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On Noether and strict stability,
Hilbert exponent, and relative Nullstellensatz

by CHIA-CHI TUNG (Mankato, MN)

Abstract. Conditions characterizing the membership of the ideal of a subvariety &
arising from (effective) divisors in a product complex space Y x X are given. For the
algebra Oy [V] of relative regular functions on an algebraic variety V, the strict stability
is proved, in the case where Y is a normal space, and the Noether stability is established
under a weakened condition. As a consequence (for both general and complete intersec-
tions) a global Nullstellensatz is derived for divisors in Y x CV, respectively, Y x PV (C).
Also obtained are a principal ideal theorem for relative divisors, a generalization of the
Gauss decomposition rule, and characterizations of solid pseudospherical harmonics on
a semi-Riemann domain. A result towards a more general case is as follows: Let D;,
1 < j < p, be principal divisors in X associated to the components of a g-weakly normal
map g = (g1,...,9p) : X = CP, and S := () &|p,|. Then for any proper slicing (¢, g, D) of
{D;}1<j<p (where D C X is a relatively compact open subset), there exists an explicitly
determined Hilbert exponent b5 .., ,, for the ideal of the subvariety & =Y x (SN D).

1. Introduction. Determination of the membership of an ideal gener-
ated by polynomials over an algebraically closed field is a basic problem in
polynomial ideal theory. A result of O. Forster [Fo| in this direction can be
stated as follows: if 2 is a closed primary ideal in a Stein algebra I'(X, Ox)
(as a Fréchet space), then the ideal Z(.S) of all holomorphic functions vanish-
ing on the subvariety S = V(1) is precisely the radical ideal V2, moreover,
there exists an integer h > 0 such that (/)" C . F. Lorenz [Lor, p. 281]
remarked that “actually finding such an h for a specified 2, described say by
a set of generators, is a different matter”. The well-known Hilbert Nullstel-
lensatz ([W, p. 59]), Forster’s results, and Max Noether’s criterion for the
individual membership of a polynomial ideal are seemingly loosely related.
And all these results share some common ground with the (local) Riickert
Nullstellensatz (|[GRal p. 82]). The present work is motivated in part by a
wish to bring out (to some extent) the possible connections between them.
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As it gains in usefulness to allow subvarieties (arising from different situa-
tions) to depend on a parameter, an attempt is made in this work to find
conditions under which the overall and individual membership of the ideal
Z(G) can be determined for a subvariety & lying in a product space Y x X
and a corresponding Hilbert exponent h explicitly described or estimated.
Let V be a positive-dimensional affine algebraic variety in C and Y a
complex space. There are two useful properties concerning the complex alge-
bra Oy [V] of all Y-regular functions on V (see §2)). The first (Theorem [2.1]),
valid in the case where Y is a normal space, concerns the strict stability of
the subalgebra B = Oy[V] in O(Y x CV), meaning that, if f € B\ {0} and
Y € O(Y xCN)\{0}, then both f /1) (defined in terms of local extensions of f)
and v are equivalent to some elements of B whenever f/¢ € O(Y x CN). The
second property (Theorem , a generalization of the well-known Noether
criterion, is the assertion that for any reduced complex space Y, the subalge-
bra Oy [V] of O(Y x V) is (relatively) Noether-stable, meaning that, if f and
gj, 1 < j < gq, are elements of Oy [V]\ {0} such that the Noether condition

(1'1) fw=0 (<91,w7---agq,w>)

holds in Oyxy, at every point w of the subvariety & = V(g1,...,9q)
with 7(w) lying off some thin subset of codimension > 2 in CV (where
7:Y x CV — CV denotes the projection), then the Noether relation

(1.2) f=0g1:--:99)v)

is valid in the ring Oy [V]. This result, which extends the Ploski-Tworzewski
Theorem [PT), Proposition 2.1] to the relative case, is proved by refining the
argument of Tworzewski [Twl, p. 2| for the Max Noether Theorem. In conse-
quence a global Nullstellensatz for divisors in a relative affine, respectively,
projective, variety (Theorems and can be deduced. The proof natu-
rally involves the local notion of Hilbert number (to be defined below).
Moreover, deeper study of subvarieties in affine or projective spaces ne-
cessitates the consideration of a relative semiglobal Nullstellensatz; this is
treated in §3| (and summarized below). Especially, it will be shown (in Theo-
rem that, for a complete intersection S of divisors on an affine algebraic
variety V, there is an intrinsically determined Hilbert exponent hg ((3.9))) for
the ideal of all Y-regular functions f : Y x V' — C vanishing on the product
subvariety & =Y x S (compare the results of Ptoski-Tworzewski [PT), The-
orem 3.1 and Proposition 2.2|). If § is a complete intersection of divisors in a
projective space PV (C) with defining system F (consisting of homogeneous
polynomials f;), the following result is obtained (Theorem : Assume
that the set § N {z = [20,...,2n] | 2t = 0} is thin in § for each k € Z[0, N].
Then there exists a Hilbert exponent bz} (defined by (4.3)-(4.4))) for all ele-
ments in Poly,n11(d) N Ty (Y x F) (in the sense of (4.5)); moreover, if either
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(fi,..., fq)y is a prime ideal or the system F defines § minimally, then
Iy (Y x §) = (f1,..., fg)y- As applications, a generalization of the Gauss
decomposition rule and characterizations of solid pseudospherical harmonics
on a semi-Riemann domain are given in

Turning next to local and semiglobal situations, let X, Y denote (un-
less otherwise mentioned) reduced, pure-dimensional complex spaces with a
countable base of open sets, and D € X a (relatively compact) open subset.
Let S be a subvariety of X and set Sp := SND. If S = V(g1,...,9p) =
{g1 = ... = gp = 0} with g; € O(X) := I'(X,Ox), the (complex) al-
gebra of holomorphic functions on X, then denote by Z,(S,) the ideal of
germs of holomorphic functions vanishing on the germ of S at a point a, and
(91,a»- - - » Yp,a) the ideal generated by the g;,'s in Ox 4. If fo € Zy(Sa), then
by the Riickert Nullstellensatz the Hilbert relation

(1.3) o =0 (910 9pa))

holds in Ox , for some integer » > 0. The integer r can actually be chosen
to depend only on the ideal generated by the gj,, 1 < j < p. Therefore,
following Forster [Fo, p. 325|, define the Hilbert number

(1.4)  b(g,a) == min{r € Z[0,00) | fo =0 (91, -+ 9p.a))s Vfa € Za(Sa)},

where g = (g1,...,9p) : X = CP. A continuous map 7 : X — N (between
topological spaces) is said to be light at a € X, if for some neighborhood U of
a, the fibers of 7 |U consist of isolated points. If g : U — C™ is holomorphic
in an open set U C C™ and is light at a € U, then (according to [GH, p. 669|
or TS, p. 110]) the germ relation holds with r equal to the multiplicity
of g at a (see (3.1)). Thus

(1.5) (g a) < 12(a).

A system § = {g;j}1<j<p defining a subvariety S is said to be minimal
if h(g,a) = 1 for all @ € S ([T8, pp. 118-119]; cf. [Tug, p. 127]). For the
convenience of the reader, the definition of the multiplicity “vy(a)” at a € X
of a light, respectively, pure fibering, holomorphic map g is recalled at the
beginning of §3| (with some basic properties summarized in the Appendix,
).

The inequality for the Hilbert number bespeaks the relevance of
considering intersecting divisors arising from the component functions g;. In
the following every divisor ® mentioned is assumed to be effective, and its
support is denoted by &p|. To give a result towards the general case, let
9;, 1 < j < p, be principal divisors in X and S :=) S,

DEFINITION 1.1. A proper slicing of {®;} is a triple (¢, g, D) such that:
(i) ¢ : D — C? is holomorphic with ¢~1(0) N Sp # 0;
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(i) ¢ = (91,-..,9p), with each component giving a defining equation
g; = 0 for ©j;

(iii) there exist an open, connected neighborhood @ of the origin 0 €
C? and a connected, pure (m — ¢)-dimensional locally irreducible
analytic subset N of an open subset in CP such that the junction
(9,0): D:=DnNg Y (N)Ne Q) = N x Q is proper and light.

Note that if 7 = (7,...,m,) : X — CP is a holomorphic map of pure
rank n = m —q > 0 (see §3) with a locally irreducible (local) image at
a € X, then there exists a holomorphic map ¢ : D — C? defined in an
open neighborhood D C C™ of a such that (¢, 7, D) is a proper slicing of
{(mj)}1<j<p, (mj) being the divisor associated to 7;; this is shown in [Tu,
Lemma 2.1.4]. To each proper slicing (¢, g, D) of a system {®;} of principal
divisors in X is associated a positive integer

(1.6) bo,-2,,D = Z Vgo(ziw,t),  V(w,t) € N xQ,
zeD

called the slicing degree, which is independent of (w,t) € N x @ (see Prop-
erty [6.1). Here vy ,(2;w,t) := vy ,)(2) denotes the multiplicity of the light
mapping (g, ) at a point z of the fiber over (w,t) of (g,¢)|D, and is set
to be zero at all other points. The slicing degree actually depends only on
the divisors ®; and the map ¢ (as can be shown by invoking an extended
version of the invariance of the multiplicity under an invertible holomorphic
matrix transformation [Stol Theorem 6.1]).

As a generalization of the notion of an analytic covering space, a holomor-
phic map 7 : X — CP is said to be q-weakly normal if the following conditions
are met: 7w has (i) pure rank m — ¢ > 0 where 0 < ¢ < m = dim X, (ii)
locally irreducible, weakly normal (local) image (|Tujl p. 104]) at each point
of Z := m~1(0). A result of Gunning [Gul, Theorem 3, p. 32| can be gener-
alized (Proposition B.1): If 7 = (m1,...,m) : X — CP is g-weakly normal,
then for any proper slicing (¢, 7, D) of {(7j)}1<j<p, the algebra O(Y x D)
is an integral algebraic extension, of degree at most b = h(z,)...r,), 0, of the
lifted algebra
(1.7) Oy, nxq := (idy, (m,0) | D)*O(Y x N x Q).

Essential to the proof (and that of the Nullstellensatz is the construc-
tion, for an element f € C°(Y x [))7 of a monic characteristic pseudopoly-
nomial (in a sense similar to that of [GRal p. 138]) arising from a Rieman-
nian fiber product of f (see ) The fact that the holomorphy of such a
pseudopolynomial follows from the Hartogs theorem (on the equivalence of
separate and joint holomorphy) seems to provide a lacking application of the
latter, in view of the remark of Grauert and Remmert [GRal p. 2]. Further, if
S:=N S)(y,)| is determined by the component divisors of a g-weakly normal
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map g = (g1,---,9p) : X — CP, then the slicing degree h = b,,)...(4,),p Of
any proper slicing (¢, g, D) of {(g;) }1<j<p serves as a Hilbert exponent (inde-
pendent of the parameter y € Y') for the ideal of Gpy :=Y x Sp (Theorem

3.1):
(1.8) Z(&p,y) = {/{G1,- - p) (v}

where (g1, ..., Gp) vy} denotes the ideal in O(Y x D) generated by the func-
tions g; := gij, 1 < j < p. The question whether the ideal Z(&) of a general
subvariety & in Y x X admits a Hilbert exponent (as in ) remains open.
By the use of suitable slicing maps of g and properties of the multiplicity, it
can be shown that at each point ag € S'\ (Ssing N Xsing) there is a neighbor-
hood U such that the multiplicity “1/8 (ap)” gives a Hilbert exponent for Sy
If D is a principal divisor in X with support S, then the Hilbert number of
a local defining function g of D at a normal point a of X is given by

(1.9) h(g,a) = max{l/g(c“) | ¢y € Sreg N B},

the maximum being taken over all branches B, of Sy, for a suitable neigh-
borhood U of a; moreover, h(g,a) gives the smallest Hilbert exponent for
Syy (Theorem . The related question as to when the ideal associated
to a (general) divisor in Y x PV (C) admits a principal generator is partially

answered in Theorem (see also Propositions and [4.1)).

2. Strict and Noether stability. For f:Y x X — C, set f)(z) :=
f(y,2) for (y,2z) € Y x X, and define A(f) := {y € Y | f® = 0}. Let
Poly n(d) denote the set of all (holomorphic) homogeneous pseudopolynomi-
als (of degree d > 0) over Y in N indeterminates, that is,

(2.1) G(X1,...,Xn) = D au X" XY,
|4l =d
where a, € O(Y) and at least one a, # 0. Set Poly,n(0) := O(Y'). Then the
graded ring
Oy[Xi,...,Xx] == D Poly.n(d)
d>0

is a left module over the ring O(Y). Denote by Poly,y the union of all its
summands Poly y(d) (omitting the reference to Y if Y is a single point).
An element Q € Oy[Xy,...,Xy]| is naturally identified with a function
Q : Y xCN — C (by evaluation at each (y,2z) € Y x CV). A mapping
g = (g1,...,9p) with g; € Oy[Xy,...,Xn] (or g; € Polyn) of (generic)
positive degree is said to be primitive over Y if the set A(g) := (Ji_; A(g;)
is almost thin of codimension 2 (thus possibly empty) (JAS| p. 14];.

In the following let V' denote a positive-dimensional affine algebraic vari-
ety in CV. An equivalence relation, “F = G” (with respect to V), is defined



6 C.-C. Tung

in Oy [X1,...,Xn] by setting F' = G if and only if at each point yp € Y there
is a neighborhood Yj such that F' = G on Yy x V. Every such equivalence
class is called a Y -regular function on V. The set Oy [V] of all Y-regular func-
tions on V forms a (complex) algebra under the usual operations. Denote by
Ay = (g1,-..,9p)y the ideal in Oy [V] generated by elements g; € Oy[V],
1 < j < p,. Similarly, let V(2A) = V(g1,...,9p) be the subvariety in ¥ x V
defined by the equations g; = 0, 1 < j < p (with the same notation in case
V = CV and the g; belong to Poly ). Denote by Jy (&) the ideal of all
Y -regular functions on V' vanishing on a subvariety & C Y x V.

In analogy with the notion of stable subalgebra of entire functions in Cv
(IBD} p. 268|), a property of recurring use concerning the relative algebra
Oy [V] is stated below. This is an immediate consequence of the generalized
Ronkin theorem of [Tug) 4.1]:

THEOREM 2.1. If Y is a normal complexr space, then the subalgebra
Oy [V] is strictly stable in O(Y x CN).

In Ptoski-Tworzewski [PT), Proposition 2.1], the Max Noether theorem
is generalized to an affine algebraic variety in CV. This result can be further
extended to the relative case (by refining the proof of [PT, p. 33]):

THEOREM 2.2 (Relative Noether Theorem). For any reduced complex
space Y, the subalgebra Oy [V] is Noether-stable in O(Y x V).

Proof. At first a relative version of the Max Noether Theorem in CV will
be proved by modifying the argument of Tworzewski [Tw, p. 2] (with some of
the original steps included for completeness): “If G;, 1 < j < p, and F are Y-
regular functions on CV such that Fry =0 (((G1)w, - - -+ (Gp)w)) in Oy on
at every point v € & := V(G1,...,G,) with m(w) lying off some thin subset
of codimension > 2 in CV ([AS| p. 14]), then F = 0 ((Gy,...,Gp)y) in
Oy [CN).

Let I' C Y x C¥ x CP be the graph of G = (G1,...,G,). Then for each
y €Y, the set ZW = {(z,w) | (y,2z,w) € ({y} x CN x {0}) U T} is an
N-dimensional algebraic set in CV x CP. Take v = (yg,a9) € Y x (CV\ 9),
where S is a thin analytic subset of codimension > 2 in C¥ relative to which
the above mentioned Noether condition holds. Then on some neighborhood
Yo x A of (yo,ap) in Y x (CV'\ S), holomorphic functions A;, 1 < j < p, can
be chosen so that the function ¥ : Yy x A x CP — C,

U(y,z,w) = FY(z) — Z )\g-y)(z)wj, V(y,z,w) € Yo x A x CP,

vanishes on I' N (Yy x A x CP). It suffices to consider the case F' # 0 in
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Yy x CN. Let ¢ : ZW) — C be defined by

V) (2, w) = {F(y’z) ifw =0,
0 if (y,z,w) € I'.

The assumption on the germs of F implies that ¢®) is well-defined for each
y € Yy. Clearly

YW (A xCPYNZW = W(y)j(A x CP) N ZW),

where W(y)( w) := ¥(y, z,w). Therefore ¥ extends holomorphically to a
function 1)¥) on (CN\S) x CP, hence also to CV x CP. Moreover, it is easy to
check that the graph of /(%) is an algebraic subset of CN x CP x C. Then by
Serre’s Algebraic Graph Theorem (ILOJ p. 464]), there exists a polynomial
QW : CN x C? — C such that QW) |2 = = ®. Thus

QW (N xcP)ynz® = oW |(cN x cP)n zW),
Write
QW (z,w) —i—Zw]Za (J)w cwp? zlp“--'zg[p*N.
j=1 u(d)

By the definition of ¥(¥) one has F' Q(y

(2.2) FW(z) = Z iy, Z)Gﬁy)(Z),
j=1
where
©) ®)
Z a(y@) G(y "(Gz(o ))ug)zfpﬂ . Z]‘:?HV
M(])

for (y,z) € Yo x CV. Consequently, there exist functions Colpu) € O(Y0),
1 < 7 < p, such that

Z Z Z Zp(y w0y eGPy
,J,(J) p u(]) N :

(]) p(] /»L(]))

Then for each (u,j) with some c( ) % 0 in Yy, one has

3p(j,u<”)F
(2.3) a,6 = Do)

where A is a thin analytic subset of Yj. Since the function F' agrees with

the one defined by the right-hand side of (2.2]) where any term containing

aiy(g.) is dropped if every ensuing coefficient ¢ o

€ O((Yo\ 4) x CY),

ju) = 0, it follows from the

formula ([2.3) that F =0 ((G4,...,Gp)y) in Oy [CV].
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The general case of an affine algebraic variety can now be deduced from
the preceding. Let f and gj, 1 < j < ¢, be elements of Oy [V]\ {0} such that
the Noether condition holds at every point v of & := V(g1,...,9q)
with 7(tv) lying off some thin subset of codimension > 2 in CV. Locally at
a given point yg € Y, the space Y is embeddable as a subvariety in an open
subset of CP. There is a thin analytic subset S of codimension > 2 in CV
such that if 0 = (yo,ap) € Y x (CV '\ S), then a local equation

24)  F® () =Y 0y, OGY () = RW (¢),  V(y,¢) € 1 x Ay,
=1

holds with n; € O( x Ay), 1 < j < g, where Q; x Ay is a product
neighborhood of (yo, ag) in CP x (CN\ §), F, respectively, Gj,1<j<gq,
an element of Oq, [X1,..., Xy] inducing f, respectively, g;, 1 < j < ¢, on
O x V, and R a function in O(2; x Ay) vanishing on Y1 x Uy := (Y x V)N
(Ql X Al)

Regarding the set C? x V as an affine algebraic susbset in CP*V there
exists a set {G;}q+1<j<q+s Of generators of the ideal J(CP x V) in the
ring C[¢1,...,(p, X1,..., Xn]. It follows from Serre’s Lemma ([Loj, p. 458])
that at every point (wp,ap) € C? x V the germs of such G;’s generate the
ideal Ty 40)(CP X V) in Ogptn (4y,q0)- Therefore, given (yo,ap) € & with
ap € A;\ S, there is a product neighborhood Qg x Ay, C 1 x (A1 '\ S) of
(yo,ao) such that, for all (y,() € Qo x Ag,,

q q+s
FOQ) =376 = Y €965
j=1 j=q+1

for some &5 € O(Qyx Agy), g+l <j<qts. Thus at every point (yg, ag) € &
with ag € CN \ S, where & := V(Gy,...,Gyrs), the germs of the elements
Gj, 1 < j < q+s, generate the germ of I in Oy cn (y).40), Where Yy 1=
Y N Qq. By the preceding relative Noether Theorem, there exist elements
5\]‘ € Oy,[X1,...,XnN], 1 <j < g+ s, such that
q+s
F= Z/\G + > NG Yy xCN

J=q+1
Here the second sum H := Zq+q+1 A;G; belongs to Oy, [X1, ..., Xy] and
vanishes on Yy x V', thus completing the proof of the general case. u

A (local) relative version of the Hilbert Nullstellensatz for polynomial
ideals is given by Lojasiewicz—Ploski [Eoj, p. 407]. Theorem [2.2] allows for an
extension of this result to relative regular functions on an algebraic variety.
The proof of [Lojl, p. 407]) will need to be modified and the existence of the
Hilbert number established. The latter is stated in the next proposition,
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which is an easy consequence of the Riickert Nullstellensatz ([Loj, p. 284|
and the Noetherian character of the local rings of X; its proof is omitted.

PROPOSITION 2.1. Let g = (g1,...,9p) : X — CP be a holomorphic map.

(1) The Hilbert number H(g,a) is a well-defined positive integer for every
point a € S :=V(g1,...,9p)-
(2) [fb e X \ S, then Oij = <gl,b7 - ;gp,b>-

THEOREM 2.3 (Nullstellensatz for an algebraic variety). Assume that'Y
is a connected complex space and V' an affine algebraic variety. Let Ay be
the ideal in Oy V| generated by Y -regular functions gj, j =1,...,p, on V.

(1) If the subvariety S := V(y) is empty, then Ay = Oy[V].
(2) If & is not empty, then Jy(S) admits a Hilbert exponent h > 0
over 'Y, namely,

(2.5) Ty (6) = /AUy

(3) IfY is a Stein space and {g;}i1<j<p generates an ideal in O(Y x V)
that is an intersection of prime ideals, then Jy (&) = Ay .

Proof. Let {Gpi1,...,Gpts} be a polynomial system defining V in CV
and let Q € Jy (&). Given a point yg € Y, let Y7 be a neighborhood such that
@, respectively, each gj, 1 < j < p, is induced by an element Q, respectively,
Gy, in Oy, [Xl,...,g(N]. Let "Q, respectively, "G;, 1 < j < p+ s, be the
homogenization of @, respectively, G;, 1 < j < p+ s (in the indeterminates
Xo,X1,...,Xn, so that when restricted to Y; x {1} x CV, "Q reduces to Q,
respectively, "G to G;). Suppose that for a point (t°,2%) with t0 # 0,
("GHW (9,29 = 0 for all j = 1,...,p + s. Then G;(y,2°/t%) = 0 for
1 <j<pand Gj(z°/t°) =0 for p+1 < j < p+s. Hence (y,2°/t") € &,
which implies that Q(y, 2°/t°) = 0 and hence ("Q)®) (¢, 2°) = 0. One may
also require that (hQ)(y)(O, 20) = 0. Thus the function "@Q vanishes on the
subvariety "G = {hG1 =0,... Gp+s =0} C Y] x CN+1. By Proposition
(applied to the point wg = (y0,0) € Y x CN*1), there exist a positive
integer h = h(yp) (independent of Q) and a connected neighborhood Yj x A
CY; x CN*L of wg such that

p+s

(2.6) ") (1,0 =D N, ("G, Q),  (4.¢) € Yo x Ay,
j=1

for suitable \; € O(Yy x Ag), 1 < j < p+ s. Note that if "& = §, then
the above relation holds for h = 0. The subalgebra Oy, [X1, ..., Xn41] being
Noether-stable in O(Y x CN*1), there exist S\j € Oy [X1,..., Xny1], 1 <
7 < p+ s, such that the relation , with each A; replaced by :\j, remains
valid for all (y,() € Yy x CV*1. This shows that Q@ € ¥/2y. The function
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Yo +— b(yo), being locally constant on the connected space Y, is a constant
on Y. Consequently, the global Hilbert relation is proved.

Assume now that Y is Stein and the ideal (g1,...,g4) in O(Y x V)
generated by g;, 1 < j < ¢, is an intersection of prime ideals. Since the
product space Y x V' is Stein, according to Forster [Fo, Satz 4, p. 315] (or
Siu [S| p. 297]) the set of all holomorphic functions vanishing on & is precisely
given by the ideal (g1, ..., gq). Consequently the Noether stability of Oy [V]
in O(Y x V) implies that the ideal Jy (&) is globally generated by the g;’s
over Y. m

3. The slicing degree and a semiglobal relative Nullstellensatz.
Let M and N be complex spaces of pure dimension m > 0 and n respectively
with ¢ == m —n >0, f : M — N a holomorphic map, and a € M. A
holomorphic map ¢ : U — C? is called a slicing map of f at a, if the
junction (f, ) : U — N x C9 is light. Denote by ®Y(f) the set of all slicing
maps of f at a. The map f is said to be a g-fibering if F, := f~1(f(2)) has
pure dimension ¢ for all z € M. The rank of f at a is defined by

rank, f := dimg, M — dim, Fj,.

The map f is said to be of pure rank if rank, f = const for all z € M. Assume
that IV is locally irreducible. Let f : M — N be a holomorphic ¢-fibering. If
q = 0, choose an open neighborhood U @ M of a with F, NU = {a}. Then
(3.1) 1 <vg(a) :=limsup #F, NU

zZ—a

is an integer independent of the choice of U, called the multiplicity of f at a.

Consider now the case where f : M — N is a holomorphic ¢-fibering at a
with ¢ > 0. Given ¢ € @Y(f) the restriction ¢ = ¢|F,NU is light at a, hence
the covering index prc(a) := vy(a) is well-defined. An element ¢ € ®(f) is
called regular if there exists a local embedding o : U — U’ C @ into an open
set G C C® | where e, is the embedding dimension of M at a, and a regular
holomorphic map ¢ : G — C? such that ¢ oo = ¢|U.

PrROPERTY 3.1 ([Tuj, (2.1.5)]). A holomorphic map f : M — N is a
q-fibering at a if and only if the set ®L(f) of all reqular slicing maps of f at
a 15 not empty.

Define
da(f) = Min {vf(a) | ¢ € D4(f)}-
Let @2(f) be the set of all ¢ € ®L(f) with minimal covering index, that is,
(3:2) vl(a) = da(f).



Noether and strict stability 11

DEFINITION 3.1. The multiplicity of f at a is defined by

(3.3) vf(a) := Min {I/(f#,) (a) | p € @Z(f)}

Note that in Stoll [St]| different definitions are given for the multiplicity
“vi(a)” and order “vUs(a)” of f at a (see [St1} p. 48]), and these two definitions
agree at each point where M is locally irreducible. Stoll’s “multiplicity” is
not needed in this paper (and an example shows that it does not agree with
the one defined above at singular points of M; see [Tuj, p. 125]). For the
multiplicity one sees that, in general, vf(a) > 7¢(a) ([Tuj, Lemma
2.2.3|). Also it is shown in [Tujl Proposition 2.2.5| that: if M, N are pure-
dimensional, N is locally irreducible, and f : M — N is q-fibering, then at
every simple point a of M, vi(a) = vp(a) = vy, (a) for all o € DL(f).
Furthermore, according to Draper [Dl Proposition 5.1], if a is a simple point
of M and N is a normal space, then “(a)” agrees with the (classical)
“Intersection multiplicity” (see [D) §4]):

vp(a) =i(I"- (M x {b}) - (L x {N}, (a, b)),
where I" denotes the graph of f, b = f(a), and L C M is an analytic subset
of pure dimension m — ¢ at a and has compact closure which meets F; in an
isolated point at a. If further M, N are complex manifolds, then the latter
(intersection multiplicity) agrees with that defined by Borel-Haefliger [BH].

Ifr: X — U C C™ is a finite branched analytic covering, then a
function f € C9(X) is holomorphic if and only if f is integral over the
subalgebra 7*(Or) (J[GuRo, pp. 104-105] and |[Gul, Theorem 3, p. 32]). This
characterization carries over to the more general case of a ¢g-weakly normal
mapping:

PROPOSITION 3.1. If 7 = (m1,...,mp) : X — CP is q-weakly normal,
then for any proper slicing (¢, m, D) of {(7;)}<j<p:

(i) The algebra O(Y x D) is an integral algebraic extension, of degree at
most b = Br,)...(r,), 0 (see (LO), of the lifted algebra Oy, nxq) (see
(L.7)).

(i) If an element f € CO(Y x D) is holomorphic, then there exists a
monic element P € @[Y,NxQ} [X1] such that P(f(y,z),y,m(z), ¢(z))
=0 in Y x D; the converse assertion holds if, in addition, X and Y
are normal spaces.

Proof. Since m : X — CP is g-weakly normal, the slicing degree h =
B(x1)-(mp),p given by the expression is a positive integer independent
of (w,t) € N x @ (Property below). Given an element f € CO(Y x D),
consider the associated Riemannian fiber product

(3.4) w(y,w,t,¢) = H (¢ — fW (%) rmeziwt)

z*eD
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defined in Y x N x @ x C. The continuity of the function w is shown in [Tuy),
(1.2.20)]. Restricting w to {y} x N x @ x C (for fixed y € Y') gives rise to a
polynomial function
b
(3.5) W (w,t,¢) = 3 (—1)Fp (w,t) ("
k=0

on N x @ x C, where the integer b is the slicing degree of {(7;)}i<j<p-
Here the coefficient péy) (w, t) arises from the kth elementary symmetric func-
tion of the values of the restriction f® on = (w) N~'(t) N D, and each
pr € COY x N x Q). The mapping w : ¥ x N x Q@ x C — C is shown
to be separately holomorphic in each variable [Tuy), (1.2.19)]. Hence by the
Hartogs theorem (|GR;, Satz 29]|), w is jointly holomorphic; moreover, as

a function of (y,w,t), w is holomorphic in ¥ x N x Q. Clearly, for fixed
y €Y, wW(r(2),0(2), f¥(2)) = 0 for all z € D. Hence

h—1
(36) 1 (y,2)= Y (DM (g(2), () (fP(2))" 7k, ze D,
k=0

thus f is integral of degree h over @[Y,NXQ]~

Conversely, assume that f € CO(Y x D) is integral over (5[34 Nx@]- The
map 7 := (idy, (m, go)j[)) .Y x D — Y x N x Q being light, proper and
holomorphic, the Andreotti-Stoll theorem [AS, Lemma 2.2, pp. 45-46] (on
finite branched analytic coverings) and the same argument as in |[GuRo,
Lemma, pp. 104-105| imply that f is holomorphic in Y x D off a thin analytic
subset. Hence so is f in Y x D, by the normality of the latter. m

THEOREM 3.1 (Nullstellensatz for a g-weakly normal mapping). Assume
that g = (g1,...,9p) : X — CP is g-weakly normal. Then:

(i) For any proper slicing (p,g,D) of {(gj)}1<j<p, the slicing degree
b = B(g)-(g,).0 gives a Hilbert exponent for Spy =Y x Sp, where S :=

(g)1
(i) At every point a € S\ (Ssing N Xsing), the multiplicity Vg(a) gives a
Hilbert exponent for Gy y, for some neighborhood U of a, and consequently

b(g,a) < vg(a).

Proof. (i) Assume that the function QW) belongs to Z(Sp) for every

y € Y. Since each pgg) (w, t) is expressible as a polynomial (without constant
term) in the push-forwards

Y (5w, )(QW (29))* | 2F € g H(w) N (8) N DY,
where s = 1,2,..., one has p,(cy)(O,t) = 0. Thus for each kK = 1,...,b, the
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function p,gy) (9(2),¢(z)) can be written as

P (9(2),0(2) = > huly,0(2) g1 ()" gp(2),  z€ D,
ll ][>0

with holomorphic coefficients h,,(y, »(2)) in Y x D. Consequently, for each
k=1,...,h—1, the function p](fy) (9(2), ¢(z)) belongs to the ideal generated
by the restrictions gjjf). By virtue of the identity , this implies that
there exist \; € O(Y x D), j =1,...,p, such that

(B7) Q)" = M(y,2) g1(2) + -+ Xp(y,2) 9p(2),  (y.2) €Y x D.

This proves the Hilbert relation .
(ii) At each a € S there exists an open neighborhood Uy on which g is
a g-fibering. By Property there exists a holomorphic map ¢ : Uy — C¢
such that g is light along ¢ at each z € Sy, Nyp~1(0). A topological argument
([Tuyl, (1.1.5)]) shows that for a (possibly smaller) neighborhood U &€ Uy of a,
(p,9,U) is a proper slicing of {(g;)}1<j<p With
SN 1 (0)NT = {a}.

The map ¢ can be chosen with minimal covering index at a point a (see

(3-2) and (3.3)). If @ € S\ (Ssing N Xsing), then Properties and below
imply that

Vgp(a; 0, ¢(a)) = VS(@)
Finally, it follows from Property and the expression (1.6 that the mul-
tiplicity Vg(a) gives a Hilbert exponent for the ideal Z(Syy ). =

A reinterpretation of Tsikh’s criterion for a minimal defining system (|TS|
pp. 119-120]) can be given as in the next corollary (where the proof offers
an alternative verification of the second implication on p. 119 of [T§]):

COROLLARY 3.1. Let X be a complex manifold of pure dimension m > 0
and S an analytic subset of pure codimension q defined by a system {g;}1<j<q
C O(X). Then the following conditions are equivalent:

(i) Buery branch of S contains a point a € Syeg with v)(a) = 1 (where
g = (917--->9q))'
(ii) The set £ :={a € S| vy(a) > 1} is nowhere dense in S.
(ili) {gj}i<j<q defines S minimally.

Proof. Assume first that the set £ is nowhere dense in .S. Then by The-
orem 3.1} every point a € S admits a neighborhood U such that the Hilbert
relation holds with the exponent h =1 for all Q € Z(Syy). In partic-
ular, if @ € S and f, € 1,(S,), then fo, =0 ((g1,4,---59qa)). Thus the set
{9j}1<j<q defines S minimally.
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Conversely, if the system {g;}1<j<q4 defines S minimally, then by Tsikh’s
criterion [TS, p. 119], the set

T :={a€S|(dg N - Ndgg)a =0}

is nowhere dense in S. At every point @ € S\ 7 the map g has Jacobian
rank ¢, hence is locally (equivalent to) a projection at a and a € Sreg. By
Property vy (a) = 1 for all such a. Therefore S\ 7 = S\ & and conditions
(i) and (i1) hold. m

THEOREM 3.2. If ® is a principal divisor in a normal space X with
defining equation g(z) = 0, then at each point a € S := Sp|, there is a
neighborhood U such that:

(i) b(g,a) is given by formula (1.9)).

(ii) b(g,a) is equal to the smallest Hilbert exponent for the ideal Z(Syy ).

Proof. Given a point a € S, there is a neighborhood U C X such that,
for every branch 9B, of Sy, 1 < k < r, there exists a holomorphic function
g € O(U) with germ (g, ). generating the stalk of the ideal sheaf of B, at
every z € U (|JGRgl Theorem 5, p. 129]). By Corollary one deduces that

vy (2) = 1 for every z € (By)reg N Xreg- The normality of X implies that

the same holds for all z € (B, ).ee. Hence by the divisibility Property g
is divisible by gi* - -- g¥* in U, where v, is the multiplicity of g at any point
of B, N (Sy)reg. Hence one can write
glU =ugy" -+ g
for some w € O*(U). Similarly, if G € Z(Syy), then for each y € Y,
GW U =G{y} x U =W gt e
for some v(¥) € O*(U) and suitable integers sj > 0. Thus, taking h = hg :=
max{v, | K =1,...,7}, one has
(G(y))hJU _ (U(y))h gil 51, .g:}Sr — 17(y)gfl gl

for some 3 € O(U). Therefore G € ¥/{g]U). The quotient \(y,z) :=
W (y, 2) /u(z) is holomorphic in Y x U by the Hartog theorem ([GR;, Satz
29]), and it satisfies the equation

(3.8) GO(y,2) = My, 2) 9(2), (y,2) €Y x U.

Furthermore, the number § is the smallest positive integer satisfying .
Indeed, taking I to be a positive integer less than hg, the function ¥ :=
g1---gr vanishes on Sy but the function (¢|U)" is not divisible by g¢|U.
Similarly the germ ('), = (1)' is not divisible by the germ g,. Conse-
quently, hs = b(g,a). =

If S is a complete intersection of divisors in an affine algebraic variety,
then the product subvariety & = Y x S admits an intrinsically determined
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Hilbert exponent for Y-regular functions (cf. Ploski-Tworzewski [PT, The-
orem 3.1]):

THEOREM 3.3. Let V' be an affine algebraic variety and Y a complex
space. Assume that S is a complete intersection (of codimension q) of divisors
D; in V defined by regular functions gj, 1 < j < q. Then the integer

(3.9) hs := max {Vg(cu) | ¢y € Sreg N B},

where g = (g1, . ..,9q) and the mazimum is taken over all branches B,, of S,
is a Hilbert exponent for the ideal Jy (Y x S).

Proof. By Theorem given ag € S, there exists a neighborhood U C
V of ag such that, setting hq, = b0, jv),(©@,|v),),U, every element f €
Z(Gy,y) satisfies a Hilbert relation

(3.10)  f10(y,¢) = 1 (y,¢) g1(Q) +- -+ ag(y,C) 94(C),  V(y,{) €Y x U,
for suitable a; € O(Y x U), 1 < j < ¢. This relation shows that

fhaow =0 ({(gr,w:- -+ 9qw))

in Oyxvw at every point w = (yo,ag) € Y x S. Since the function v, is

locally constant on Syeg (Property below), the integer hg given by (3.9)
is well-defined and one has

bao <bsg, Vag € Sreg-

This implies that
(f")w =0 ((grws -+ Gg))

in Oyxv,w at every point w € (Y x §) \ A, where A :=Y X Sgn,. Hence,
if f € Z(Y x S) is Y-regular, then it follows from the Noether stability of
Oy [V] that

(3.11) 75 =0 (g1,.--,9)y) inOy[V] =

PROPOSITION 3.2. Let VY and S be the same as in Theorem [3.3 If
either V' is irreducible and S is minimally defined by § = {g;}1<j<q orY is
a Stein space and § generates an ideal in O(Y x V') equal to an intersection
of prime ideals, then Jy (Y x S) = (g1,...,9¢)v-

Proof. Assume first that V is irreducible and S is minimally defined
by §. Then by Corollary , taking ag to be a point of S;es, we have
(with b, = I/g(ao) = 1), hence also (with hs = 1). This proves that
Ty (Y x8)=(g1,.--,9q)v-

In the remaining case the desired conclusion follows from the same argu-
ment as that for the corresponding assertion in Theorem "
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IfYyCY and & CY x CN (respectively, & C Y x PN(C)), set Sy, =
& N (Y x CV) (respectively, Sy, =6 N (¥ x PN(C))).

PROPOSITION 3.3. Let ® be a principal divisor in' Y x CV defined by a
primitive element g € Oy[Xq,...,XnN] over a normal, irreducible space Y.
Assume that at every point of Y off an almost thin subset T of codimen-
sion 2 (JAS| p. 14]), there is a Stein neighborhood U such that g has simple,
irreducible factors in Oy[Xy, ..., Xn]. Then Jy(Sp)) = (9)y-

Proof. Let G = Gp. It & = (), then we have 1 = ug, where u =
(1/g) € O(Y x CV). The subalgebra Oy [X7,..., Xy] being strictly stable
in O(Y x CV), the quotient function u actually belongs to Oy [X1, ..., Xn].
Hence one has (g)y = Oy [X1,..., Xn]|. If 3 # 0, then deg(g) > 0. Choose a
Stein neighborhood U C Y \ T such that g has simple, irreducible factors in
OuylXi,...,Xn]. By the principal ideal theorem for relative hypersurfaces
(|Tugl Theorem 4.2(2)]), the subvariety &;; is minimally defined by an equa-
tion g1 --- gr = 0 where each g; € Opy[Xy,..., Xn] has positive degree and
the set {V(g;)}1<j<r gives all branches of &;;. Moreover, by Properties
and

g=u(m¢) g - g

for some u € O*(U xCY), ¢ € O(U), and suitable positive integers \;. Since
g is primitive over U and has simple irreducible factors in Oy[X1,. .., Xn],
the function ¢ is nonvanishing in U and each \; equals 1. As above, the strict
stability of the subalgebra Oy[X1,..., Xn] implies that g = vg;--- g, for
some v € Oy[Xy,..., Xn]. Let Q € Jy(&)p|). Then by Corollary and
Theorem the quotient h := @Q/g is holomorphic in U x CV. It follows that
h is holomorphic in (Y '\ 7) x C, hence (by normality of Y) also in ¥ x CV.
Therefore (as in the preceding) h € Oy[X1,..., Xn], thereby proving the
desired conclusion. m

4. Nullstellensatz for relative projective varieties. An element g
in Oy[X1,...,Xn| (or Poly,y) of (generic) positive degree is said to be
irreducible at yg € Y if there exists a Stein neighborhood U such that g is
irreducible in Oy[Xy,..., Xn]. To each element g € Poly n1 is associated
a subset V(g) in Y x PV (C):

V(g9) = {(y.[20, ..., 2n]) € Y x PM(C) | g¥(z0,...,2n) = O}.

A subset & C Y x PN(C) is called a relative algebraic set (over Y) if at
each point of Y there exist an open neighborhood Y and (finitely many)
elements g; € Poly, n+1, 1 < 7 < p, such that the restriction 6|y0 is given
by the common zero set V(g1,...,0p) := V(g1) N --- N V(gp). The relative
Chow Theorem asserts that a subset & C Y x PN(C) is relative algebraic
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over Y if and only if it is analytic in Y x PN (C) (for a proof see Fischer [Fi,
4.3] or [Tug, Theorem 3.1]).

LEMMA 4.1. LetY be irreducible and G € Oy [ X1, ..., Xn| (respectively,
G € Poly,n+1) be primitive over Y. If G is irreducible at some point of YVieg,
then V(Q) is an irreducible hypersurface in Y x CN (respectively, Y x PV (C)).

Proof. Observe that if ¢ € Oy[Xi,...,Xy], the irreducibility of the
affine variety V(g) is equivalent to that of its completion V("g) in PV (C).
Also, an element G € Poly, y41 is reducible in Oy [Xo, ..., X ] for some open
subset U C Y, if and only if so is g := *G in Oy[X7,..., Xn]. Therefore
to prove the lemma it suffices to consider the case of a primitive element
g € Oy[X1,...,Xn]. Let &5, 1 < j < r, be the irreducible components of
S = V(g). Assume that there exists a Stein neighborhood U C Y;e, over
which g is irreducible. Then (as in the proof of Proposition the restric-
tion (6J)|U is minimally defined by an equation g; = 0 of positive degree,
for every j. Hence it follows from Corollary and Theorem that the
quotient u = g/gy - - - g, is holomorphic in U x CV. Therefore, by Theorem
, if » > 1, then g is reducible in Oy[X, ..., Xn], hence a contradiction.
This proves that & = &1, so it is an irreducible variety. m

Let U .= {a = [ag,...,an] | ax # 0} be the kth canonical chart
and olf! the associated coordinate map on U#} given by al¥l : a — alFl .=

Py
(CLO Ak an

ag’ T ap’t ) a

(for 1 < k < N) of an element g € Poly y41 is the holomorphic function
g" 1Y x CN = C defined by (y,¢) — glF{¥}(¢), where

g (Co, o Gty Gt -, ) = g (o Goets 1 Gl - G
the dehomogenization g = ¢[% is similarly defined. Setting §i*¥! := ¢l o
(idy, al®), the system {(Y x U1k}, g[kl)}ongN defines a divisor in Y x PV (C),
called the principal divisor associated to g.

If g; € Polyy,N+1, 1 < j <p,and & :=V(g1,...,0p), then the set Iy (&)
of all elements f € Poly,n41 vanishing on & is a homogeneous ideal in
Oy [Xo, ..., Xn], as can be seen as follows: if f € Jy (&), and w = (y,a) € &,
then f(¥) vanishes at all homogeneous coordinates of a. It follows that all ho-

) (here “ 7 denotes omission). The kth dehomogenization

mogeneous components fj(y) of £ vanish at a. Thus every such component
belongs to Jy (&), proving that Jy (&) is homogeneous. A standard argument
shows that a nonvoid relative algebraic set & is irreducible in Y x PY(C)
if and only if Jy (&) is a prime ideal in Oy [Xp,..., Xy]. It is easy to see
that if 3y (&) = (P1,..., Py for some P; € Poly i1, 1 < j < r, then
S =V(Py,..., ). The precise determination of the ideal Jy (&) for a given
relative projective variety & will be considered in the rest of this paper in

several cases.
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PROPOSITION 4.1. Let ® be a principal divisor in' Y x PN (C) associated
to a primitive element G € Poly,n+1 over a normal, irreducible spaceY, and
S = Sp|. If at every point of Y off an almost thin subset T of codimension 2,
there is a neighborhood U such that G has simple, irreducible factors in
OulXo, ..., XnN], then Ty (6) = (G)y.

Proof. The pseudopolynomial f = *G is primitive over Y with V(f) # 0.
Let U C Y \ T be a Stein neighborhood over which G is irreducible. Then
f has simple, irreducible factors in Oy[X7,..., Xn] (see Lemmal6.1] below).
Hence by Lemma S = V(f) is a union of irreducible branches of codi-
mension 1 in Y x CV. Consequently, the same is true for & = V(G) in
Y x PN(C). Observe that by Proposition 3.3, Jy (?&) = (f). If Q € Jy(6),
then *Q € Jy (*S), hence *Q = uf for some u € Oy[Xy,..., Xn]. Therefore
Q= (hu)G S <G>y. u

According to Gunning [Gul Theorem 2, p. 42|, if in a product space W xC,
where W is an open subset of CV, a subvariety S is realizable as a finite
branched analytic covering of W under the natural projection W x C — W,
then a set of global generators can be constructed for the ideal Z(S). A
generalization of this assertion to the case of a divisor in a vector bundle on
a Stein manifold is given in [Tug) 4.2(2)]. By virtue of the latter and Lemma
conditions under which the associated ideal of a divisor in Y x PV (C)
is principal can be ascertained:

THEOREM 4.1. Assume that'Y is a connected Stein manifold (of dimen-
sion n > 0) with H*(Y,Z) = 0, and ® an (arbitrary effective) divisor in
Y x PV(C) with Sjp N (Y x CN) # 0. Then:

(i) © is a principal divisor associated to an element f € Poly n41.

(ii) &p| consists of finitely many branches &;, 1 < j < I, each being
defined minimally by an equation g; = 0 for some irreducible g; €
Poly,ny1.

(iil) Ty (Sp|) = (91---g)y, where, if deg(g;) = 0, then &; = ¢j_1(0) X
PN(C) for some irreducible ¢; € O(Y).

THEOREM 4.2 (Relative projective Nullstellensatz; cf. |ZS Theorem 15,
pp. 171-172|, [CLO, Theorem 9, p. 384|). LetY be a connected complez space
and ®; a principal divisor in' Y x PN (C) associated to g; € Poly ny1(l;), for
j=1,...,p, and & :=(Vi_; G|p .

(1) If p < N, then the restriction &\, is not empty for ally € Y and
there is a positive integer b such that

(1) (&) = g1 ap),,
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(2) If p > N and if & is not empty, then the relation (4.1)) remains valid
for &.

Proof. Let C(&) C Y x CN*! be the affine cone of &. If p < N, the
restriction &,y is nonempty for all yp € Y, by a result of Lang |[Lal p. 43,
Corollary]. Thus, according to [CLOL p. 384, (2)], the ideal Jy (&) coincides
with that (in Oy [Xo, ..., Xn]) associated to the analytic cone C(&). There-
fore Theorem implies (by resorting to homogeneous expansions) that
there exists a positive integer fh with the following property: for each yp € Y
there is a neighborhood Yj such that every element G € Jy (&) NPoly n11(d)
satisfies the equation

Gb:)\lg1+--~+/\ng in Yy x CNt1
for some \; € Poly, n+1(hd — 1), 1 < j < p. This proves (4.1)). m

In the following, let ®; be a divisor in PV (C) with support §;, for
1 <j <q< N.By Theorem each ©; admits a global defining equation
9j(20,...,2n) = 0 for some g; € Poln41. Also, by Theorem the projec-
tive variety § := ﬂgzl §; is nonempty. If § has codimension ¢ at a, define
the ntersection number of the divisors ®; at a € FN Uk} by

(4.2) (D1 D)o = (@G, ..., gM), ol

(cf. [AY) p. 180]). Observe that, by the invariance of multiplicity under an
invertible holomorphic matrix transformation ([Stg, Theorem 6.1]), the in-
tersection number is a positive integer intrinsically determined by the
divisors ®; (independent of their local representations).

A projective variety § of pure codimension ¢ > 0 in PV (C) is called a
complete intersection if there exist (effective) divisors D1, ...,®, such that
§ = ﬂ?zl Sp,|- Thus, for such a complete intersection one may choose for
each ©; a defining homogeneous polynomial f;. The integer

(43) b{@hm’@q} = max{(@l tee Qq)cu | CM S %N N Sreg}y

where the maximum is taken over all branches B, of §, is intrinsically de-
termined. For a system F = {f;}1<j<q (as above) defining a complete inter-
section, also set

(4.4) biry = maX(h{m,...,@qp | ax {mk(fj)}),

where my(P) denotes the highest power such that z,:n’“(P) divides P. The
system JF is said to be minimal for § if bz, = 1.

THEOREM 4.3 (Hilbert exponent for a projective complete intersection).
Assume that:
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(i) & is a complete intersection of divisors in PN (C) defined by F =

{fjh1<j<q, and
(ii) §N{z=1[20,.-.,2n] | 2 = 0} is thin in § for each k € Z[0, N].

Then for any complex space Y :

(a) Ewvery nonzero element G € Poly n+1(d) N Ty (Y x F) satisfies the
equation

(4.5) GYMFY =M\ fi+--+ N fy inYyx CNT

for some \; € Poly, n+1(hyryd —1;), 1 <j<gq.
(b) If either (fi1,...,fq)y is a prime ideal or the system F defines §
minimally, then Jy (Y X §) = (f1,..., fq>Y-

Proof. Let G € Poly n+1(d) N Ty (Y x §F) be given. Choose k € Z[0, N|
such that mg(G) > 0 and § contains a point a € U*}. By Theorem ii),
given yg € Y, there exists a product neighborhood Yy x A C Y x CV of
(3o, al®) such that, for an exponent h > hio,,..0,} the equation

q
(46) (M0 = (Of7Q). V. eYoxa,
j=1

holds for some a; € O(Yy x A), 1 < j < q. The subalgebra Oy [X1, ..., Xy]
of pseudopolynomials being Noether-stable in O(Y x CV), the coefficient
functions «; in may be chosen to be elements of Poly, . Hence by the
identity theorem for holomorphic functions, the relation remains valid
for all (y,(¢’) € Y x CN. If we denote by d(P) the degree, respectively, “" P;”
the kth homogenization, of a nonzero polynomial P; € O[Xq,..., Xy], then
the identity

X:(Pl)+d(P2) h(Pl —|—P2) — XZ(P1+P2)[XZ(P2) hPl +XZ(P1) hPZ]

holds for all such Pj, j =1, 2 (|ZS| (3), p. 179]). By use of this formula it
can be shown that the relation (4.6) implies that

q
(G (g, i) =3 AW (2o, 2) ") (20, - 2)
j=1

for suitable pseudopolynomials 5\j € Poly, n+1, 1 < j < g, for all (y,2) €
Yy x {z € CN*1 | 2z, # 0}. Thus for such (y, z), the identity

X, ~m(P) p — h(p(’f))

(IZS, (5'), p. 180]) implies that

q
7=1
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Therefore, choosing h = hyry as in (4.4), one has

q
(G(y)(ZO,... b{f Zj\y 20542 ) ;:k’jfj(Zo,...,ZN),
j=1

where the integer g ; := my(G )h{;} my(f;) is nonnegative. Hence (by
continuity) the global relation ) follows.

If (fi,...,fq)y is a prime 1deal then the above relation implies that
Ge(fi,..., fq>y. Clearly, if by 7y = 1, then the same conclusion holds for §.
Thus assertion (b) is proved. m

A consequence of the above theorem and the Bézout property of projec-
tive hypersurfaces (|Tus, Corollary 4.1]) is the following:

COROLLARY 4.1. Let §j(c) be a hypersurface in PN(C) defined by a
homogeneous equation fj(z;c) = 0, where ¢ varies in a locally connected
Hausdorff space W. Assume that for some ¢ = ¢* € W, the set §(c) :=
ﬂé-v:l §j(c) does not meet any of the hyperplanes {z = [z0,...,2n] | 2k = 0}
for 0 < k < N. Then for all ¢ € W sufficiently close to c*, the system
F(e) ={fj(z;¢)}i<j<n defines a finite intersection F(c) with

hiF(ey < deg(f1)---deg(fn).

5. Gauss decomposition of pseudopolynomials. In this section, let
(X,p) be a semi-Riemann domain of dimension m > 0 (see [Tugl §2 and §3|
for notation), a an arbitrary point of X, and Y an irreducible complex space.
A (holomorphic) strictly a-homogeneous pseudopolynomial on X over Y (of
degree d) is a holomorphic function 9 : Y x X — C such that

Y = GW o pld
for some G € PolYN(d), where N = 2m, and pl¢ : X — C™ = R?" has
components C =25 — &j(a), CQJ =7; —gjla), 1 <j <m;call such G a
strict push forward of 1. Denote by Poly N(a d) the set of all such elements

1 of degree d. In particular, an element wék’g) € Poly,n(a, k), where k > 1,
with strict push-forward

FRO(Xy,. . Xy) = QX1+ + & Xn)F, €= (&,..., &) eCV,
is called an elementary a-pseudospherical harmonics (in view of Proposition
3.1 and Example 3.2 of [Tuy}, §3|). To characterize the submodule over O(Y")
generated by such elements, it is helpful to introduce (as follows) a differential
operator associated to each element ¢ € Poly,n(a,d).

For any G € Poly n(d) of positive degree, substituting a, for each a, in

the expression (2.1 defines an element G € Poly,n(d). Given ¢ € Poly,n(a,d)
with strict push-forward G, by substituting further (in (2.1))) the symbolic
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operator 0/0X for each variable X; (holding y fixed in Y\ A(¢)), a linear
operator G[D] : Poly (k) — Poly (k — d) is defined, hence also a linear opera-
tor ylal [D] : Poly,n(a, k) — Poly n(a, k—d), for integers k, d with 0 < d < k,
with the property that

DIy = (G[D]H) o p!*,
where H is a strict push-forward of 7. A bilinear mapping
Poly,n(a,d) x Poly,n(a, k) = Poly,n(a, k — d)

(between abelian groups) is given by the rule
(5.1) (w,m) = Y [Dy.
Note that when applied to the space Poly (k) x Poly(k), this bilinear map
defines a Hermitian symmetric scalar product. Also, for every element Q) €
Poln(d), 1 < d < k, the definition implies that
(5.2)
QIDIF®) (21, ... 2n) = k(k — 1)k — d + 1) Q(E)FF %9 (2, ..., zy).

If ¢ € Poly n(a,d), n € Polyn(a,k) and § € Poly y(a,k — d), then the

following adjoint formula holds:

(5.3) (I [DIn, &) = (n, ve€)

(cf. [H, p. 30]). This formula and Proposition [4.1] give rise to a generalization
of the Gauss decomposition rule:

PROPOSITION 5.1.

(1) If M C Poly n(a, k) is a submodule over O(Y') and g € Poly n(a,d)
with 0 < d < k, then

(5.4) M = ker(31)[D][9) @ g - S(§1[D] [2);
i particular,
(5.5) Poly n(a, k) = ker(§1[D]) @ g - Poly y(a, k — d).
(2) For each ¢ € Poly n(a, k),
[k/d]
(5.6) b= ¢ Zr ja

§=0
where Z; € ker (gl [D]) N Poly,n(a,j) and Z; is not divisible by g.
Proof. Observe that if ) = gn, where n € Poly n(a,k — d), then
(0, ) = YD)y = ([DIg[D]) ¢ = (n, g [D]v).

Suppose that ¢ € ker(gl®[D][9M) N g - S(§!¥[D]|9M). Then ¥ = gn for some
n € I(Gl[D]|M), and consequently (¢, 1) = 0, whence ) = 0. This proves
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that the kernel space of §l9[D][9 and the space g-3(§!*[D][9M) have trivial
intersection, hence are of complementary dimensions in 9. From this the
relation ([5.4]) follows.

By virtue of the adjoint formula (5.3), the mapping G [D] : Poly n(a, k)
— Poly,n(a, k — d) is surjective. Hence the decomposition implies that
the representation holds. By iteration of this formula it is easy to show
that every element ¢ € Poly n(a, k) admits (for each d € Z(0, k)) the Gauss
decomposition . "

Given ¢ = (c',...,c%) with ¢ = (c],...,c)y) € CV, 1 < j < g, define the
Fermat variety F%} .= V(F{d7cl}, ..., Flc't) where

The solid a-pseudospherical harmonics over Y (of type {d,c} and degree
k > 1) are the members of the submodule (over O(Y))

ﬁ{d C}(a k) - {Z € POZYN(Q k) | <¢,Z> =0, Vo € <!pa,{1}7 . 'awa,{q}>Y}v
where ¥, (;, = {dc } — plde} o plal,

PROPOSITION 5.2. Assume that § is a complete intersection of Fermat
divisors in PN~1(C) of codimension q defined by a system F = {F{d’cj Hh<j<qs
and one of the following conditions holds:

(i) F defines § minimally, _

(i) (Fry, -5 Figy)y, where Fyjy = FACY is a prime ideal,

(iii) N>2,¢g=1,c' #0€ CV, and Y is a normal space.
Then

(5.7 Polyn(ak) =5 a k) @ w4 Poly.y(a,k — d);
1<j<q

furthermore, ﬁgd’c}(a, k) is generated over O(Y') by the set
Hap = B9 = (@9 |6 = [, &x] € 510

of elementary pseudospherical harmonics of degree k parametrized by Floch.

Proof. Repeated application of formula yields the decomposition
formula . By , an elementary pseudospherical harmonics ng""g) be-
longs to .ﬁyd’c}(a, k) whenever ¢ € 1%}, Owing to the decomposition ,
it suffices to prove that the submodule over O(Y) generated by the set
Hg, i in Poly,n(a, k) has an “orthogonal complement” given by the direct
sum _

P vl Polyn(a, k- d).

1<j<q
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By the identity , each element v of this direct sum satisfies the equa-
tion (1), Q/J((lk’g)> = 0, provided [£] € §l4e}. Conversely, if Z € Poly n(a, k)
and Z is “orthogonal” to H, j, then, for any strict push-forward Z of Z,
ZW)(€) = 0, hence also Z®)(£) = 0 for each y € Y. By Theorem there
exist \j € Poly,n(s —d), 1 < j < g, such that

707y = M Flet p g\ R ony x OV,
Hence, if either (Fyyy,..., Fiq )y is a prime ideal or hyry = 1, then
(5.8) Ze @ Fl Polyy(k - d).
1<5<q

If N>2 ¢g=1and ¢! #0, then F{®'} is irreducible in Oy[X1,..., Xy]
([P, Theorem 1]), hence, if Y is a normal space, Proposition asserts that
the relation remains valid (with ¢ = 1). Thus in either case the second
assertion follows. m

Let D C X be an open set and a € D. The (induced) Laplace operator
A, in D* can be expressed in the form

_ 0 4 0
Ay =12 Agn + 1l Nara (rév 187“(1)’

where Agyy, is, by definition, the “pseudospherical Laplacian”. Let S, (po) :=
0D\4)(po) for sufficiently small pg > 0.

PROPOSITION 5.3.

(1) For each fived (a,&) € X x CN, the (surface pseudospherical harmon-
ics) @2’“’5) =k w(ké is an eigenvector of Agp belonging to the eigenvalue
—k(k+ N — 2)

(2) If N > 2, each eigenspace of the pseudospherical Laplacian on Sq(po)
1s spanned by the functions ngk’g) with € + -+ + 512\1 =0, for some k > 0.

(3) L2(Sa(po)) = ®k>0 Eax(po), where B,y (po) denotes the span of the

set Eqx(po) := po " kac }jSa(po), with M = (1,...,1).

Proof. Observe that the function @Eﬁ’f) is a-radially symmetric ([Tug §3,
Remark 2]). Since every a-radially symmetric function ) (|[Tug, §3]) satisfies
the equation

Apn() =127 F A (rk D) — k(k+ N —2)2

for any integer k > 0, it follows that the surface pseudospherical harmonic
th(lk,g) is an eigenfunction of Agp, with eigenvalue —k(k + N — 2). The re-
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maining assertion follows from the standard argument (see [H, p. 32]) by
considering a “real” decomposition formula (5.6) with g := 2. u

6. Appendix: Multiplicity and relative cancellation rules. Some
basic properties of the multiplicity of a holomorphic map are summarized

below. For complete proofs of Properties and see [Tuy].

PrOPERTY 6.1 (Cf. [Tuyl (1.2.17)]). If (v,g,D) is a proper slicing of
divisors {Djti<j<p n M (in the sense of Definition then the sum
Y Avg(ziw,t) | 2 € D} is a positive integer independent of (w,t) € N x Q.

PROPERTY 6.2 ([Tuy) (2.2.1)(2)]). If a € (Fa)reg, then v¢(a) = vy (a)
for all p € B2(f).

PROPERTY 6.3 ([Tuj} (2.2.2)]). If N is normal at f(a), then vs(a) =1
if and only if f is (equivalent to) a (local) projection at a and a € (Fy)reg-

PROPERTY 6.4 ([Tui, (2.2.5)]). If a € Mycg, then vy(a) = Uf(a) =
vip(a) for all € BZ(f).

PROPERTY 6.5 ([Tw}, (2.2.6)]). v¢(z) = const for all z € (Fy)reg-

PROPERTY 6.6 (JAS, pp. 266-267]). If a € Myeg and f, g € Onrq \ {0},
then V?g(a) = V?(a)—f—l/g(a), where V?(a) =vy¢(a)if f(a) =0, and V?(a) =0
otherwise.

PROPERTY 6.7 (|Tug, Lemma, p. 132]). Let M be a normal complex space
and f, g € O(M) with S :== V(f) a thin subset of M. Then g € (f) whenever
vg(w) > l/?(w) for every w € Yieg N Sreg-

In the following let Y denote an irreducible complex space, and f, g, h, P
€ Oy[X1,...,Xn] be of positive degree. Some relative factoring, cancellation
(and therewith divisibility) rules (of recurring use) are gathered below.

LEMMA 6.1. If f is primitive over Y, then f has simple, irreducible
factors in Oy [ X1, ..., Xn] if and only if so does the homogenization F = " f
m Oy[Xo, cee ,XN].

Proof. Since S = V(f) is rational over Y, the set SN (Y x PN=1(C)) is
thin on (the projective closure) S, by [Tug, Theorem 3.2]. Suppose that F =
G1Ga, Gj € Oy[Xo, ..., Xn], with deg(G;) > 0, j = 1,2. Then each Gj is
homogeneous and *F = (“G1) (“Gz), where each G is of positive degree.
Thus f is reducible over Y. The converse assertion is proved similarly. m

In the remainder of this section assume that Y is a normal complex
space. The next assertion is an easy consequence of the unique factorization
property of pseudopolynomials [Tugl Theorem 4.2(2)]:
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PROPOSITION 6.1. Assume that g and P are relatively prime over some
pseudoball Uy ([Tudl, §2|) at every point of Y off an almost thin subset T
of codimension 2 (namely, admitting no common factor in Oy,[X1, ..., XN]
with nonvoid zero set). Then fP = hP ({g)) (in the ring O(Y x CN)) if and
only if f =h ({9)y)-

COROLLARY 6.1. Let F, G, H, Q € Poly,n41 be of positive degree. As-
sume that Q and G are relatively prime over some pseudoball Uy at ev-

ery point of Y off an almost thin subset of codimension > 2. Then F(@Q =
HQ ((G)) (in OY x CN*Y)) if and only if F = H ((G)y).

PROPOSITION 6.2. Assume that g is primitive over Y and irreducible
at every point of Y off an almost thin subset T of codimension > 2. If
P is not divisible by g over some pseudoball at each point of Y \ T, then

fP=hP ({g)) (in OY x CN)) if and only if f =h ({g)y).

Proof. Without loss of generality assume that h = 0. Suppose that
fP =0 ({(g9)). Let Uy € Y \ T be a pseudoball such that P ¢ (g)y,.
Suppose that P = uP and ¢ = ug for some u,P,§ € Ov,[X1,..., XN]
If deg g = 0, then the primitivity of ¢ implies that § is nonvanishing, thus
contradicting the fact that P is not divisible by g. It then follows from the
local irreducibility of g in Y\ 7 (and the primitivity of g) that the function
u is nonvanishing. Thus g and P are relatively prime over Uy. Hence by

Proposition [6.1], f =0 ({g)y). =

Of possible use in the theory of algebraic functions is the following can-
celation property:

PROPOSITION 6.3. If P is irreducible in Oy [X1, ..., Xn] with deg(P) >
deg(g), then fP = hP ({g)) (in O(Y x CN)) if and only if f = h ({g)y).
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