.9b)
$$d\theta_i(X,Y) = \langle T_i, [X,Y] \rangle = -\langle \operatorname{ad}(X)T_i, Y \rangle = -\frac{1}{t} g_t(\operatorname{ad}(X)T_i, Y)$$

if $X, Y \in i\mathfrak{m}$.

Thus if $X, Y \in i\mathfrak{m} \oplus \mathfrak{a}$ and $g \in G_0$ and $x = p_0(g) \in M_0$ then $p_0(X_g) \in T_x M_0$, $p_0(Y_g) \in T_x M_0$ and

(3.10a)
$$d\eta_i(p_0(X), p_0(Y))_{x} = g_t(\mathrm{ad}(X)T_i, Y)$$
 if $X, Y \in \mathfrak{a}$,

(3.10b)
$$d\eta_i(p_0(X), p_0(Y))_x = -\frac{1}{t}g_t(\mathrm{ad}(X)T_i, Y) \quad \text{if } X, Y \in i\mathfrak{m}.$$

Consequently, since $d\eta_i = p_0^* d\theta_i$ and $d\eta_i(X, Y) = 2h_t(\nabla_X^t \xi_i, Y)$ we obtain (note that $p_0 : (G_0, g_t) \to (M_0, h_t)$ is a Riemannian submersion and we identify TM_0 with $\mathfrak{a} \oplus i\mathfrak{m}$ by means of p_0)

(3.11a)
$$\nabla^t \xi_{i|\mathfrak{a}} = -\frac{1}{2} \operatorname{ad}(T_i)_{|\mathfrak{a}},$$

W. Jelonek

(3.11b)
$$\nabla^t \xi_{i|i\mathfrak{m}} = \frac{1}{2t} \operatorname{ad}(T_i)_{|i\mathfrak{m}|}$$

Hence we can prove

THEOREM 1. Let G be a compact, simple and centreless Lie group and let G_0 be its dual group. Then $(G/L, h_t, \xi_1, \xi_2, \xi_3)$ is a positive 3-K-contact structure and $(G_0/L, h_t, \xi_1, \xi_2, \xi_3)$ is a negative 3-K-contact structure if and only if t = 1/2.

Proof. Note that in both cases considered above we have $\nabla_{\xi_i}^t \xi_j = \varepsilon_{ijk} \xi_k$. Thus conditions (2.1) of the definition of 3-K-contact structure are satisfied. If we identify $T_x M$ with $\mathfrak{a} \oplus \mathfrak{m}$ (respectively $T_x M_0$ with $\mathfrak{a} \oplus i\mathfrak{m}$) by means of p (resp. p_0) then the space H described in the definition coincides with \mathfrak{m} (resp. $i\mathfrak{m}$). With this identification $J_i = \nabla^t \xi_{i|H}$ equals

$$\nabla^t \xi_{i|\mathfrak{m}} = -\frac{1}{2t} \operatorname{ad}(T_i)_{|\mathfrak{m}}$$

in the first case and

$$\nabla^t \xi_{i|i\mathfrak{m}} = \frac{1}{2t} \operatorname{ad}(T_i)_{|i\mathfrak{m}|}$$

in the second case. From Proposition 2 it follows that if t = 1/2 then $\nabla^t \xi_i$ defines on the space $H_i = \{X \in TM(TM_0) : h_t(\xi_i, X) = 0\}$ an almost complex structure (i.e. $(\nabla^t \xi_{i|H_i})^2 = -\operatorname{id}_{H_i})$. Consequently, each field ξ_i defines a K-contact structure on $(M, h_{1/2})$ (resp. on $(M_0, h_{1/2})$).

Now from (3.7) and (3.11) it follows that for t = 1/2 we have

$$-\nabla^t \xi_{i|\mathfrak{m}} = \frac{1}{2t} \operatorname{ad}(T_i)_{|\mathfrak{m}} = J_i$$

and respectively

$$-\nabla^t \xi_{i|i\mathfrak{m}} = -\frac{1}{2t} \operatorname{ad}(T_i)_{|i\mathfrak{m}} = iJ_i i$$

where J_i is defined in Proposition 2 and $iJ_ii(X) = i(J_i(iX))$ for $X \in i\mathfrak{m}$. Consequently, it follows from Proposition 2 that $(M, h_{1/2}, \xi_1, \xi_2, \xi_3)$ is a positive 3-K-contact structure and that $(M_0, h_{1/2}, \xi_1, \xi_2, \xi_3)$ is a negative 3-K-contact structure.

Note that the spaces G/L are SO(3) or Sp(1) bundles over the symmetric quaternionic spaces W(G), and G/L are exactly the spaces

$$Sp(n)/Sp(n-1) = S^{4n-1}, \quad SU(m)/S(U(m-2) \times U(1)),$$

$$SO(k)/SO(k-4) \times Sp(1), \quad G_2/Sp(1), \quad F_4/Sp(3),$$

$$E_6/SU(6), \quad E_7/Spin(12), \quad E_8/E_7,$$

where $n \ge 1$, $m \ge 3$, $k \ge 7$, and G/L is an Sp(1) bundle only in the first case of $\operatorname{Sp}(n)/\operatorname{Sp}(n-1) = S^{4n-1}$. Note that this space admits a \mathbb{Z}_2 quotient $\operatorname{Sp}(n)/\operatorname{Sp}(n-1) \times \mathbb{Z}_2 = \mathbb{RP}^{4n-1}$ which is also a 3-Sasakian space.

The holonomy representation of W(G) with symmetric metric is the representation ad of the group LA on the space \mathfrak{m} with quaternionic structure given by J_1, J_2, J_3 where $A = \operatorname{Sp}(1)$ and the action $A \ni a \mapsto \operatorname{Ad}(a)_{|\mathfrak{m}}$ coincides with the standard representation of the group $\operatorname{Sp}(1) = \{q \in \mathbb{H} : q\overline{q} = 1\}$ on the space \mathbb{H}^n where $n = \frac{1}{4} \dim \mathfrak{m}$. Consequently, $L\operatorname{Sp}(1) \subset \operatorname{Sp}(n)\operatorname{Sp}(1)$.

Now our aim is to give a precise description of twistor spaces of Wolf spaces (see [S], [Sw], [J-1]). In the negative case we obtain homogeneous almost Kähler manifolds which are not Kähler. In the positive case we get Einstein Kähler spaces G/LT of positive scalar curvature where T is the one-dimensional torus group. We only give the proof for the negative case, the positive case being similar.

PROPOSITION 3. The homogeneous spaces G_0/LT , where T is the oneparameter subgroup of $\operatorname{Sp}(1) = A$ generated by $Z_{\alpha} \in \mathfrak{a}$ with metric induced by the metric $m = g_{|\mathfrak{a}_1} - \frac{1}{2}g_{|i\mathfrak{m}}$ on the space $\mathfrak{m}_0 = \mathfrak{a}_1 \oplus i\mathfrak{m}$ where $g = -(4/|\alpha|_{\mathrm{K}}^2)\langle \cdot, \cdot \rangle_{\mathrm{K}}$ and $\mathfrak{a}_1 = \operatorname{span}_{\mathbb{R}}\{X_{\alpha}, Y_{\alpha}\}$, are strictly almost Kähler homogeneous spaces.

Proof. Let π_* be the natural projection $\pi_* : G_0/L \to G_0/LT$. Since G_0/LT is the quotient of G_0/L by the one-parameter group of isometries generated by the Killing vector field ξ_3 and $((G_0/L, h_{1/2}), \xi_3)$ is a K-contact structure it follows that G_0/LT with the induced metric g_* and an almost Hermitian structure J_* such that $g(J_*\pi_*X, \pi_*(Y)) = d\eta_1(X, Y)$ is an almost Kähler manifold with a Kähler form $\Omega_*(X, Y) = g_*(J_*X, Y)$. It is not Sasakian, since $R(X, \xi_i)\xi_j = 2\varepsilon_{ijk}\phi_k(X)$ for a horizontal vector X.

REMARK. Note that the metric on the 3-K-contact space is uniquely determined as $g_t = g_0 + g_1 + tg_2$ where $g = (4/|\alpha|_{\rm K}^2)\langle\cdot,\cdot\rangle_{\rm K}$, $g_0 = g_{|\mathfrak{l}|}$, $g_1 = g_{|\mathfrak{a}|}$, $g_2 = \varepsilon g_{|\mathfrak{m}_1}$ with $\varepsilon = 1$ and $\mathfrak{m}_1 = \mathfrak{m}$ in the case of a positive 3-K-contact space G/L and $\varepsilon = -1$ and $\mathfrak{m}_1 = i\mathfrak{m}$ in the case of a negative 3-K-contact space G_0/L , whereas the metric on the almost Kähler space G_0/LT is given up to homothety, i.e. we can also choose the metric $m = g_{|\mathfrak{a}_1} - \frac{1}{2}g_{|i\mathfrak{m}}$ on the space $\mathfrak{m}_0 = \mathfrak{a}_1 \oplus i\mathfrak{m}$ where $g = -\langle\cdot,\cdot\rangle_{\rm K}$ and the twistor space with this metric is still almost Kähler.

Our last aim is to give a precise description of the reduction of the principal bundle SO(M) of orthonormal oriented frames of the Wolf spaces $W(G), W(G)^*$ to the *LA*-structure P(LA, M), and to describe the Levi-Civita connection in *P*. We denote by g_* the symmetric metric on W(G) or $W(G)^*$, i.e. g_* is induced by the metric $-\langle \cdot, \cdot \rangle$ on \mathfrak{m} or $\langle \cdot, \cdot \rangle$ on $i\mathfrak{m}$. Write K = LA and denote by \mathfrak{k} the Lie algebra of K. By $\pi : G/K \to M$ or $\pi : G_0/K \to M$ we mean the natural projection.

Define P = G in the positive case and $P = G_0$ in the negative case. Define the horizontal distribution $\mathcal{H} \subset TG$ (resp. TG_0) by $\mathcal{H}_g = d_e L_g(\mathfrak{m}_1)$ and the vertical distribution by $\mathcal{V}_g = d_e L_g(\mathfrak{k})$. Let $\theta^{\mathbb{C}}$ be a Cartan form on G (resp. G_0) defined on $X \in T_g G$ (resp. $T_g G_0$) as follows: $\theta^{\mathbb{C}}(X) = d_e L_{g^{-1}}(X) \in \mathfrak{g}$ (resp \mathfrak{g}_0). Denote by $p_{\mathfrak{k}}, p_{\mathfrak{m}_1}$ the projections onto $\mathfrak{k}, \mathfrak{m}_1$ with respect to the decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m}$ and $\mathfrak{g}_0 = \mathfrak{k} \oplus i\mathfrak{m}$. Then the connection form ω with horizontal distribution \mathcal{H} is defined by $\omega = p_{\mathfrak{k}} \circ \theta^{\mathbb{C}}$.

We shall treat G (resp. G_0) as a subbundle of the bundle SO(M) by identifying an element $g \in G$ with the mapping $u_g : \mathfrak{m}_1 \to T_{gK}M$ given by $u_g(X) = \pi(d_e L_g(X))$. Then the canonical form of $P \subset SO(M)$ is $\theta = p_{\mathfrak{m}_1} \circ \theta^{\mathbb{C}}(X)$ since

$$\theta(X) = u_g^{-1}(\pi(X)) = p_{\mathfrak{m}_1} \circ \theta^{\mathcal{C}}(X).$$

Since $[\mathfrak{m}_1, \mathfrak{m}_1] \subset \mathfrak{k}$ it follows easily that $\Theta(X, Y) = d\theta(hX, hY) = 0$ where $hX \in \mathcal{H}$ denotes the \mathcal{H} -component of X with respect to the decomposition $TG = \mathcal{V} \oplus \mathcal{H}$.

Thus the connection Γ given by ω is a torsionless connection in the principal bundle of oriented orthonormal frames, i.e. Γ is the Levi-Civita connection of (M, g_*) . Note that we treat K as a subgroup of $SO(\mathfrak{m}_1)$ (where on \mathfrak{m}_1 we have the metric $-\langle \cdot, \cdot \rangle$ if $\mathfrak{m}_1 = \mathfrak{m}$, and $\langle \cdot, \cdot \rangle$ if $\mathfrak{m}_1 = i\mathfrak{m}$), via the representation Ad : $K \to SO(\mathfrak{m}_1)$.

Let $G_1 = G$ or $G_1 = G_0$ and $(a, b) \ni t \mapsto x_t \in M$ be a smooth path in M such that

$$x(a) = eK = x_0 \in G_1/K = M$$

and let $Y \in T_{x_0}M$. Then there exists $Y^* \in \mathfrak{m}_1 \subset \mathfrak{g} = T_eG_1$ such that $Y = \pi(Y^*)$. Let g_t be a horizontal lift of x_t to the K-principal bundle G_1 over M with connection Γ , i.e. $\pi(g_t) = x_t$ and $\omega(\dot{g}_t) = 0$. Then $Y_t = \pi(Y_t^*)$ is a parallel field along x_t where $Y_t^* = d_e L_{g_t}(Y^*) \in \mathcal{H}_{g_t}$. Note that $Y_a = Y$. If $x_a = x_b = x_0$ then $g_b = k \in K$ and under the identification $\mathcal{H}_e = \mathcal{H}_k$ we obtain $Y_b^* = \mathrm{ad}(k)Y^*$.

Consequently, the holonomy group coincides exactly with K and the holonomy representation is $K \ni k \mapsto \operatorname{ad}(k)_{|\mathfrak{m}_1} \in \operatorname{SO}(\mathfrak{m}_1)$ (for the details see [H, p. 207]). Recall that the endomorphisms $J_i : \mathfrak{m}_1 \to \mathfrak{m}_1$ are described in Proposition 2. It is easy to see that the bundle $\mathcal{G} \subset \operatorname{End}(TM)$ of endomorphisms defining the quaternionic structure on M is generated by the endomorphisms $\pi(J_i \circ u_g^{-1})$ where $u_g \in G_1, i \in \{1, 2, 3\}$ (see the construction of \mathcal{G} in [J-1], [J-2]). We have

PROPOSITION 4. The principal bundle SO(M) and the Levi-Civita connection of a quaternionic Kähler Wolf space W(G) (resp. $W(G)^*$) admit a reduction to a K-structure $G_1 \subset SO(M)$ with Levi-Civita connection form $\omega = p_{\mathfrak{k}} \circ \theta^{\mathbb{C}}$. The bundle \mathcal{G} is generated by the endomorphisms $\pi(J_i \circ u_g^{-1})$ where $i \in \{1, 2, 3\}$. It follows that our construction of positive and negative 3-K-contact structures coincides with the one given in [J-2]. The only difference is that we consider a K-reduction $G, G_0 \subset SO(M)$ instead of an Sp(n) Sp(1)-reduction $Q \subset SO(M)$. It is clear that $K \subset Sp(n) Sp(1)$. Consequently, the positive structure is 3-Sasakian and the negative structure is the Tanno nS-structure. In the case $4n \neq 8$ this also follows directly from [J-1]. Let us remark here that K coincides with Sp(n) Sp(1) only in the case of $M = \mathbb{HP}^n =$ Sp(n+1)/Sp(n) Sp(1) and its dual Wolf space (see [A]).

References

- [A] D. V. Alekseevskiĭ, Compact quaternion spaces, Funktsional. Anal. i Prilozhen. 2 (1968), no. 2, 11–20 (in Russian).
- [B] A. Besse, *Einstein Manifolds*, Springer, Berlin, 1987.
- [Bi] R. Bielawski, On the hyperkähler metrics associated to singularities of nilpotent varieties, Ann. Global Anal. Geom. 14 (1996), 177–191
- [B-G] P. Boyer and K. Galicki, 3-Sasakian manifolds, in: Surveys in Differential Geometry: Essays on Einstein Manifolds, Surveys Differential Geom. 6, Internat. Press, Boston, 1999, 123–184.
- [E-S] J. Eells et S. Salamon, Constructions twistorielles des applications harmoniques, C. R. Acad. Sci. Paris Sér. I 296 (1983), 685–687.
- [G-L] K. Galicki and H. B. Lawson, Quaternionic reduction and quaternionic orbifolds, Math. Ann. 282 (1988), 1–21.
- [H] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.
- [J-1] W. Jelonek, Positive and negative 3-K-contact structures, Proc. Amer. Math. Soc. 120 (2001), 247–256.
- [J-2] —, Quaternionic-Kähler geometry and almost Kähler A-manifolds, Ann. Polon. Math. 75 (2000), 111–124.
- [K-S] P. Kobak and A. Swann, The hyperkähler geometry associated to Wolf spaces, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 4 (2001), 587–595.
- [K] M. Konishi, On manifolds with Sasakian 3-structure over quaternion Kähler manifolds, Kōdai Math. Sem. Rep. 26 (1975), 194–200.
- [Ku] Y.-Y. Kuo, On almost contact 3-structures, Tôhoku Math. J. 22 (1970), 325–332.
- [O'N] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459–469.
- [O-T] J. Oprea and A. Tralle, Symplectic Manifolds with no Kähler Structure, Lecture Notes in Math. 1661, Springer, 1997.
- [S] S. Salamon, Quaternionic Kähler manifolds, Invent. Math. 67 (1982), 143–171.
- [Sw] A. Swann, Hyperkähler and quaternionic Kähler geometry, Math. Ann. 289 (1991), 421–450.

W. Jelonek

- [T] S. Tanno, Remarks on a triple of K-contact structures, Tôhoku Math. J. 48 (1996), 519–531.
- [W] J. A. Wolf, Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. Math. Mech. 14 (1965), 1033–1047.

Institute of Mathematics Cracow University of Technology Warszawska 24 31-155 Kraków, Poland E-mail: wjelon@usk.pk.edu.pl

 $Reçu \ par \ la \ Rédaction \ le \ 14.11.2002 \tag{1402}$

148