3-K-contact Wolf spaces

by WŁodzimierz Jelonek (Kraków)

Abstract

The aim of this paper is to give an easy explicit description of 3-K-contact structures on $\mathrm{SO}(3)$-principal fibre bundles over Wolf quaternionic Kähler manifolds.

1. Introduction. In 1965 Wolf constructed examples of symmetric quaternionic Kähler manifolds $W(G), W(G)^{*}$ associated with every simple Lie group G (except $\mathrm{SU}(2)$). This construction is based on the properties of the highest roots in a compact, simple Lie algebra. Every space $W(G)$ is a compact symmetric space and $W(G)^{*}$ is its non-compact dual space. It has been known since $1975[\mathrm{~K}]$ that any quaternionic Kähler manifold $\left(M, g_{0}\right)$ of positive scalar curvature admits a natural $\mathrm{SO}(3)$-principal fibre bundle $p: P \rightarrow M$ such that (P, g) is a 3 -Sasakian manifold and p is a Riemannian submersion. However, for a long time the analogous construction for quaternionic Kähler manifolds of negative scalar curvature was not given. Recently S . Tanno [T] proved that also in the case of negative scalar curvature the natural $\mathrm{SO}(3)$-principal bundle admits a structure similar to a 3-Sasakian structure, called by him the nS-structure (compare also [J-1]).

In this paper we give an elementary description of the positive and negative 3 -K-contact structures related to Wolf quaternionic Kähler spaces. We show that 3 -K-contact structures are related to the real form $\mathfrak{s o}(3)_{\alpha}$ of the Lie algebra $\mathfrak{s l}(2, \mathbb{C})_{\alpha} \subset \mathfrak{g}^{\mathbb{C}}$ generated by the highest root α of \mathfrak{g}. We also give an alternative proof of the result of Bielawski [Bi] who, using Kronheimer's ideas, first explicitly described the metric of 3-Sasakian Wolf spaces (see [BG]). We also remove a (slight) incorrectness of Bielawski's result (Bielawski gave the metric which is only homothetic to a 3-Sasakian metric) and give the description of negative 3 -K-contact Wolf structures not considered by Bielawski. Our method is more elementary and in the spirit of Wolf's paper.

[^0]The paper was supported in part by KBN grant 2P03A 02324.
2. Preliminaries. For the general facts concerning 3-K-contact and 3-Sasakian structures and quaternionic Kähler geometry we refer to $[\mathrm{S}]$, [B-$\mathrm{G}],[\mathrm{K}],[\mathrm{Ku}],[\mathrm{Sw}],[\mathrm{T}],[\mathrm{J}-1],[\mathrm{J}-2],[\mathrm{B}]$. We shall recall several facts proved by Wolf in [W]. Let \mathfrak{g} be a compact, simple real Lie algebra and $\mathfrak{g}^{\mathbb{C}}$ its complexification. By $\langle\cdot, \cdot\rangle_{\mathrm{K}}$ we denote the Killing form on $\mathfrak{g}^{\mathbb{C}}$ and let σ be a real structure giving a compact real form \mathfrak{g} of $\mathfrak{g}^{\mathbb{C}}$. Let \mathfrak{h} be a Cartan subalgebra of $\mathfrak{g}^{\mathbb{C}}$. Fix a system of roots Δ with positive roots Δ_{+}. We write \mathfrak{g}_{β} for the root space of $\beta \in \Delta$, i.e. $\mathfrak{g}_{\beta}=\left\{E \in \mathfrak{g}^{\mathbb{C}}:[H, E]=\beta(H) E\right.$ for all $\left.H \in \mathfrak{h}\right\}$. Let $\alpha \in \Delta_{+}$be a highest root; it is characterized by the condition $\left[E_{\alpha}, E_{\beta}\right]=0$ for all $\beta \in \Delta_{+}$. The following characterization of a highest root was given by Wolf [W]:

Proposition 1. Let α be a root of a complex simple Lie algebra $\mathfrak{g}^{\mathbb{C}}$ relative to a Cartan subalgebra \mathfrak{h}. Then α is the maximal root for some choice of Δ_{+}if and only if the eigenvalues of $\operatorname{ad}\left(H_{\alpha}\right)$ are $-\frac{1}{2}|\alpha|^{2}, 0, \frac{1}{2}|\alpha|^{2}$ off $\mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{-\alpha}$. In that case the centralizer of H_{α} in $\mathfrak{g}^{\mathbb{C}}$ is a direct sum $\mathfrak{z}_{1} \oplus\left\{H_{\alpha}\right\}$ of ideals, where \mathfrak{z}_{1} centralizes $\mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{-\alpha}$.

The centralizer \mathfrak{z} of H_{α} in $\mathfrak{g}^{\mathbb{C}}$ is

$$
\mathfrak{z}=\mathfrak{h} \oplus \sum_{\beta \in \Phi} \mathfrak{g}_{\beta}
$$

where $\Phi=\{\beta \in \Delta:\langle\alpha, \beta\rangle=0\}$.
A quaternionic Kähler structure on a $4 n$-dimensional manifold $M, n>1$, consists of a metric g and a real rank-three subbundle \mathcal{G} of $\operatorname{End}(T M)$ preserved by the Levi-Civita connection and locally generated by almost Hermitian structures I, J, K behaving under composition like the multiplicative pure imaginary quaternions. An equivalent definition of a quaternionic Kähler manifold (M, g) is that the holonomy group of g reduces to the group $\operatorname{Sp}(n) \operatorname{Sp}(1)$.

Of course, a hyper-Kähler manifold may be regarded as a special type of a quaternionic Kähler manifold with zero scalar curvature. We shall exclude this case, assuming that a quaternionic Kähler manifold is of non-zero scalar curvature.

If $n=1$ then a 4 -dimensional manifold (M, g) will be called quaternionic Kähler if (M, g) is Einstein and self-dual with non-zero scalar curvature.

Let (M, g) be a Riemannian manifold and let ξ be a unit Killing vector field on M. Define a tensor field ϕ by $\phi(X)=-\nabla_{X} \xi$ and a 1-form $\eta(X):=$ $g(\xi, X)$. Then we call (M, g, ξ, ϕ, η) a K-contact structure if the following relation is satisfied:

$$
\begin{equation*}
\phi^{2}=-\mathrm{id}+\eta \otimes \xi \tag{K}
\end{equation*}
$$

Assume that ξ is a Killing vector field of unit length on M. We shall find conditions under which the Killing vector field ξ defines a K-contact metric
structure. Denote by $H=\operatorname{ker} \eta=\{X: g(\xi, X)=0\}$ the distribution of horizontal vectors on M. The following lemma is well known.

Lemma 1. Under the above assumptions the Killing vector field ξ gives a K-contact structure on M if and only if the tensor $J=\phi_{\mid H}$ is an almost complex structure on the bundle H, i.e. $J^{2}=-\mathrm{id}_{\mid H}$.

A K-contact structure (M, g, ξ) is called Sasakian if

$$
\begin{equation*}
R(X, \xi) Y=g(\xi, Y) X-g(X, Y) \xi \tag{S}
\end{equation*}
$$

where R is the curvature tensor of (M, g).
A Riemannian manifold (M, g) with an almost complex structure $J \in$ $\operatorname{End}(T M)$ is said to be an almost Hermitian manifold if $g(J X, J Y)=$ $g(X, Y)$ for all $X, Y \in T M$. The 2-form $\Omega(X, Y)=g(J X, Y)$ is called the Kähler form of an almost Hermitian manifold (M, g, J). An almost Hermitian manifold is called almost Kähler if its Kähler form is closed: $d \Omega=0$.

If (M, g, ξ) is a regular K-contact structure (i.e. there exists a quotient manifold $\left.M_{*}=M / \xi\right)$ then $\left(M, g_{*}, J_{*}\right)$ is an almost Kähler manifold, where g_{*} means an induced metric and J_{*} an induced almost complex structure. In that case (M, g, ξ) is Sasakian if and only if $\left(M, g_{*}, J_{*}\right)$ is Kähler, i.e. if $\nabla^{*} \Omega_{*}=0$ where ∇^{*} is the Levi-Civita connection of $\left(M, g_{*}\right)$ and Ω_{*} is the Kähler form of $\left(M, g_{*}, J_{*}\right)$.

Now let us recall the definition of (positive and negative) 3-K-contact structures (see [J-1]).

Definition. Let (P, g) be a Riemannian manifold that admits three distinct K-contact structures $\left(\phi_{i}, \xi_{i}, \eta_{i}\right)$ such that
(a) $g\left(\xi_{i}, \xi_{j}\right)=\delta_{i j}$,
(b) $\left[\xi_{i}, \xi_{j}\right]=2 \varepsilon_{i j k} \xi_{k}$,
(c) $\phi_{i} \xi_{j}=-\varepsilon_{i j k} \xi_{k}$,
where $\phi_{i}=\nabla \xi_{i}$ and $\eta_{i}(X)=g\left(\xi_{i}, X\right)$. Denote by H the horizontal distribution $H=\operatorname{ker} \eta_{1} \cap \operatorname{ker} \eta_{2} \cap \operatorname{ker} \eta_{3}=\bigcap \operatorname{ker} \eta_{i}$ and define the almost complex structures J_{i} on H by the formulas $J_{i}=-\phi_{i \mid H}$. We call $\left(P, \xi_{1}, \xi_{2}, \xi_{3}\right)$ a 3 -K-contact structure (or positive 3 -K-contact structure) if (for $i \neq j$)

$$
\begin{equation*}
J_{i} \circ J_{j}=\varepsilon_{i j k} J_{k}, \tag{2.2a}
\end{equation*}
$$

and a negative 3 - K-contact structure if (for $i \neq j$)

$$
\begin{equation*}
J_{i} \circ J_{j}=-\varepsilon_{i j k} J_{k} . \tag{2.2b}
\end{equation*}
$$

A Riemannian manifold (P, g) with a positive (resp. negative) 3 -K-contact structure is called a positive (resp. negative) 3 - K-contact manifold. Note that arbitrary unit Killing vector fields ξ_{i} satisfying (2.1)(c) and one of conditions (2.2) define K-contact structures on (P, g) (this follows from Lemma 1) so it is not necessary to include this condition in the definition above.

If each structure $\left(M, g, \xi_{i}\right)$ is Sasakian and conditions (2.1) are satisfied then (2.2a) are automatically satisfied and we call such a positive 3 -Kcontact structure a 3 -Sasakian structure.

In our paper [J-1] we have shown that if $\operatorname{dim} P \neq 11$ then every positive 3 -K-contact structure on P is 3 -Sasakian and every negative structure is a Tanno nS-structure.
3. 3-K-contact Wolf spaces. Let G be a compact centreless Lie group. Choose a maximal torus T of G and denote by \mathfrak{g} and \mathfrak{t} the Lie algebras of G and T respectively. Let $\mathfrak{g}^{\mathbb{C}}$ and \mathfrak{h} be the respective complexifications of \mathfrak{g} and \mathfrak{t}. It is clear that \mathfrak{h} is a Cartan subalgebra of a simple complex Lie algebra $\mathfrak{g}^{\mathbb{C}}$. Let Δ be the set of roots of $\mathfrak{g}^{\mathbb{C}}$ with respect to \mathfrak{h} and fix a set of positive roots Δ_{+}. Let $\alpha \in \Delta_{+}$be a highest root. Then $\alpha(X)=\left\langle H_{\alpha}, X\right\rangle$ for some $H_{\alpha} \in i t \subset \mathfrak{h}$. After rescaling the Killing form we can assume that $\langle\cdot, \cdot \cdot\rangle=$ $\left(4 /|\alpha|_{\mathrm{K}}^{2}\right)\langle\cdot, \cdot\rangle_{\mathrm{K}}$ is an ad-invariant metric on $\mathfrak{g}^{\mathbb{C}}$ such that $|\alpha|^{2}=\left\langle H_{\alpha}, H_{\alpha}\right\rangle=4$. Note that $|\alpha|_{\mathrm{K}}^{2}=\left\langle H_{\alpha}, H_{\alpha}\right\rangle>0$ and $\langle\cdot, \cdot\rangle=c\langle\cdot, \cdot\rangle_{\mathrm{K}}$ where $c>0$. We can choose vectors $E_{\alpha} \in \mathfrak{g}_{\alpha}, E_{-\alpha} \in \mathfrak{g}_{-\alpha}$ such that $E_{\alpha}=\sigma\left(E_{-\alpha}\right)$ and $\left\langle E_{\alpha}, E_{-\alpha}\right\rangle=-1$. Note that $\left\langle E_{\alpha}, E_{\alpha}\right\rangle=\left\langle E_{-\alpha}, E_{-\alpha}\right\rangle=0$. It is easy to check that $\left[E_{\alpha}, E_{-\alpha}\right]=$ $-H_{\alpha}$. Let us write $X_{\alpha}=(1 /(\sqrt{2} i))\left(E_{\alpha}-E_{-\alpha}\right), Y_{\alpha}=(1 / \sqrt{2})\left(E_{\alpha}+E_{-\alpha}\right)$, $Z_{\alpha}=\frac{1}{2} i H_{\alpha}$. Then $X_{\alpha}, Y_{\alpha}, Z_{\alpha} \in \mathfrak{g}$ and the following equalities hold:

$$
\begin{equation*}
\left[X_{\alpha}, Y_{\alpha}\right]=2 Z_{\alpha}, \quad\left[X_{\alpha}, Z_{\alpha}\right]=-2 Y_{\alpha}, \quad\left[Y_{\alpha}, Z_{\alpha}\right]=2 X_{\alpha} \tag{3.1}
\end{equation*}
$$

It follows that $\mathfrak{a}=\operatorname{span}_{\mathbb{R}}\left\{X_{\alpha}, Y_{\alpha}, Z_{\alpha}\right\}$ is a real subalgebra of \mathfrak{g} isomorphic to $\mathfrak{s o}(3)$. If α is a highest root then $\operatorname{ad}\left(E_{\alpha}\right)^{2}=0$ and $\operatorname{ad}\left(E_{-\alpha}\right)^{2}=0$ on the space $\sum_{\beta \in \Delta_{+}, \beta \neq \alpha}\left(\mathfrak{g}_{\beta} \oplus \mathfrak{g}_{-\beta}\right)$ (see e.g. $[\mathrm{K}-\mathrm{S}]$).

Proposition 2. Let $\mathfrak{m}=\sum_{\beta \in \Delta_{+}, \beta \neq \alpha,\langle\beta, \alpha\rangle \neq 0} \mathfrak{g} \cap\left(\mathfrak{g}_{\beta} \oplus \mathfrak{g}_{-\beta}\right)$. Then $\operatorname{ad}\left(X_{\alpha}\right) \mathfrak{m} \subset \mathfrak{m}, \operatorname{ad}\left(Y_{\alpha}\right) \mathfrak{m} \subset \mathfrak{m}, \operatorname{ad}\left(Z_{\alpha}\right) \mathfrak{m} \subset \mathfrak{m}$ and $J_{1}=\operatorname{ad}\left(X_{\alpha}\right)_{\mid \mathfrak{m}}, J_{2}=$ $\operatorname{ad}\left(Y_{\alpha}\right)_{\mid \mathfrak{m}}, J_{3}=\operatorname{ad}\left(Z_{\alpha}\right)_{\mid \mathfrak{m}}$ define on \mathfrak{m} three complex structures which give a quaternion structure on \mathfrak{m}, i.e. $J_{i} \circ J_{j}=\varepsilon_{i j k} J_{k}$ if $i \neq j$.

Proof. Since $X_{\alpha}, Y_{\alpha}, Z_{\alpha} \in \mathfrak{g}$ it is enough to prove that the analogous statement holds on $\mathfrak{m}^{\mathbb{C}}=\sum_{\beta \in \Delta_{+}, \beta \neq \alpha,\langle\beta, \alpha\rangle \neq 0}\left(\mathfrak{g}_{\beta} \oplus \mathfrak{g}_{-\beta}\right)$. Let $\gamma \in \Delta, \gamma \neq \alpha$ and $\langle\gamma, \alpha\rangle \neq 0$. Then $Z=\left[E_{\alpha}, E_{\gamma}\right] \in \gamma_{\alpha+\gamma}$ and if $Z \neq 0$ then $-\gamma \in \Delta_{+}$. Since from Proposition 1 we get

$$
\langle\alpha+\gamma, \alpha\rangle=\langle\alpha, \alpha\rangle+\langle\gamma, \alpha\rangle=|\alpha|^{2}-\frac{1}{2}|\alpha|^{2}=\frac{1}{2}|\alpha|^{2} \neq 0
$$

it follows that $\operatorname{ad}\left(E_{\alpha}\right) \mathfrak{m}^{\mathbb{C}} \subset \mathfrak{m}^{\mathbb{C}}$. Similarly one can prove that $\operatorname{ad}\left(E_{-\alpha}\right) \mathfrak{m}^{\mathbb{C}}$ $\subset \mathfrak{m}^{\mathbb{C}}$. Thus $\operatorname{ad}\left(X_{\alpha}\right) \mathfrak{m}^{\mathbb{C}} \subset \mathfrak{m}^{\mathbb{C}}$ and $\operatorname{ad}\left(Y_{\alpha}\right) \mathfrak{m}^{\mathbb{C}} \subset \mathfrak{m}^{\mathbb{C}}$. Note that ad $\left(H_{\alpha}\right) E_{\gamma}=$ $\langle\alpha, \gamma\rangle E_{\gamma}= \pm \frac{1}{2}|\alpha|^{2} E_{\gamma}$. Thus $\operatorname{ad}\left(Z_{\alpha}\right) E_{\gamma}= \pm i E_{\gamma}$ and $J_{3}^{2}=-\mathrm{id}_{\mathfrak{m}}$. We also have
$\operatorname{ad}\left(E_{\alpha}+E_{-\alpha}\right)^{2}=\operatorname{ad}\left(E_{\alpha}\right)^{2}+\operatorname{ad}\left(E_{-\alpha}\right) \circ \operatorname{ad}\left(E_{\alpha}\right)+\operatorname{ad}\left(E_{\alpha}\right) \circ \operatorname{ad}\left(E_{-\alpha}\right)+\operatorname{ad}\left(E_{-\alpha}\right)^{2}$.

Both $\operatorname{ad}\left(E_{\alpha}\right)^{2}$ and $\operatorname{ad}\left(E_{-\alpha}\right)^{2}$ vanish on $\mathfrak{m}^{\mathbb{C}}$. Hence $\operatorname{ad}\left(E_{\alpha}+E_{-\alpha}\right)^{2}\left(E_{\gamma}\right)=$ $\left[E_{\alpha},\left[E_{-\alpha}, E_{\gamma}\right]\right]+\left[E_{-\alpha},\left[E_{\alpha}, E_{\gamma}\right]\right]$.

Now assume that $\gamma \in \Delta_{+}$. Then

$$
\begin{aligned}
{\left[E_{\alpha},\left[E_{-\alpha}, E_{\gamma}\right]\right]+\left[E_{-\alpha},\left[E_{\alpha}, E_{\gamma}\right]\right] } & =-\left[E_{\gamma},\left[E_{\alpha}, E_{-\alpha}\right]\right]+2\left[E_{-\alpha},\left[E_{\alpha}, E_{\gamma}\right]\right] \\
& =-\left[E_{\gamma},\left[E_{\alpha}, E_{-\alpha}\right]\right]=\left[E_{\gamma}, H_{\alpha}\right] \\
& =-\langle\alpha, \gamma\rangle E_{\gamma}=-\frac{1}{2}|\alpha|^{2} E_{\gamma}
\end{aligned}
$$

where we used the fact that if $\alpha \in \Delta_{+}$is a highest root and $\gamma \in \Delta_{+}$, $\langle\alpha, \gamma\rangle \neq 0$ then $\langle\alpha, \gamma\rangle>0$ since otherwise $\alpha+\gamma$ would be a positive root, a contradiction. If $-\gamma \in \Delta_{+}$then

$$
\begin{aligned}
{\left[E_{\alpha},\left[E_{-\alpha}, E_{\gamma}\right]\right]+\left[E_{-\alpha},\left[E_{\alpha}, E_{\gamma}\right]\right] } & =-\left[E_{\gamma},\left[E_{-\alpha}, E_{\alpha}\right]\right]+2\left[E_{\alpha},\left[E_{\alpha}, E_{\gamma}\right]\right] \\
& =\left[E_{\gamma},\left[E_{\alpha}, E_{-\alpha}\right]\right]=-\left[E_{\gamma}, H_{\alpha}\right] \\
& =\langle\alpha, \gamma\rangle E_{\gamma}=-\frac{1}{2}|\alpha|^{2} E_{\gamma} .
\end{aligned}
$$

Recall that $|\alpha|^{2}=4$. Consequently, $\operatorname{ad}\left(E_{\alpha}+E_{-\alpha}\right)_{\mid \mathfrak{m}}^{2}=-2 \mathrm{id}_{\mid \mathfrak{m}}$ and $\operatorname{ad}\left(Y_{\alpha}\right)_{\mid \mathfrak{m}}^{2}$ $=-\left.\mathrm{id}\right|_{\mid \mathfrak{m}}$. Thus $J_{2}^{2}=-\mathrm{id} \mid \mathfrak{m}$. Analogously one can prove that $J_{1}^{2}=-\left.\mathrm{id}\right|_{\mid \mathfrak{m}}$.

Now we show that $J_{1} \circ J_{2}=-J_{3}$. We have

$$
\begin{aligned}
{\left[E_{\alpha}-E_{-\alpha},\left[E_{\alpha}+E_{-\alpha}, E_{\gamma}\right]\right] } & =\left[E_{\alpha},\left[E_{-\alpha}, E_{\gamma}\right]\right]-\left[E_{-\alpha},\left[E_{\alpha}, E_{\gamma}\right]\right] \\
& =-\left[E_{\gamma},\left[E_{\alpha}, E_{-\alpha}\right]\right]=-\left[H_{\alpha}, E_{\gamma}\right]
\end{aligned}
$$

and consequently $J_{1} \circ J_{2}=J_{3}$. It follows easily that $J_{i} \circ J_{j}=\varepsilon_{i j k} J_{k}$ if $i \neq j$.

Now consider the group G with the bi-invariant metric g induced by $-\langle\cdot, \cdot\rangle$. Note that g is positive definite. Write $\mathfrak{l}=\{H \in \mathfrak{t}: \alpha(H)=0\} \oplus$ $\sum_{\beta \in \Delta_{+},\langle\alpha, \beta\rangle=0} \mathfrak{g} \cap\left(\mathfrak{g}_{\beta} \oplus \mathfrak{g}_{-\beta}\right)$. Then \mathfrak{l} is a Lie subalgebra of \mathfrak{g} and $[\mathfrak{a}, \mathfrak{l}]=0$. Note that $\mathfrak{g}=\mathfrak{l} \oplus \mathfrak{a} \oplus \mathfrak{m}$ and $[\mathfrak{l} \oplus \mathfrak{a}, \mathfrak{m}] \subset \mathfrak{m},[\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{l} \oplus \mathfrak{a}$. Let L, A be the connected subgroups of G corresponding to the Lie subalgebras $\mathfrak{l}, \mathfrak{a}$ respectively. Let $t>0$ and let g_{t} be a left-invariant metric on G defined by (we identify g_{t} with a metric on \mathfrak{g}) $g_{t}=g_{0}+g_{1}+t g_{2}$ where $g_{0}=g_{\mid \mathfrak{r}}$, $g_{1}=g_{\mid \mathfrak{a}}, g_{2}=g_{\mid \mathfrak{m}}$. Let $p: G \rightarrow G / L$ be the natural projection. Then the metric $g_{1}+t g_{2}$ on $\mathfrak{a} \oplus \mathfrak{m}$ induces an invariant metric h_{t} on the coset space G / L such that $p:\left(G, g_{t}\right) \rightarrow\left(G / L, h_{t}\right)$ is a Riemannian submersion. The left-invariant vector fields $X_{\alpha}, Y_{\alpha}, Z_{\alpha} \in \mathfrak{g}$ are Killing vector fields with respect to the metric g_{t}.

In fact it is easy to check that if $A \in \mathfrak{a}$ then $g_{t}(\operatorname{ad}(A) X, Y)+g_{t}(X, \operatorname{ad}(A) Y)$ $=0$ for all $X, Y \in \mathfrak{g}$. Since they are horizontal with respect to the Riemannian submersion p and $[\mathfrak{l}, \mathfrak{a}]=0$ it follows that there exist Killing vector fields $\xi_{1}, \xi_{2}, \xi_{3}$ on G / L which are p-related to $X_{\alpha}, Y_{\alpha}, Z_{\alpha}$ respectively.

We show that for an appropriate choice of t the fields $\xi_{1}, \xi_{2}, \xi_{3}$ define on $M=G / L$ a positive 3 -K-contact structure (in fact Sasakian). Define the
three 1-forms on G by

$$
\theta_{1}(X)=g_{t}\left(X_{\alpha}, X\right), \quad \theta_{2}(X)=g_{t}\left(Y_{\alpha}, X\right), \quad \theta_{3}(X)=g_{t}\left(Z_{\alpha}, X\right)
$$

Note that the forms θ_{i} are left-invariant, $\theta_{i}(Y)=0$ if $Y \in \mathfrak{l}$ and $\operatorname{ad}_{l}^{*}\left(\theta_{i}\right)=\theta_{i}$ for any $l \in L$. Thus (see for example [O-T, p. 139]) $\theta_{i}=p^{*} \eta_{i}$ where η_{i} are the one-forms on M defined by $\eta_{i}(X)=h_{t}\left(\xi_{i}, X\right)$. Let $X, Y \in \mathfrak{l} \oplus \mathfrak{a}$. Then

$$
\begin{equation*}
d \theta_{i}(X, Y)=-\theta_{i}([X, Y]) \tag{3.2}
\end{equation*}
$$

The group A is a totally geodesic subgroup of $\left(G, g_{t}\right)$. Consequently, the orbits of the action of A on M are totally geodesic submanifolds of M (the fundamental Killing vector fields of A have constant length). From (3.2) we get $\left(\right.$ setting $\left.T_{1}=X_{\alpha}, T_{2}=Y_{\alpha}, T_{3}=Z_{\alpha}\right)$

$$
\begin{equation*}
d \theta_{i}(X, Y)=-g_{t}\left(T_{i},[X, Y]\right) \tag{3.3}
\end{equation*}
$$

Note that $d \theta_{i}(X, Y)=0$ if $X \in \mathfrak{a}$ and $Y \in \mathfrak{m}$. We also have

$$
\begin{array}{r}
d \theta_{i}(X, Y)=\left\langle T_{i},[X, Y]\right\rangle=-\left\langle\operatorname{ad}(X) T_{i}, Y\right\rangle=g_{t}\left(\operatorname{ad}(X) T_{i}, Y\right) \tag{3.4a}\\
\text { if } X, Y \in \mathfrak{a}
\end{array}
$$

$$
\begin{equation*}
d \theta_{i}(X, Y)=\left\langle T_{i},[X, Y]\right\rangle=-\left\langle\operatorname{ad}(X) T_{i}, Y\right\rangle=\frac{1}{t} g_{t}\left(\operatorname{ad}(X) T_{i}, Y\right) \tag{3.4b}
\end{equation*}
$$

if $X, Y \in \mathfrak{m}$.
Thus if $X, Y \in \mathfrak{m} \oplus \mathfrak{a}$ and $g \in G$ and $x=p(g) \in M$ then $p\left(X_{g}\right) \in T_{x} M$, $p\left(Y_{g}\right) \in T_{x} M$ and

$$
\begin{align*}
d \eta_{i}(p(X), p(Y))_{x)}=g_{t}\left(\operatorname{ad}(X) T_{i}, Y\right) & \text { if } X, Y \in \mathfrak{a} \tag{3.5a}\\
d \eta_{i}(p(X), p(Y))_{x}=\frac{1}{t} g_{t}\left(\operatorname{ad}(X) T_{i}, Y\right) & \text { if } X, Y \in \mathfrak{m} \tag{3.5b}
\end{align*}
$$

Consequently, since $p^{*} d \eta_{i}=d \theta_{i}$ and $d \eta_{i}(X, Y)=2 h_{t}\left(\nabla_{X}^{t} \xi_{i}, Y\right)$ we obtain (note that $p:\left(G, g_{t}\right) \rightarrow\left(M, h_{t}\right)$ is a Riemannian submersion)

$$
\begin{array}{ll}
\nabla_{p(X)}^{t} \xi_{i}=-\frac{1}{2} p\left(\operatorname{ad}\left(T_{i}\right)(X)\right) & \text { if } X \in \mathfrak{a} \\
\nabla_{p(X)}^{t} \xi_{i}=-\frac{1}{2 t} p\left(\operatorname{ad}\left(T_{i}\right)(X)\right) & \text { if } X \in \mathfrak{m} \tag{3.6b}
\end{array}
$$

where by ∇^{t} we denote the Levi-Civita connection of $\left(M, h_{t}\right)$. If we identify the space $T_{x} M$ with $\mathfrak{a} \oplus \mathfrak{m}$ by means of p then

$$
\begin{align*}
\nabla^{t} \xi_{i \mid \mathfrak{a}} & =-\frac{1}{2} \operatorname{ad}\left(T_{i}\right)_{\mid \mathfrak{a}} \tag{3.7a}\\
\nabla^{t} \xi_{i \mid \mathfrak{m}} & =-\frac{1}{2 t} \operatorname{ad}\left(T_{i}\right)_{\mid \mathfrak{m}} \tag{3.7b}
\end{align*}
$$

Note that if $p(g)=p\left(g_{1}\right)$ then $g_{1}=g l$ where $l \in L$. Thus if we identify $(\mathfrak{a} \oplus \mathfrak{m})_{g}=d_{e} L_{g}(\mathfrak{a} \oplus \mathfrak{m}) \subset T_{g} G$ and $(\mathfrak{a} \oplus \mathfrak{m})_{g_{1}}=d_{e} L_{g_{1}}(\mathfrak{a} \oplus \mathfrak{m}) \subset T_{g_{1}} G$ with $T_{g L} G / L$ by means of p and $X \in \mathfrak{a} \oplus \mathfrak{m}$ then a vector $p\left(X_{g}\right) \in T_{g L} G / L$ is
represented by a vector $(\operatorname{Ad}(l) X)_{g_{1}} \in \mathfrak{m}_{g_{1}}$. However $[L, A]=\{e\}$ and consequently (3.7) does not depend on the choice of the isomorphism $(\mathfrak{a} \oplus \mathfrak{m})_{g}=$ $T_{g L} G / L$.

Now consider the Lie algebra $\mathfrak{g}_{0}=\mathfrak{l} \oplus \mathfrak{a} \oplus i \mathfrak{m} \subset \mathfrak{g}^{\mathbb{C}}$. To this Lie algebra corresponds a connected Lie subgroup G_{0} of the Lie group $G^{\mathbb{C}}$. We call G_{0} the dual group of G. On the group $G^{\mathbb{C}}$ we have a bi-invariant metric g induced by the Killing form $\langle\cdot, \cdot\rangle_{\mathrm{K}}$ on $g^{\mathbb{C}}$, i.e.

$$
g(X, Y)_{e}=-\frac{1}{|\alpha|^{2}}\langle X, Y\rangle_{\mathrm{K}}=-\langle X, Y\rangle
$$

Let $t>0$ and let g_{t} be a left-invariant metric on G_{0} defined by (we identify g_{t} with a metric on $\left.\mathfrak{g}_{0}\right) g_{t}=g_{0}+g_{1}+t g_{2}$ where $g_{0}=g_{\mid \mathfrak{r}}, g_{1}=g_{\mid \mathfrak{a}}, g_{2}=-g_{\mid i \mathfrak{m}}$. Note that g_{t} is a positive-definite metric on G_{0}. Let $p_{0}: G_{0} \rightarrow G_{0} / L$ be a natural projection. Then the metric $g_{1}+t g_{2}$ on $\mathfrak{a} \oplus \mathfrak{m}$ induces an invariant metric h_{t} on the coset space G_{0} / L such that $p_{0}:\left(G_{0}, g_{t}\right) \rightarrow\left(G_{0} / L, h_{t}\right)$ is a Riemannian submersion. The left-invariant vector fields $X_{\alpha}, Y_{\alpha}, Z_{\alpha} \in \mathfrak{a} \subset \mathfrak{g}_{0}$ are Killing vector fields with respect to the metric g_{t} on G_{0}. It follows that there exist Killing vector fields $\xi_{1}, \xi_{2}, \xi_{3}$ on $M_{0}=G_{0} / L$ which are p_{0}-related to T_{1}, T_{2}, T_{3} respectively.

Define three 1-forms on G by $\theta_{i}(X)=g_{t}\left(T_{i}, X\right)$. Note that the forms θ_{i} are left-invariant, $\theta_{i}(Y)=0$ if $Y \in \mathfrak{l}$ and $\operatorname{ad}_{l}^{*} \theta_{i}=\theta_{i}$ for any $l \in L$. Thus $\theta_{i}=p^{*} \eta_{i}$ where η_{i} are one-forms on M defined by $\eta_{i}(X)=h_{t}\left(\xi_{i}, X\right)$. Let $X, Y \in \mathfrak{l} \oplus \mathfrak{a}$. Then as above

$$
\begin{equation*}
d \theta_{i}(X, Y)=-\theta_{i}([X, Y])=-g_{t}\left(T_{i},[X, Y]\right) \tag{3.8}
\end{equation*}
$$

Note that $d \theta_{i}(X, Y)=0$ if $X \in \mathfrak{a}$ and $Y \in i \mathfrak{m}$. We also have

$$
\begin{array}{r}
d \theta_{i}(X, Y)=\left\langle T_{i},[X, Y]\right\rangle=-\left\langle\operatorname{ad}(X) T_{i}, Y\right\rangle=g_{t}\left(\operatorname{ad}(X) T_{i}, Y\right) \\
\text { if } X, Y \in \mathfrak{a} \\
d \theta_{i}(X, Y)=\left\langle T_{i},[X, Y]\right\rangle=-\left\langle\operatorname{ad}(X) T_{i}, Y\right\rangle=-\frac{1}{t} g_{t}\left(\operatorname{ad}(X) T_{i}, Y\right) \tag{3.9b}\\
\text { if } X, Y \in i \mathfrak{m}
\end{array}
$$

Thus if $X, Y \in i \mathfrak{m} \oplus \mathfrak{a}$ and $g \in G_{0}$ and $x=p_{0}(g) \in M_{0}$ then $p_{0}\left(X_{g}\right) \in T_{x} M_{0}$, $p_{0}\left(Y_{g}\right) \in T_{x} M_{0}$ and

$$
\begin{equation*}
d \eta_{i}\left(p_{0}(X), p_{0}(Y)\right)_{x)}=g_{t}\left(\operatorname{ad}(X) T_{i}, Y\right) \quad \text { if } X, Y \in \mathfrak{a} \tag{3.10a}
\end{equation*}
$$

$$
\begin{equation*}
d \eta_{i}\left(p_{0}(X), p_{0}(Y)\right)_{x}=-\frac{1}{t} g_{t}\left(\operatorname{ad}(X) T_{i}, Y\right) \quad \text { if } X, Y \in i \mathfrak{m} \tag{3.10b}
\end{equation*}
$$

Consequently, since $d \eta_{i}=p_{0}^{*} d \theta_{i}$ and $d \eta_{i}(X, Y)=2 h_{t}\left(\nabla_{X}^{t} \xi_{i}, Y\right)$ we obtain (note that $p_{0}:\left(G_{0}, g_{t}\right) \rightarrow\left(M_{0}, h_{t}\right)$ is a Riemannian submersion and we identify $T M_{0}$ with $\mathfrak{a} \oplus i \mathfrak{m}$ by means of $\left.p_{0}\right)$

$$
\begin{equation*}
\nabla^{t} \xi_{i \mid \mathfrak{a}}=-\frac{1}{2} \operatorname{ad}\left(T_{i}\right)_{\mid \mathfrak{a}} \tag{3.11a}
\end{equation*}
$$

$$
\begin{equation*}
\nabla^{t} \xi_{i \mid i \mathfrak{m}}=\frac{1}{2 t} \operatorname{ad}\left(T_{i}\right)_{\mid i \mathfrak{m}} \tag{3.11b}
\end{equation*}
$$

Hence we can prove
Theorem 1. Let G be a compact, simple and centreless Lie group and let G_{0} be its dual group. Then $\left(G / L, h_{t}, \xi_{1}, \xi_{2}, \xi_{3}\right)$ is a positive 3-K-contact structure and $\left(G_{0} / L, h_{t}, \xi_{1}, \xi_{2}, \xi_{3}\right)$ is a negative 3 -K-contact structure if and only if $t=1 / 2$.

Proof. Note that in both cases considered above we have $\nabla_{\xi_{i}}^{t} \xi_{j}=\varepsilon_{i j k} \xi_{k}$. Thus conditions (2.1) of the definition of 3 -K-contact structure are satisfied. If we identify $T_{x} M$ with $\mathfrak{a} \oplus \mathfrak{m}$ (respectively $T_{x} M_{0}$ with $\mathfrak{a} \oplus i \mathfrak{m}$) by means of p (resp. p_{0}) then the space H described in the definition coincides with \mathfrak{m} (resp. $i \mathfrak{m}$). With this identification $J_{i}=\nabla^{t} \xi_{i \mid H}$ equals

$$
\nabla^{t} \xi_{i \mid \mathfrak{m}}=-\frac{1}{2 t} \operatorname{ad}\left(T_{i}\right)_{\mid \mathfrak{m}}
$$

in the first case and

$$
\nabla^{t} \xi_{i \mid i \mathfrak{m}}=\frac{1}{2 t} \operatorname{ad}\left(T_{i}\right)_{\mid i \mathfrak{m}}
$$

in the second case. From Proposition 2 it follows that if $t=1 / 2$ then $\nabla^{t} \xi_{i}$ defines on the space $H_{i}=\left\{X \in T M\left(T M_{0}\right): h_{t}\left(\xi_{i}, X\right)=0\right\}$ an almost complex structure (i.e. $\left.\left(\nabla^{t} \xi_{i \mid H_{i}}\right)^{2}=-\operatorname{id}_{H_{i}}\right)$. Consequently, each field ξ_{i} defines a K-contact structure on $\left(M, h_{1 / 2}\right)$ (resp. on $\left(M_{0}, h_{1 / 2}\right)$).

Now from (3.7) and (3.11) it follows that for $t=1 / 2$ we have

$$
-\nabla^{t} \xi_{i \mid \mathfrak{m}}=\frac{1}{2 t} \operatorname{ad}\left(T_{i}\right)_{\mid \mathfrak{m}}=J_{i}
$$

and respectively

$$
-\nabla^{t} \xi_{i \mid i \mathfrak{m}}=-\frac{1}{2 t} \operatorname{ad}\left(T_{i}\right)_{\mid i \mathfrak{m}}=i J_{i} i
$$

where J_{i} is defined in Proposition 2 and $i J_{i} i(X)=i\left(J_{i}(i X)\right)$ for $X \in i m$. Consequently, it follows from Proposition 2 that $\left(M, h_{1 / 2}, \xi_{1}, \xi_{2}, \xi_{3}\right)$ is a positive 3 -K-contact structure and that $\left(M_{0}, h_{1 / 2}, \xi_{1}, \xi_{2}, \xi_{3}\right)$ is a negative 3 -K-contact structure.

Note that the spaces G / L are $\mathrm{SO}(3)$ or $\mathrm{Sp}(1)$ bundles over the symmetric quaternionic spaces $W(G)$, and G / L are exactly the spaces

$$
\begin{gathered}
\mathrm{Sp}(n) / \mathrm{Sp}(n-1)=S^{4 n-1}, \quad \mathrm{SU}(m) / S(U(m-2) \times U(1)), \\
\mathrm{SO}(k) / \mathrm{SO}(k-4) \times \operatorname{Sp}(1), \quad G_{2} / \operatorname{Sp}(1), \quad F_{4} / \operatorname{Sp}(3) \\
E_{6} / \mathrm{SU}(6), \quad E_{7} / \operatorname{Spin}(12), \quad E_{8} / E_{7}
\end{gathered}
$$

where $n \geq 1, m \geq 3, k \geq 7$, and G / L is an $\operatorname{Sp}(1)$ bundle only in the first case of $\operatorname{Sp}(n) / \operatorname{Sp}(n-1)=S^{4 n-1}$. Note that this space admits a \mathbb{Z}_{2} quotient $\operatorname{Sp}(n) / \operatorname{Sp}(n-1) \times \mathbb{Z}_{2}=\mathbb{R P}^{4 n-1}$ which is also a 3-Sasakian space.

The holonomy representation of $W(G)$ with symmetric metric is the representation ad of the group $L A$ on the space \mathfrak{m} with quaternionic structure given by J_{1}, J_{2}, J_{3} where $A=\operatorname{Sp}(1)$ and the action $A \ni a \mapsto \operatorname{Ad}(a)_{\mid \mathfrak{m}}$ coincides with the standard representation of the group $\operatorname{Sp}(1)=\{q \in \mathbb{H}: q \bar{q}=1\}$ on the space \mathbb{H}^{n} where $n=\frac{1}{4} \operatorname{dim} \mathfrak{m}$. Consequently, $L \operatorname{Sp}(1) \subset \operatorname{Sp}(n) \operatorname{Sp}(1)$.

Now our aim is to give a precise description of twistor spaces of Wolf spaces (see $[\mathrm{S}],[\mathrm{Sw}]$, $[\mathrm{J}-1]$). In the negative case we obtain homogeneous almost Kähler manifolds which are not Kähler. In the positive case we get Einstein Kähler spaces $G / L T$ of positive scalar curvature where T is the one-dimensional torus group. We only give the proof for the negative case, the positive case being similar.

Proposition 3. The homogeneous spaces $G_{0} / L T$, where T is the oneparameter subgroup of $\mathrm{Sp}(1)=A$ generated by $Z_{\alpha} \in \mathfrak{a}$ with metric induced by the metric $m=g_{\mid \mathfrak{a}_{1}}-\frac{1}{2} g_{\mid \mathfrak{m}}$ on the space $\mathfrak{m}_{0}=\mathfrak{a}_{1} \oplus i \mathfrak{m}$ where $g=-\left(4 /|\alpha|_{\mathrm{K}}^{2}\right)\langle\cdot, \cdot\rangle_{\mathrm{K}}$ and $\mathfrak{a}_{1}=\operatorname{span}_{\mathbb{R}}\left\{X_{\alpha}, Y_{\alpha}\right\}$, are strictly almost Kähler homogeneous spaces.

Proof. Let π_{*} be the natural projection $\pi_{*}: G_{0} / L \rightarrow G_{0} / L T$. Since $G_{0} / L T$ is the quotient of G_{0} / L by the one-parameter group of isometries generated by the Killing vector field ξ_{3} and $\left(\left(G_{0} / L, h_{1 / 2}\right), \xi_{3}\right)$ is a K-contact structure it follows that $G_{0} / L T$ with the induced metric g_{*} and an almost Hermitian structure J_{*} such that $g\left(J_{*} \pi_{*} X, \pi_{*}(Y)\right)=d \eta_{1}(X, Y)$ is an almost Kähler manifold with a Kähler form $\Omega_{*}(X, Y)=g_{*}\left(J_{*} X, Y\right)$. It is not Sasakian, since $R\left(X, \xi_{i}\right) \xi_{j}=2 \varepsilon_{i j k} \phi_{k}(X)$ for a horizontal vector X.

Remark. Note that the metric on the $3-\mathrm{K}$-contact space is uniquely determined as $g_{t}=g_{0}+g_{1}+t g_{2}$ where $g=\left(4 /|\alpha|_{\mathrm{K}}^{2}\right)\langle\cdot, \cdot\rangle_{\mathrm{K}}, g_{0}=g_{\mid \mathfrak{r}}, g_{1}=g_{\mid \mathfrak{a}}$, $g_{2}=\varepsilon g_{\mid \mathfrak{m}_{1}}$ with $\varepsilon=1$ and $\mathfrak{m}_{1}=\mathfrak{m}$ in the case of a positive 3 -K-contact space G / L and $\varepsilon=-1$ and $\mathfrak{m}_{1}=i \mathfrak{m}$ in the case of a negative 3-K-contact space G_{0} / L, whereas the metric on the almost Kähler space $G_{0} / L T$ is given up to homothety, i.e. we can also choose the metric $m=g_{\mid \mathfrak{a}_{1}}-\frac{1}{2} g_{\mid i \mathfrak{m}}$ on the space $\mathfrak{m}_{0}=\mathfrak{a}_{1} \oplus i \mathfrak{m}$ where $g=-\langle\cdot, \cdot\rangle_{\mathrm{K}}$ and the twistor space with this metric is still almost Kähler.

Our last aim is to give a precise description of the reduction of the principal bundle $\mathrm{SO}(M)$ of orthonormal oriented frames of the Wolf spaces $W(G), W(G)^{*}$ to the $L A$-structure $P(L A, M)$, and to describe the LeviCivita connection in P. We denote by g_{*} the symmetric metric on $W(G)$ or $W(G)^{*}$, i.e. g_{*} is induced by the metric $-\langle\cdot, \cdot\rangle$ on \mathfrak{m} or $\langle\cdot, \cdot\rangle$ on $i \mathfrak{m}$. Write $K=L A$ and denote by \mathfrak{k} the Lie algebra of K. By $\pi: G / K \rightarrow M$ or $\pi: G_{0} / K \rightarrow M$ we mean the natural projection.

Define $P=G$ in the positive case and $P=G_{0}$ in the negative case. Define the horizontal distribution $\mathcal{H} \subset T G\left(\right.$ resp. $\left.T G_{0}\right)$ by $\mathcal{H}_{g}=d_{e} L_{g}\left(\mathfrak{m}_{1}\right)$ and the
vertical distribution by $\mathcal{V}_{g}=d_{e} L_{g}(\mathfrak{k})$. Let θ^{C} be a Cartan form on G (resp. G_{0}) defined on $X \in T_{g} G$ (resp. $T_{g} G_{0}$) as follows: $\theta^{\mathrm{C}}(X)=d_{e} L_{g^{-1}}(X) \in \mathfrak{g}$ (resp \mathfrak{g}_{0}). Denote by $p_{\mathfrak{k}}, p_{\mathfrak{m}_{1}}$ the projections onto $\mathfrak{k}, \mathfrak{m}_{1}$ with respect to the decomposition $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{m}$ and $\mathfrak{g}_{0}=\mathfrak{k} \oplus i \mathfrak{m}$. Then the connection form ω with horizontal distribution \mathcal{H} is defined by $\omega=p_{\mathfrak{k}} \circ \theta^{\mathrm{C}}$.

We shall treat G (resp. G_{0}) as a subbundle of the bundle $\mathrm{SO}(M)$ by identifying an element $g \in G$ with the mapping $u_{g}: \mathfrak{m}_{1} \rightarrow T_{g K} M$ given by $u_{g}(X)=\pi\left(d_{e} L_{g}(X)\right)$. Then the canonical form of $P \subset \operatorname{SO}(M)$ is $\theta=$ $p_{\mathfrak{m}_{1}} \circ \theta^{\mathrm{C}}(X)$ since

$$
\theta(X)=u_{g}^{-1}(\pi(X))=p_{\mathfrak{m}_{1}} \circ \theta^{\mathrm{C}}(X) .
$$

Since $\left[\mathfrak{m}_{1}, \mathfrak{m}_{1}\right] \subset \mathfrak{k}$ it follows easily that $\Theta(X, Y)=d \theta(h X, h Y)=0$ where $h X \in \mathcal{H}$ denotes the \mathcal{H}-component of X with respect to the decomposition $T G=\mathcal{V} \oplus \mathcal{H}$.

Thus the connection Γ given by ω is a torsionless connection in the principal bundle of oriented orthonormal frames, i.e. Γ is the Levi-Civita connection of $\left(M, g_{*}\right)$. Note that we treat K as a subgroup of $\mathrm{SO}\left(\mathfrak{m}_{1}\right)$ (where on \mathfrak{m}_{1} we have the metric $-\langle\cdot, \cdot\rangle$ if $\mathfrak{m}_{1}=\mathfrak{m}$, and $\langle\cdot, \cdot\rangle$ if $\mathfrak{m}_{1}=i \mathfrak{m}$), via the representation $\mathrm{Ad}: K \rightarrow \mathrm{SO}\left(\mathfrak{m}_{1}\right)$.

Let $G_{1}=G$ or $G_{1}=G_{0}$ and $(a, b) \ni t \mapsto x_{t} \in M$ be a smooth path in M such that

$$
x(a)=e K=x_{0} \in G_{1} / K=M
$$

and let $Y \in T_{x_{0}} M$. Then there exists $Y^{*} \in \mathfrak{m}_{1} \subset \mathfrak{g}=T_{e} G_{1}$ such that $Y=\pi\left(Y^{*}\right)$. Let g_{t} be a horizontal lift of x_{t} to the K-principal bundle G_{1} over M with connection Γ, i.e. $\pi\left(g_{t}\right)=x_{t}$ and $\omega\left(\dot{g}_{t}\right)=0$. Then $Y_{t}=\pi\left(Y_{t}^{*}\right)$ is a parallel field along x_{t} where $Y_{t}^{*}=d_{e} L_{g_{t}}\left(Y^{*}\right) \in \mathcal{H}_{g_{t}}$. Note that $Y_{a}=Y$. If $x_{a}=x_{b}=x_{0}$ then $g_{b}=k \in K$ and under the identification $\mathcal{H}_{e}=\mathcal{H}_{k}$ we obtain $Y_{b}^{*}=\operatorname{ad}(k) Y^{*}$.

Consequently, the holonomy group coincides exactly with K and the holonomy representation is $K \ni k \mapsto \operatorname{ad}(k)_{\mid \mathfrak{m}_{1}} \in \mathrm{SO}\left(\mathfrak{m}_{1}\right)$ (for the details see [H, p. 207]). Recall that the endomorphisms $J_{i}: \mathfrak{m}_{1} \rightarrow \mathfrak{m}_{1}$ are described in Proposition 2. It is easy to see that the bundle $\mathcal{G} \subset \operatorname{End}(T M)$ of endomorphisms defining the quaternionic structure on M is generated by the endomorphisms $\pi\left(J_{i} \circ u_{g}^{-1}\right)$ where $u_{g} \in G_{1}, i \in\{1,2,3\}$ (see the construction of \mathcal{G} in [J-1], [J-2]). We have

Proposition 4. The principal bundle $\mathrm{SO}(M)$ and the Levi-Civita connection of a quaternionic Kähler Wolf space $W(G)\left(\right.$ resp. $\left.W(G)^{*}\right)$ admit a reduction to a K-structure $G_{1} \subset \mathrm{SO}(M)$ with Levi-Civita connection form $\omega=p_{\mathfrak{k}} \circ \theta^{\mathrm{C}}$. The bundle \mathcal{G} is generated by the endomorphisms $\pi\left(J_{i} \circ u_{g}^{-1}\right)$ where $i \in\{1,2,3\}$.

It follows that our construction of positive and negative 3-K-contact structures coincides with the one given in [J-2]. The only difference is that we consider a K-reduction $G, G_{0} \subset \mathrm{SO}(M)$ instead of an $\operatorname{Sp}(n) \operatorname{Sp}(1)$-reduction $Q \subset \mathrm{SO}(M)$. It is clear that $K \subset \operatorname{Sp}(n) \operatorname{Sp}(1)$. Consequently, the positive structure is 3-Sasakian and the negative structure is the Tanno nS-structure. In the case $4 n \neq 8$ this also follows directly from [J-1]. Let us remark here that K coincides with $\operatorname{Sp}(n) \operatorname{Sp}(1)$ only in the case of $M=\mathbb{H} \mathbb{P}^{n}=$ $\operatorname{Sp}(n+1) / \operatorname{Sp}(n) \operatorname{Sp}(1)$ and its dual Wolf space (see $[\mathrm{A}])$.

References

[A] D. V. Alekseevskiĭ, Compact quaternion spaces, Funktsional. Anal. i Prilozhen. 2 (1968), no. 2, 11-20 (in Russian).
[B] A. Besse, Einstein Manifolds, Springer, Berlin, 1987.
[Bi] R. Bielawski, On the hyperkähler metrics associated to singularities of nilpotent varieties, Ann. Global Anal. Geom. 14 (1996), 177-191
[B-G] P. Boyer and K. Galicki, 3-Sasakian manifolds, in: Surveys in Differential Geometry: Essays on Einstein Manifolds, Surveys Differential Geom. 6, Internat. Press, Boston, 1999, 123-184.
[E-S] J. Eells et S. Salamon, Constructions twistorielles des applications harmoniques, C. R. Acad. Sci. Paris Sér. I 296 (1983), 685-687.
[G-L] K. Galicki and H. B. Lawson, Quaternionic reduction and quaternionic orbifolds, Math. Ann. 282 (1988), 1-21.
[H] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.
[J-1] W. Jelonek, Positive and negative 3-K-contact structures, Proc. Amer. Math. Soc. 120 (2001), 247-256.
[J-2] —, Quaternionic-Kähler geometry and almost Kähler \mathcal{A}-manifolds, Ann. Polon. Math. 75 (2000), 111-124.
[K-S] P. Kobak and A. Swann, The hyperkähler geometry associated to Wolf spaces, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 4 (2001), 587-595.
[K] M. Konishi, On manifolds with Sasakian 3-structure over quaternion Kähler manifolds, Kōdai Math. Sem. Rep. 26 (1975), 194-200.
[Ku] Y.-Y. Kuo, On almost contact 3-structures, Tôhoku Math. J. 22 (1970), 325-332.
[O'N] B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469.
[O-T] J. Oprea and A. Tralle, Symplectic Manifolds with no Kähler Structure, Lecture Notes in Math. 1661, Springer, 1997.
[S] S. Salamon, Quaternionic Kähler manifolds, Invent. Math. 67 (1982), 143-171.
[Sw] A. Swann, Hyperkähler and quaternionic Kähler geometry, Math. Ann. 289 (1991), 421-450.
[T] S. Tanno, Remarks on a triple of K-contact structures, Tôhoku Math. J. 48 (1996), 519-531.
[W] J. A. Wolf, Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. Math. Mech. 14 (1965), 1033-1047.

Institute of Mathematics
Cracow University of Technology
Warszawska 24
31-155 Kraków, Poland
E-mail: wjelon@usk.pk.edu.pl

[^0]: 2000 Mathematics Subject Classification: 53C05, 53C20, 53C25.
 Key words and phrases: quaternionic Kähler manifold, Sasakian manifold, contact manifold.

