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Natural operators lifting linear vector fields
from a vector bundle to its r-jet prolongations

by Włodzimierz M. Mikulski (Kraków)

Abstract. All natural operators A transforming a linear vector field X on a vector
bundle E into a vector field A(X) on the r-jet prolongation JrE of E are given. Similar
results are deduced for the r-jet prolongations JrvE and J [r]E in place of JrE.

0. Introduction. One of the problems studied in differential geometry
is the naturality problem: how a geometrical object can induce canonically
another geometrical object. An illustration is the Levi-Civita connection
induced by a Riemannian tensor. Another example is the flow prolongation
of a vector field to the tangent bundle. Such constructions appear in the
context of natural operators in the sense of [3].

Natural operators A : T  TF lifting vector fields X on a manifold
M to a natural bundle FM are used practically in all papers in which the
problem of prolongations of geometric structures is studied. That is why
such natural operators are classified in [1]–[5] and other papers.

Natural operators A : Tproj  TF lifting projectable vector fields X
on a fibered (or fibered-fibered) manifold Y to a natural bundle FY are
important for the same reasons as above. The most important FY is the r-jet
prolongation bundle JrY (or the (r, s, q)-prolongation bundle J (r,s,q)Y ). It
plays a fundamental role in the theory of connections, differential equations
and Lagrangians.

The authors of [3] studied the naturality problem how a projectable
vector field X on a fibered manifold p : Y → M can induce a vector field
A(X) on the r-jet prolongation JrY of Y . This problem was reflected in
the concept of FMm,n-natural operators A : Tproj|FMm,n

 TJr. It was
proved that any FMm,n-natural operator A : Tproj|FMm,n

 TJr is a
constant multiple of the flow operator J r : Tproj|FMm,n

 TJr.
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In [5], we extended this result to the (r, s, q)-jet prolongation functor
J (r,s,q) on fibered-fibered manifolds and obtained a similar classification of
natural operators lifting projectable-projectable vector fields to J (r,s,q).

The results of [3] and [5] show that the bundles JrY and J (r,s,q)Y are
“poor” with respect to liftings of projectable vector fields. This indicates
that there is not much possibility to prolong geometric objects by means of
liftings of projectable vector fields.

It seems interesting to solve problems similar to those in [3] and [5] for
the r-jet prolongation bundle JrE of a vector bundle E in place of a fibered
manifold Y . The bundle JrE plays a similar role to JrY . It is fundamental
in the theory of linear connections, linear differential equations and linear
Lagrangians. Therefore the possibility of lifting geometric objects to J rE
by means of lifts of linear vector fields is interesting. We prove that this
possibility is rather limited.

In the first part of the present paper we study the naturality problem
of how a linear vector field X on a vector bundle E can induce a vector
field A(X) on the r-jet prolongation JrE of E. This problem is reflected in
the concept of VBm,n-natural operators A : Tlin|VBm,n  TJr lifting a linear
vector field X on E to a vector field A(X) on JrE. We prove that for integers
m ≥ 2, n ≥ 1 and r ≥ 0 any such operator is a linear combination of the
flow operator J rX and the Liouville vector field L on JrE. As corollaries,
we derive similar results for JrE∗, (JrE)∗ and (JrE∗)∗ in place of JrE.

In the second part of the paper we study the similar problem for the
vertical r-jet prolongation JrvE in place of JrE. We prove that for integers
m ≥ 2, n ≥ 1 and r ≥ 1 any VBm,n-natural operator lifting a linear vector
field X on E to a vector field on JrvE is a linear combination of the flow
operator J rX, the Liouville vector field L on JrvE and some explicitly con-
structed natural operators V 〈s〉(X) for s = 0, . . . , r. As corollaries, we derive
similar results for JrvE

∗, (JrvE)∗ and (JrvE
∗)∗ in place of JrvE.

In the third part we prove that for integers m ≥ 2, n ≥ 1 and r ≥ 1, any
VBm,n-natural linear operator A lifting a linear vector field X from a vector
bundle E with m-dimensional base and n-dimensional fibers to a vector
field A(X) on the [r]-jet prolongation J [r]E of E is a linear combination
of the flow operator J [r] and some explicitly constructed natural linear
operator U(X). As corollaries we deduce similar results for J [r]E∗, (J [r]E)∗

and (J [r]E∗)∗ in place of J [r]E.
The category of vector bundles with m-dimensional bases and vector

bundle maps with local diffeomorphisms as base maps will be denoted
by VBm.

The category of vector bundles with m-dimensional bases and n-dimen-
sional fibers and vector bundle isomorphisms onto open vector subbundles
will be denoted by VBm,n.
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The trivial vector bundle Rm ×Rn over Rm with standard fiber Rn will
be denoted by Rm,n.

The coordinates on Rm will be denoted by x1, . . . , xm, and the fiber
coordinates on Rm,n by y1, . . . , yn.

All manifolds are assumed to be finite-dimensional and smooth. Maps
are assumed to be smooth, i.e. of class C∞.

I. NATURAL OPERATORS LIFTING LINEAR VECTOR FIELDS
FROM A VECTOR BUNDLE TO ITS r-JET PROLONGATION

1. The r-jet prolongation functor. Given a VBm-object p : E →M
the r-jet prolongation JrE of E is the vector bundle

JrE = {jrxσ | σ is a local section of E, x ∈M}
over M . Every VBm-map f : E1 → E2 covering f : M1 → M2 induces a
vector bundle map Jrf : JrE1 → JrE2 covering f such that

Jrf(jrxσ) = jrf(x)(f ◦ σ ◦ f−1), jrxσ ∈ JrE1.

The functor Jr : VBm → VBm is a fiber product preserving vector gauge
bundle functor.

From now on we identify Jr0 (Rm,n) and ×nJr0 (Rm,R) via jr0(x, σ(x)) 7→
(jr0σ

l)nl=1, σ = (σ1, . . . , σn) : Rm → Rn.

2. Examples of natural operators Tlin|VBm,n  TJr. Let p : E →M
be a VBm,n-object. A projectable vector field X on E is called linear if
X : E → TE is a vector bundle map from p : E →M into Tp : TE → TM .
Equivalently, the flow FlXt of X is formed by VBm,n-maps. The space of
linear vector fields on E will be denoted by Xlin(E).

A natural operator A : Tlin|VBm,n  TJr is a VBm,n-invariant family
of regular operators A : Xlin(E) → X (JrE) for any VBm,n-object E. The
VBm,n-invariance means that for any VBm,n-map f : E1 → E2 and any
f -conjugate linear vector fields X and Y on E1 and E2 the vector fields
A(X) and A(Y ) are Jrf -conjugate. The regularity means that A trans-
forms smoothly parametrized families of linear vector fields into smoothly
parametrized families of vector fields.

Example 1 (The flow operator). Let X be a linear vector field on a
VBm,n-object p : E → M . The flow FlXt of X is formed by VBm,n-maps
on E. Applying the functor Jr we obtain a flow Jr(FlXt ) on JrE. The vector
field J rX on JrE corresponding to Jr(FlXt ) is called the flow prolongation
of X. The correspondence J r : Tlin|VBm,n  TJr, X 7→ J rX, is a natural
operator.
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Example 2 (The Liouville vector field). Let p : E → M be a VBm,n-
object. Let L be the Liouville vector field on the vector bundle J rE, Ly =
y ∈ JrxE

∼= Ty(JrxE) ⊂ TyJ
rE, y ∈ JrxE, x ∈ M . The correspondence

L : Tlin|VBm,n  TJr, X 7→ L, is a natural operator.

3. The main result of the first part. The main result in the first
part is the following classification theorem.

Theorem 1. Let m ≥ 2, n ≥ 1 and r ≥ 0 be integers. Any natural
operator A : Tlin|VBm,n  TJr is a linear combination with real coefficients
of the flow operator J r and the Liouville vector field L.

The proof will occupy Sections 4–10.

Corollary 1. Let m ≥ 2, n ≥ 1 and r ≥ 0 be integers. Any natural
linear operator A : Tlin|VBm,n  TJr is a constant multiple of the flow
operator.

4. A reducibility lemma

Lemma 1. Every natural operator A : Tlin|VBm,n  TJr is uniquely
determined by the restriction Ã = A

(
∂
∂x1

)
|Jr0 (Rm,n) of A

(
∂
∂x1

)
to the fiber

Jr0 (Rm,n) of Jr(Rm,n) over 0 ∈ Rm.

Proof. The lemma follows in a standard way from the regularity and
invariance of A with respect to VBm,n-morphisms and the fact that any
linear vector field X on p : E → M covering a non-vanishing vector field
on M is locally VBm,n-conjugate to ∂

∂x1 .

5. A decomposition lemma

Lemma 2. Let A : Tlin|VBm,n  TJr be a natural operator. Then there
exists α ∈ R such that A− αJ r is a vertical type operator.

Proof. Put ˜̃A = Tπ ◦ Ã : Jr0 (Rm,n)→ T0Rm, where Ã is as in Lemma 1
and π : Jr(Rm,n)→ Rm is the bundle projection.

Using the invariance of A with respect to the fiber homotheties bτ for

τ 6= 0 and then letting τ → 0 we see that ˜̃A(y) = ˜̃A(0) for any y ∈ Jr0 (Rm,n).

Write ˜̃A(0) =
∑
i αi

∂
∂xi 0 for some αi ∈ R, i = 1, . . . ,m. Using the

invariance of A with respect to aτ = (x1, τx2, . . . , τxm, y1, . . . , yn) for τ 6= 0

we deduce that α2 = . . . = αm = 0. Then ˜̃A(y) = α ∂
∂x1 0 for any y ∈

Jr0 (Rm,n), where α = α1. Thus (A−αJ r)
(
∂
∂x1

)
|Jr0 (Rm,n) is vertical. Hence

A− αJ r is vertical by Lemma 1.

6. Natural operators Tlin|VBm,n TJr of vertical type. By Lemma 2,
Theorem 1 is a consequence of the following fact.
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Proposition 1. Let m ≥ 2, n ≥ 1 and r ≥ 0 be integers. Let A :
Tlin|VBm,n  TJr be a natural operator of vertical type. There exists γ ∈ R
such that A = γL.

The proof will occupy Sections 7–10.

7. Some preparation

Lemma 3. Let A : Tlin|VBm,n  TJr be a natural operator of vertical
type. Define A : Jr0 (Rm,n)→ Jr0 (Rm,n) by

Ã(y) = (y,A(y)) ∈ Jr0 (Rm,n)× Jr0 (Rm,n) ∼= (V Jr)0(Rm,n),

y ∈ Jr0 (Rm,n), where Ã is as in Lemma 1. Then A is uniquely determined
by A. Moreover , A is linear and it satisfies the following conditions:

(i) For any locally VBm,n-map f : Rm,n→ Rm,n preserving germ0

(
∂
∂x1

)
,

Jr0f ◦A = A ◦ Jr0f.
(ii) For any β ∈ (N ∪ {0})m with |β| ≤ r and l = 1, . . . , n,

A(0, . . . , 0, jr0x
β , 0, . . . , 0) =

( ∑

|σ|≤|β|
cβ,l,kσ jr0x

σ
)n
k=1

for some cβ,l,kσ ∈ R, where the sums are over all σ ∈ (N ∪ {0})m with
|σ| ≤ |β|, (0, . . . , 0, jr0x

β , 0, . . . , 0) ∈ Jr0 (Rm,n), jr0x
β in position l.

Proof. Since Ã is uniquely determined by A, A is uniquely determined
by A in view of of Lemma 1.

By the invariance of A with respect to the fiber homotheties we get the
homogeneity condition A(τy) = τA(y) for any y ∈ Jr0 (Rm,n) and τ 6= 0. So,
A is linear by the homogeneous function theorem.

From the invariance of A with respect to a VBm,n-map f : Rm,n → Rm,n
preserving germ0

(
∂
∂x1

)
we obtain Jr0f ◦A = A ◦ Jr0f .

For any t ∈ R define At : Jr0 (Rm,n) → Jr0 (Rm,n) by A
(
t ∂
∂x1

)
(y) =

(y,At(y)), y ∈ Jr0 (Rm,n). Clearly, A = A1. Let β ∈ (N ∪ {0})m with |β| ≤ r
and l = 1, . . . , n. We can write

At(0, . . . , 0, jr0x
β , 0, . . . , 0) =

( ∑

|σ|≤r
cβ,l,kσ (t)jr0x

σ
)n
k=1

for some smooth maps cβ,l,kσ : R→ R, where the sums are as in the statement
and jr0x

β is in position l. By the invariance of A with respect to the base
homotheties (τx1, . . . , τxm, y1, . . . , yn) we obtain the homogeneity condition
cβ,l,kσ (τt) 1

τ |β| = cβ,l,kσ (t) 1
τ |σ| for τ 6= 0. Thus cβ,l,kσ = 0 if |σ| > |β|.
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8. The main lemma. By Lemma 3, A is uniquely determined by A.
So, Proposition 1 is a consequence of the following lemma.

Lemma 4. Let m ≥ 2, n ≥ 1 and r ≥ 0 be integers. Let A : Jr0 (Rm,n)→
Jr0 (Rm,n) be a linear map satisfying conditions (i) and (ii) of Lemma 3.
Then there is γ ∈ R such that A = γ idJr0 (Rm,n).

We will prove Lemma 4 by induction on r.

9. The case r = 0. Let r = 0. By the invariance of A with respect to
changes of fibered coordinates (see condition (i)) we see that A is uniquely
determined by A(j0

01, 0, . . . , 0).
We can write A(j0

01, 0, . . . , 0) = (c1j0
01, . . . , cnj0

01). By the invariance of
A with respect to f = (x1, . . . , xm, y1, τy2, . . . , τyn) (see condition (i)) we
deduce that c2 = . . . = cn = 0. Then A = γ idJ0

0 (Rm,n) with γ = c1.

10. The inductive step. Assume that Lemma 4 is true for r = r0. Let
r = r0 + 1.

Step 1: A condition. Let

(1) A(jr0((x1)r), 0, . . . , 0) =
( ∑

|σ|≤r
ckσj

r
0x

σ
)n
k=1

for some ckσ ∈ R. We prove that

(2) c1(0,...,0) = 0.

Indeed, by the invariance of A with respect to the (locally defined)
map f = (x1, . . . , xm, y1 + x2y1, y2, . . . , yn) (see (i)) and (1) we obtain
c1(0,1,0,...,0) = c1(0,1,0,...,0) + c1(0,...,0), i.e. (2).

Step 2: A preparation. Let α ∈ (N ∪ {0})m, |α| = r, l = 1, . . . , n. We
prove that

(3) B(0, . . . , 0, jr0x
α, 0, . . . , 0) = (0, . . . , 0, cjr0x

α, 0, . . . , 0)

for some real c (independent of α and l), where jr0x
α is in position l.

By the invariance of A with respect to (locally defined) (x1, . . . , xi−1, xi+
τ(x2)2, xi+1, . . . , xm, y1, . . . , yn)−1 for τ ∈ R and i = 1, . . . ,m (see (i)), from
(1) it follows that A(jr0((x1)r), 0, . . . , 0) = (

∑
σ(ckσj

r
0x

σ+τσickσj
r
0x

σ−ei+e2+e2

+ . . .))nk=1, where the dots stand for a finite sum of monomials in τ of degree
≥ 2. (Observe that we have used m ≥ 2.) Thus

(4) ckσ = 0 for 0 < |σ| < r.

Moreover, by the invariance ofAwith respect to (x1, . . . , xm, y1, τy2, . . . , τyn)
(see (i)), for τ 6= 0 we deduce that

(5) ckσ = 0 for k 6= 1.
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Then by (2), (4) and (5) and the invariance of A with respect to (x1, τx2, . . .
. . . , τxm, y1, . . . , yn) (see (i)) we deduce that

(6) A(jr0((x1)r), 0, . . . , 0) = (cjr0((x1)r), 0, . . . , 0)

for c = c1(r,0,...,0) ∈ R. Then using the invariance of A with respect to (x1 +
τ2x2 + . . . + τmxm, x2, . . . , xm, y1, . . . , yn)−1 for τ2, . . . , τm ∈ R (see (i))
we get

(7) A(jr0((x1 + τ2x2 + . . .+ τmxm)r), 0 . . . , 0)

= (cjr0((x1 + τ2x2 + . . .+ τmxm)r), 0, . . . , 0).

Both sides of (7) are polynomials in τ . Considering the coefficients of
(τ2)α2 . . . (τm)αm we get

(8) A(jr0x
α, 0 . . . , 0) = (cjr0x

α, 0, . . . , 0).

Then using the invariance of A with respect to permutations of fibered
coordinates (see (i)) we get (3).

Step 3: Using the inductive assumption. By Step 2 we have a linear
map [A ] : Jr−1

0 (Rm,n) → Jr−1
0 (Rm,n) factorizing A. By the assumptions

(i) and (ii) on A we see that [A ] satisfies (i) and (ii) for r − 1. So, by the
inductive assumption,

(9) [A ] = γ idJr−1
0 (Rm,n)

for some γ ∈ R.

Step 4: What remains to be proved. It remains to prove that A =
γ idJr0 (Rm,n), where γ is as in (9).

By assumption (ii) on A and by equality (9) we have

(10) A(0, . . . , 0, jr0x
β , 0 . . . , 0) = γ(0, . . . , 0, jr0x

β , 0, . . . , 0)

for any β ∈ (N ∪ {0})m with |β| < r and l = 1, . . . , n, where jr0x
β is in

position l. So, it remains to prove that for any α ∈ (N ∪ {0})m with |α| = r
and l = 1, . . . , n we have

A(0, . . . , 0, jr0x
α, 0 . . . , 0) = γ(0, . . . , 0, jr0x

α, 0, . . . , 0).

Therefore, by Step 2 it remains to prove that c = γ, where c is as in (3).

Step 5: End of the proof. Using (10) for β = (r−1, 0, . . . , 0) ∈ (N∪{0})m
and the invariance of A with respect to (x1 +(x2)2, x2, . . . , xm, y1, . . . , yn)−1

(see (i)) we deduce that

(11) A(jr0((x1)r−2(x2)2), 0, . . . , 0) = γ(jr0((x1)r−2(x2)2), 0, . . . , 0).

Now from (11) and (3) with β = (r − 2, 2, 0, . . . , 0) we get c = γ.

11. Some versions of Theorem 1. By Theorem 1, for any VBm,n-
natural operator A lifting a linear vector field X on a vector bundle E to a
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vector field A(X) on JrE, the vector field A(X) is always linear. We now
prove this independently together with another similar fact.

Proposition 2. Let A be a VBm,n-natural operator lifting a linear vec-
tor field X on a vector bundle E to a vector field A(X) on JrE (or JrE∗

or (JrE)∗ or (JrE∗)∗). Then A(X) is always linear.

Proof. It is easy to see this for X = ∂
∂x1 . (More precisely, the flow of

A
(
∂
∂x1

)
is invariant with respect to the fiber homotheties of J r(Rm,n) be-

cause ∂
∂x1 is invariant with respect to the fiber homotheties of Rm,n.) Next

we use the same arguments as in the proof of Lemma 1. For JrE∗, (JrE)∗

and (JrE∗)∗ in place of JrE we use the same method.

There is a natural involution (dualization) ()∗ : VBm,n → VBm,n,
E 7→ E∗, f 7→ (f−1)∗. So, using Proposition 2 and Theorem 1 we easily
obtain the following versions of Theorem 1.

Theorem 2. For m ≥ 2, n ≥ 1 and r ≥ 0 any VBm,n-natural operator
lifting a linear vector field X on E to a vector field A(X) on JrE∗ is a
linear combination of J rX∗ and the Liouville vector field L on JrE∗, where
X∗ is the linear vector field on E∗ dual to X (if ft is the flow of X, then
(f−1
t )∗ is the flow of X∗).

Theorem 3. For m ≥ 2, n ≥ 1 and r ≥ 0 any VBm,n-natural operator
lifting a linear vector field X on E to a vector field A(X) on (JrE)∗ is a
linear combination of (J rX)∗ and the Liouville vector field on (JrE)∗.

Theorem 4. For m ≥ 2, n ≥ 1 and r ≥ 0 any VBm,n-natural operator
lifting a linear vector field X on E to a vector field A(X) on (JrE∗)∗ is a
linear combination of (J rX∗)∗ and the Liouville vector field L on (JrE∗)∗.

II. NATURAL OPERATORS LIFTING LINEAR VECTOR FIELDS
FROM A VECTOR BUNDLE TO

ITS VERTICAL r-JET PROLONGATION

12. The vertical r-jet prolongation functor. Given a VBm-object
p : E →M the vertical r-jet prolongation JrvE of E is the vector bundle

JrvE = {jrxσ | σ : M → Ex, x ∈M}
over M . Every VBm-map f : E1 → E2 covering f : M1 → M2 induces a
vector bundle map Jrvf : JrvE1 → JrvE2 covering f such that

Jrvf(jrxσ) = jrf(x)(f ◦ σ ◦ f−1), jrxσ ∈ JrvE1.

The functor Jrv : VBm → VBm is a fiber product preserving vector gauge
bundle functor.
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We shall identify (Jrv )0(Rm,n) and ×nJr0 (Rm,R) via jr0(σ) 7→ (jr0σ
l)nl=1,

σ = (σ1, . . . , σn) : Rm → Rn = (Rm,n)0.

13. Examples of natural operators Tlin|VBm,n  TJrv . A natural op-
erator A : Tlin|VBm,n  TJrv is a VBm,n-invariant family of regular operators
A : Xlin(E)→ X (JrvE) for any VBm,n-object E.

Example 3 (The flow operator). Let X be a linear vector field on a
VBm,n-object E. The vector field J rvX on JrvE corresponding to the flow
Jrv (FlXt ) is called the flow prolongation of X. The correspondence J rv :
Tlin|VBm,n  TJrv , X 7→ J rvX, is a natural operator.

Example 4 (The Liouville vector field). Let E be a VBm,n-object. Let L
be the Liouville vector field on the vector bundle J rvE. The correspondence
L : Tlin|VBm,n  TJrv , X 7→ L, is a natural operator.

Example 5. Let s = 0, . . . , r. Given a linear vector field X on a VBm,n-
object E covering a vector field X on M we define a vertical vector field
V 〈s〉(X) on JrvE as follows. Let y = jrxσ ∈ JrvE, σ : M → Ex, x ∈M . We put

V 〈s〉(X)(y) = (y, jrx(X(s)σ(x))) ∈ {y} × (Jrv)xE = VyJ
r
vE ⊂ TyJrvE,

where X(s) = X ◦ . . . ◦X (s times) and X(s)σ(x) : M → Ex is the constant
map. We see that V 〈s〉(X) are linear vector fields on the vector bundle J rvE.
The correspondence V 〈s〉 : Tlin|VBm,n  TJrv is a natural operator.

14. The main result of the second part. The main result in the
second part is the following classification theorem.

Theorem 5. Let m ≥ 2, n ≥ 1 and r ≥ 1 be integers. Any natural oper-
ator A : Tlin|VBm,n  TJrv is a linear combination with uniquely determined
real coefficients of the flow operator J rv , the Liouville vector field L and the
natural operators V 〈s〉 for s = 0, . . . , r.

The proof is a modification of the one of Theorem 1. It will occupy
Sections 15–21.

Corollary 2. Let m ≥ 2, n ≥ 1 and r ≥ 1 be integers. Any natural
linear operator A : Tlin|VBm,n  TJrv is a linear combination with uniquely
determined real coefficients of the flow operator J rv and V 〈1〉.

15. A reducibility lemma

Lemma 5. Every natural operator A : Tlin|VBm,n  TJrv is uniquely
determined by the restriction Ã = A

(
∂
∂x1

)
|(Jrv)0(Rm,n) of A

(
∂
∂x1

)
to the

fiber (Jrv)0(Rm,n) of Jrv (Rm,n) over 0 ∈ Rm.

Proof. In the proof of Lemma 1 we replace Jr by Jrv .
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16. A decomposition lemma

Lemma 6. Let A : Tlin|VBm,n  TJrv be a natural operator. Then there
exists α ∈ R such that A− αJ rv is a vertical type operator.

Proof. In the proof of Lemma 2 we replace Jr by Jrv .

17. Natural operators Tlin|VBm,n  TJrv of vertical type. By Lem-
ma 6, Theorem 5 is a consequence of the following fact.

Proposition 3. Let m ≥ 2, n ≥ 1 and r ≥ 1 be integers. Let A :
Tlin|VBm,n  TJrv be a natural operator of vertical type. There exist uniquely
determined numbers γ, α0, . . . , αr ∈ R such that A = γL+

∑r
s=0 αsV

〈s〉.

The proof will occupy Sections 18–21.

18. Some preparation

Lemma 7. Let A : Tlin|VBm,n  TJrv be a natural operator of vertical
type. Define A : (Jrv)0(Rm,n)→ (Jrv )0(Rm,n) by

Ã(y) = (y,A(y)) ∈ (Jrv )0(Rm,n)× (Jrv )0(Rm,n) ∼= (V Jrv )0(Rm,n),

y ∈ (Jrv)0(Rm,n), where Ã is as in Lemma 5. Then A is uniquely determined
by A. Moreover , A is linear and satisfies the following conditions:

(i) For any VBm,n-map f : Rm,n → Rm,n preserving germ0

(
∂
∂x1

)
,

(Jrv )0f ◦A = A ◦ (Jrv)0f.

(ii) For any β ∈ (N ∪ {0})m with |β| ≤ r and any l = 1, . . . , n,

A(0, . . . , 0, jr0x
β , 0, . . . , 0) =

( ∑

|σ|≤|β|
cβ,l,kσ jr0x

σ
)n
k=1

for some cβ,l,kσ ∈ R, where the sums are over all σ ∈ (N ∪ {0})m with
|σ| ≤ |β|, (0, . . . , 0, jr0x

β , 0, . . . , 0) ∈ (Jrv)0(Rm,n), jr0x
β in position l.

Proof. In the proof of Lemma 3 we replace Jr by Jrv .

19. The main lemma. By Lemma 7, A is uniquely determined by A.
So, Proposition 3 is a consequence of the following lemma.

Lemma 8. Let r ≥ 0, m ≥ 2 and n ≥ 1 be integers. Let A : (Jrv )0(Rm,n)
→ (Jrv )0(Rm,n) be a linear map satisfying conditions (i) and (ii) of Lem-
ma 7. Then there are (uniquely determined for r ≥ 1) numbers γ, α0, . . . , αr
∈ R such that

A = γ id(Jrv )0(Rm,n) +
r∑

s=0

αsW
〈s〉,
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where W 〈s〉 : (Jrv )0(Rm,n) → (Jrv )0(Rm,n), W 〈s〉(jr0(σ)) = jr0
(

∂s

∂(x1)sσ(0)
)
,

σ : Rm → Rn = (Rm,n)0.

If r ≥ 1 then id(Jrv )0(Rm,n) and W 〈s〉 for s = 0, . . . , r are linearly inde-
pendent. So, it is sufficient to prove the existence of γ, α0, . . . , αr such that
A = γ id(Jrv )0(Rm,n) +

∑r
s=0 αsW

〈s〉.
We will prove the existence of γ, α0, . . . , αr by induction on r.

20. The case r = 0. In Section 9 we replace Jr by Jrv .

21. The inductive step. Assume that Lemma 8 is true for r = r0. Let
r = r0 + 1.

We modify Steps 1–5 of Section 10 with Jrv playing the role of Jr. The
most important change is in Step 1. We do not prove (2). By replacing A
by A − c1(0,...,0)W

〈r〉 without loss of generality we can assume (2). Then

it is sufficient to prove that B = γ id(Jrv )0(Rm,n)+
∑r−1

s=0αsW
〈s〉 for some

γ, α0, . . . , αr−1 ∈ R. Moreover, in Step 3 in the case r = 1 we can assume
that γ = c, where c is as in (2) with Jrv playing the role of Jr.

22. Some versions of Theorem 5

Proposition 4. Let A be a VBm,n-natural operator lifting a linear vec-
tor field X on a vector bundle E to a vector field A(X) on JrvE (or JrvE

∗

or (JrvE)∗ or (JrvE
∗)∗). Then A(X) is always a linear vector field.

Proof. In the proof of Proposition 2 we replace Jr by Jrv .

Using Proposition 3 and Theorem 5 we easily obtain the following ver-
sions of Theorem 5.

Theorem 6. For m ≥ 2, n ≥ 1 and r ≥ 1 any VBm,n-natural operator
lifting a linear vector field X on E to a vector field on JrvE

∗ is a linear
combination of J rvX∗, the Liouville vector field L on JrvE

∗ and V 〈s〉(X∗)
for s = 0, . . . , r.

Theorem 7. For m ≥ 2, n ≥ 1 and r ≥ 1 any VBm,n-natural oper-
ator lifting a linear vector field X on E to a vector field on (JrvE)∗ is a
linear combination of (J rvX)∗, the Liouville vector field L on (JrvE)∗ and
(V 〈s〉(X))∗ for s = 0, . . . , r.

Theorem 8. For m ≥ 2, n ≥ 1 and r ≥ 1 any VBm,n-natural operator
lifting a linear vector field X on E to a vector field on (JrvE

∗)∗ is a lin-
ear combination of (J rvX∗)∗, the Liouville vector field L on (JrvE

∗)∗ and
(V 〈s〉(X∗))∗ for s = 0, . . . , r.
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III. NATURAL LINEAR OPERATORS LIFTING LINEAR VECTOR
FIELDS FROM A VECTOR BUNDLE TO

ITS [r]-JET PROLONGATION

23. The [r]-jet prolongation functor. Let p : E → M be a VBm-
object. For any x ∈M we have a unital associative algebra homomorphism
t
[r]
x : Jrx(M,R)→ gl(Jrx(M,R)) given by

t[r]x (jrxγ)(jrxη) = jrx(γη)− jrx(η(x)γ) + jrx(η(x)γ(x)),

jrxη, j
r
xγ ∈ Jrx(M,R), η(x), γ(x) : M → R are constant maps. We have a

vector bundle

J [r]E =
⋃

x∈M
Hom

t
[r]
x

(JrC∞,f.lx (E), Jrx(M,R))

over M . Here Hom
t
[r]
x

(JrC∞,f.lx (E), Jrx(M,R)) is the vector space of all mod-

ule homomorphisms over t[r]x : Jrx(M,R) → gl(Jrx(M,R)) from the (free)
Jrx(M,R)-module JrC∞,f.lx (E) of r-jets at x of germs at x of fiber linear
maps E → R into the gl(Jrx(M,R))-module Jrx(M,R). We call J [r]E the [r]-
jet prolongation of E. Every VBm-map f : E1 → E2 covering f : M1 →M2

induces a vector bundle map J [r]f : J [r]E1 → J [r]E2 covering f such that

J [r]f(Φ)(jrf(x)ξ) = Jr(f, idR) ◦ Φ(jrx(ξ ◦ f))

for any Φ ∈ Hom
t
[r]
x

(JrC∞,f.lx (E1), Jrx(M1,R)), x ∈ M1 and any fiber linear

map ξ : E2 → R. The correspondence J [r] : VBm → VBm is a fiber product
preserving gauge bundle functor of order r.

Remark 1. One can show that JrE and JrvE can be constructed sim-
ilarly to J [r]E using some other algebra homomorphisms tx : Jrx(M,R) →
gl(Jrx(M,R)) in place of t[r]x . This justifies the name of [r]-jet prolongation. If
r ≥ 3 and m ≥ 2 then only JrE, JrvE and J [r]E admit such a construction.
This will be presented in my next paper, currently in preparation.

Similarly to the usual jet projections JrE → Jr−1E or JrvE → Jr−1
v E

we have the canonical projection π
[r]
[r−1] : J [r]E → J [r−1]E for r ≥ 1

(and π
[r]
[s] = π

[r]
[r−1] ◦ . . . ◦ π

[s+1]
[s] for s = 0, . . . , r − 1). Indeed, by stan-

dard verification, any module homomorphism Φ : JrC∞,f.lx (E) → Jrx(M R)
over t

[r]
x : Jrx(M,R) → gl(Jrx(M,R)) can be factorized by a linear map

Φ : Jr−1C∞,f.lx (E) → Jr−1
x (M,R) which is a module homomorphism over

t
[r−1]
x : Jr−1

x (M,R) → gl(Jr−1
x (M,R)). Then we put π[r]

[r−1](Φ) = Φ for any
Φ as above.
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We shall identify the vector spaces J [r]
0 (Rm,n) and ×nJr0 (Rm,R) via the

linear isomorphism Φ 7→ (Φ(jr0y
l))nl=1, where y1, . . . , yn are the usual fiber

coordinates on Rm,n which are fiber linear maps Rm,n → R.

24. Examples of natural linear operators Tlin|VBm,n  TJ [r]. A nat-
ural linear operator A : Tlin|VBm,n  TJ [r] is an VBm,n-invariant family of
R-linear operators A : Xlin(E)→ X (J [r]E) for any VBm,n-object E.

Example 6 (The flow operator). Let X be a linear vector field on a
VBm,n-object E. The vector field J [r]X on J [r]E corresponding to the flow
J [r](FlXt ) is called the flow prolongation of X. The correspondence J [r] :
Tlin|VBm,n  TJ [r], X 7→ J [r]X, is a natural linear operator.

Example 7. Let s = 0, . . . , r. Given a linear vector field X on a VBm,n-
object E covering a vector field X on M and a module homomorphism
Φ : JrC∞,f.lx (E) → Jrx(M,R) over t[r]x : Jrx(M,R) → gl(Jrx(M,R)) (i.e. Φ ∈
J

[r]
x E, x ∈M) we have a linear map Φ(s)

X : JrC∞,f.lx (E)→ Jrx(M,R) given by

Φ
(s)
X (σ) = jrx(X(s)γ(x)),

σ ∈ JrC∞,f.lx (E), γ : M → R, jrxγ = Φ(σ), X(s) = X ◦ . . . ◦ X (s times),
X(s)γ(x) : M → R being the constant map. Unfortunately, the linear
maps Φ

(s)
X : JrC∞,f.lx (E) → Jrx(M,R) are module homomorphisms over

t
[r]
x : Jrx(M,R)→ gl(Jrx(M,R)) only for s = 0 and s = 1, as is easily verified.

For s = 2, . . . , r the map Φ
(s)
X : JrC∞,f.lx (E)→ Jrx(M,R) is a module homo-

morphism over t[r]x : Jrx(M,R) → gl(Jrx(M,R)) if Φ ∈ ker(π[r]
[s−1]) ⊂ J [r]E.

Consequently, only for s = 0 and s = 1 do we have vertical vector fields
U (s)(X) on J [r]E, given by

U (s)(X)Φ = (Φ,Φ(s)
X ) ∈ {Φ} × J [r]

x E = VΦJ
[r]E,

Φ ∈ J [r]
x E, x ∈ M . For s = 2, . . . , r we have U (s)(X) only on ker(π[r]

[s−1]) ⊂
J [r]E. The correspondence U = U (1) : Tlin|VBm,n  TJ [r] as above is a
natural linear operator.

25. The main result of the third part. The main result of the third
part is the following classification theorem.

Theorem 9. Let m ≥ 2, n ≥ 1 and r ≥ 1 be integers. Any natural
linear operator A : Tlin|VBm,n  TJ [r] is a linear combination with uniquely
determined real coefficients of the flow operator J [r] and the operator U .

The proof is a modification of the one of Theorem 1. It will occupy
Sections 26–32.
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26. A reducibility lemma

Lemma 9. Let A : Tlin|VBm,n  TJ [r] be a natural (not necessarily
linear) operator. The operator A is uniquely determined by the restriction
Ã = A

(
∂
∂x1

)
|J [r]

0 (Rm,n) of A
(
∂
∂x1

)
to the fiber J [r]

0 (Rm,n) of J [r](Rm,n) over
0 ∈ Rm.

Proof. In the proof of Lemma 1 we replace Jr by J [r].

27. A decomposition lemma

Lemma 10. Let A : Tlin|VBm,n  TJ [r] be a natural (not necessarily
linear) operator. Then there exists α ∈ R such that A − αJ [r] is a vertical
type operator.

Proof. In the proof of Lemma 2 we replace Jr by J [r].

28. The natural linear operators Tlin|VBm,n  TJ [r] of vertical
type. By Lemma 10, Theorem 9 is a consequence of the following fact.

Proposition 5. Let m ≥ 2, n ≥ 1 and r ≥ 1 be integers. Let A :
Tlin|VBm,n  TJ [r] be a natural linear operator of vertical type. Then there
exists a number γ ∈ R such that A = γU .

The proof will occupy Sections 29–32.

29. Some preparation

Lemma 11. Let A : Tlin|VBm,n  TJ [r] be a natural linear operator of

vertical type. Define A : J [r]
0 (Rm,n)→ J

[r]
0 (Rm,n) by

Ã(y) = (y,A(y)) ∈ J [r]
0 (Rm,n)× J [r]

0 (Rm,n) ∼= (V J [r])0(Rm,n),

y ∈ J [r]
0 (Rm,n), where Ã is as in Lemma 9. Then A is uniquely determined

by A. Moreover , A is linear and satisfies the following conditions:

(i) For any VBm,n-map f : Rm,n → Rm,n preserving germ0

(
∂
∂x1

)
,

J
[r]
0 f ◦A = A ◦ J [r]

0 f.

(ii) For any β ∈ (N ∪ {0})m with |β| ≤ r and any l = 1, . . . , n,

A(0, . . . , 0, jr0x
β , 0, . . . , 0) =

( ∑

|σ|=|β|−1

cβ,l,kσ jr0x
σ
)n
k=1

for some cβ,l,kσ ∈ R, where the sums are over all σ ∈ (N ∪ {0})m with
|σ| = |β| − 1, (0, . . . , 0, jr0x

β , 0, . . . , 0) ∈ J [r]
0 (Rm,n), jr0x

β in position l.

Proof. In the proof of Lemma 3 we replace Jr by J [r]. In the proof of
(ii) we use additionally the fact that A is a linear operator.
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30. The main lemma. By Lemma 11, A is uniquely determined by A.
So, Proposition 5 is a consequence of the following lemma.

Lemma 12. Let m ≥ 2, n ≥ 1 and r ≥ 0 be integers. Let A : J [r]
0 (Rm,n)

→ J
[r]
0 (Rm,n) be a linear map satisfying conditions (i) and (ii) of Lemma 11.

Then there is γ ∈ R such that A = γW, where W : J [r]
0 (Rm,n) → J

[r]
0 (Rm,n),

W (jr0(σ)) = jr0
(
∂
∂x1σ(0)

)
, σ : Rm → Rn = (Rm,n)0 (if r = 0, then A = 0).

We will prove the existence of γ by induction on r.

31. The case r = 0. This is a consequence of condition (ii).

32. The inductive step. Assume that Lemma 12 for r = r0 is true.
Let r = r0 + 1.

We modify Steps 1–5 of Section 10 with J [r] playing the role of Jr.
The most important change is in Step 1. If r ≥ 2 we have (2) because of
condition (ii). If r = 1 without loss of generality we can assume (2) upon
replacing A by A− c1(0,...,0)W . Additionally, by condition (ii) we have c = 0

in (3) for J [r] in place of Jr.

Remark 2. We have not been able to prove Theorem 9 for A not nec-
essarily linear because we cannot obtain (2) with J [r] playing the role of Jr.
This is because we do not know whether U (s)(X) for s = 2, . . . , r are canon-
ically extendable to the whole J [r]E (see Example 7). If they were then we
could prove (similarly to Theorem 1) that any A(X) is a linear combination
of J [r]X, the Liuoville vector field L and extended U (s)(X) for s = 0, . . . , r.
If U (s)(X) are not extendable then it will probably be difficult to classify
all natural operators A(X) on J [r]E.

33. Some versions of Theorem 9

Proposition 6. Let A be a VBm,n-natural (not necessarily linear) op-
erator lifting a linear vector field X on a vector bundle E to a vector field
A(X) on J [r]E (or J [r]E∗ or (J [r]E)∗ or (J [r]E∗)∗). Then A(X) is always
a linear vector field.

Proof. In the proof of Proposition 2 we replace Jr by J [r].

Using Proposition 6 and Theorem 9 we easily obtain the following ver-
sions of Theorem 9.

Theorem 10. For m ≥ 2, n ≥ 1 and r ≥ 1 any VBm,n-natural linear
operator lifting a linear vector field X on E to a vector field on J [r]E∗ is a
linear combination of J [r]X∗ and U(X∗).
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Theorem 11. For m ≥ 2, n ≥ 1 and r ≥ 1 any VBm,n-natural linear
operator lifting a linear vector field X on E to a vector field on (J [r]E)∗ is
a linear combination of (J [r]X)∗ and (U(X))∗.

Theorem 12. For m ≥ 2, n ≥ 1 and r ≥ 1 any VBm,n-natural linear
operator lifting a linear vector field X on E into a vector field on (J [r]E∗)∗

is a linear combination of (J [r]X∗)∗ and (U(X∗))∗.
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