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Distributional chaos of time-varying discrete
dynamical systems
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Yuelin Gao (Yinchuan) and Heng Liu (Dalian)

Abstract. This paper is concerned with distributional chaos of time-varying discrete
systems in metric spaces. Some basic concepts are introduced for general time-varying
systems, including sequentially distributive chaos, weak mixing, and mixing. We give an
example of sequentially distributive chaos of finite-dimensional linear time-varying dy-
namical systems, which is not distributively chaotic of type i (DCi for short, i = 1, 2).
We also prove that two uniformly topological equiconjugate time-varying systems have
simultaneously sequentially distributive chaos and weak topological mixing.

1. Introduction. Since Li and Yorke first gave the definition of chaos
with strict mathematical language in 1975 [9], the research of chaos has
had a great influence on modern science. Various extensions of the defi-
nition have been given, e.g. Devaney chaos [2], Wiggins chaos [20], dense
chaos [14, 15], generic chaos [16], distributional chaos [19] and sequen-
tially distributive chaos [21]. Chaos of the time-invariant discrete system
xn+1 = f(xn) (n ≥ 0) has been studied, where f : D ⊂ X → X is a map and
(X, d) is a metric space. Many significant results have been obtained [2, 3].
Moreover, for high-dimensional and infinite-dimensional maps, some sig-
nificant progress has been made [10, 11, 17]. At the same time general
time-varying discrete system (TVDS) have been studied in a large number
of publications [5, 6, 7, 12]. A TVDS can be written in the form

(1.1) xn+1 = fn(xn), n ≥ 0,

where fn : Dn → Dn+1 is a map and Dn is a subset of a metric space (X, d);
fn is not required to be invertible, and only the positive orbits of system
(1.1) are considered. Y. M. Shi and G. R. Chen [18] have studied chaos of
finite-dimensional linear time-varying dynamical systems and showed that
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topological conjugacy alone cannot guarantee two topologically conjugate
time-varying systems to have the same topological properties in general.

In this paper, we study sequentially distributive chaos and weak topo-
logical mixing of two uniformly topologically equiconjugate time-varying
systems (see Definition 2.6). We also exhibit a system which is sequentially
distributively chaotic, but is neither DC1 nor DC2. Furthermore, we prove
that being sequentially distributively chaotic and DC2 are not equivalent.

2. Basic definitions and preparations. Throughout this paper,
(X, d) will denote a metric space with metric d, fn : Dn → Dn+1 a map, and
Dn a subset of the metric space (X, d). Let S be a subset of D0 containing
at least two distinct points. Let x0, y0 ∈ S, x0 6= y0, and {pk} be a sequence
of positive integers. For any δ > 0, put

Fx0y0(δ, {pk}) = lim inf
n→∞

1

n
]{k | d(xpk , ypk) < δ, 1 ≤ k ≤ n},

F ∗x0y0(δ, {pk}) = lim sup
n→∞

1

n
]{k | d(xpk , ypk) < δ, 1 ≤ k ≤ n},

where ]A is the number of elements in A.

Definition 2.1. A set S is called distributively scrambled for sys-
tem (1.1) along a sequence {pk} of positive integers if for any distinct points
x0, y0 ∈ S,

(1) Fx0y0(ε, {pk}) = 0 for some ε > 0,
(2) F ∗x0y0(δ, {pk}) = 1 for all δ > 0.

If system (1.1) has an uncountable set distributively scrambled along a
sequence, the system is said to be sequentially distributively chaotic (briefly
sd-chaotic).

A system distributively chaotic along the sequence of all positive integers
is also said to be distributively chaotic (briefly DC1). Suppose (1.1) is sd-
chaotic and let S be a set distributively scrambled along a sequence for (1.1).
If there exists ε > 0 such that Fxy(ε) = 0 for any distinct x, y ∈ S, then
the sequentially distributive chaos is said to be uniform. If condition (1) is
replaced by Fxy < F ∗xy, then we obtain the definition of DC2.

Definition 2.2. Let A be a nonempty subset of D0. System (1.1) is
said to be topologically mixing in A if for any two nonempty relatively open
subsets U0 and V0 of A, there exists a positive integerN such that Un∩V0 6= ∅
when n ≥ N , where Ui+1 = fi(Ui), 0 ≤ i ≤ n− 1.

Definition 2.3. Let A be a nonempty subset of D0. System (1.1) is
said to be weakly mixing in A if for any four nonempty relatively open
subsets U1

0 , V
1
0 , U

2
0 and V 2

0 of A, there exists a positive integer n such that
Uk
n ∩ V k

0 6= ∅ (k = 1, 2), where Ui+1 = fi(Ui), 0 ≤ i ≤ n− 1.
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Now, we introduce the concept of topological conjugacy and uniform
topological equiconjugacy for TVDSs. Consider the system

(2.1) En+1 = gn(En), n ≥ 0,

where gn : En → En+1 and En is a subset of a metric space (Y, ρ), n ≥ 0.

Definition 2.4. System (1.1) is said to be topologically {hn}∞n=0 con-
jugate to system (2.1) if for each n ≥ 0, there exists a homeomorphism
hn : Dn → En such that hn+1 ◦ fn = gn ◦ hn, n ≥ 0.

Definition 2.5. Assume that {Dn}∞n=0 is a sequence of subsets in a
metric space (X, d), {En}∞n=0 is a sequence of subsets in a metric space
(Y, ρ) and hn : Dn → En is a uniformly continuous map for each n ≥ 0. The
sequence {hn}∞n=0 is said to be uniformly equicontinuous in {Dn}∞n=0 if for
any ε > 0, there exists a positive constant δ such that ρ(hn(x), hn(y)) < ε
for all n ≥ 0 and x, y ∈ Dn with d(x, y) < δ.

Definition 2.6. Assume that system (1.1) is topologically {hn}∞n=0 con-
jugate to system (2.1). System (1.1) is said to be uniformly topologically
{hn}∞n=0 conjugate (resp. equiconjugate) to system (2.1) if {hn}∞n=0 and
{h−1n }∞n=0 are uniformly continuous (resp. equicontinuous) in {Dn}∞n=0 and
{En}∞n=0 respectively.

Definition 2.7. Let S be a subset of D0 containing at least two distinct
points. Then S is called a scrambled set of system (1.1) if the orbits of any
two distinct points x0, y0 ∈ S satisfy

(i) lim inf
n→∞

d(xn, yn) = 0, (ii) lim sup
n→∞

d(xn, yn) > 0.

Further, S is called a δ-scrambled set for some positive constant δ if for any
two distinct x0, y0 ∈ S, (i) holds, and instead of (ii),

(iii) lim sup
n→∞

d(xn, yn) > δ.

Definition 2.8. System (1.1) is said to be chaotic in the strong sense
of Li–Yorke if it has an uncountable δ-scrambled set S such that all the
orbits starting from the points in S are bounded.

Definition 2.9. Let f be sd-chaotic and let D0 be a set distributively
scrambled along a sequence for f . The sequentially distributive chaos is said
to be uniform if there exists ε > 0 such that Fxy(ε, {pk}) = 0 for any distinct
x, y ∈ D0 (see [13]).

Definition 2.10. Let S = {0, 1}, Σ = {s = s0s1 · · · | si ∈ S, ∀i ≥ 0},
and define ρ : Σ ×Σ → R by setting, for any s = s0s1 · · · , t = t0t1 · · · ∈ Σ,

ρ(s, t) =

∞∑
i=0

|si − ti|
2i

.
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It is not difficult to check that ρ is a metric on Σ; (Σ, ρ) is compact and
called the one-sided symbolic space (with two symbols).

Lemma 2.11. There is an uncountable subset E in Σ such that for any
distinct points s = s0s1 · · · , t = t0t1 · · · ∈ E, sn = tn for infinitely many n
and sm 6= tm for infinitely many m.

Proof. For a proof, see [8, 21, 22].

Theorem 2.12. Assume that systems (1.1) and (2.1) are uniformly topo-
logically equiconjugate. If system (2.1) is sd-chaotic, then so is (1.1).

Theorem 2.13. Assume that system (1.1) is topologically {hn}∞n=0 con-
jugate to system (2.1) and h−1i (u) = h−1j (u) for all u ∈ Ei ∩ Ej whenever
Ei ∩Ej 6= ∅ for i 6= j, i, j ≥ 0. If system (2.1) is weakly topologically mixing
in E0, then the same is true for (1.1) in D0.

Theorem 2.14. Let S be a subset of D0 ⊂ X, a, b ∈ S with a 6= b
and let pk→ ∞ be a sequence of positive integers. If for any sequence C =

C1C2 · · · with Ck ∈ {B(a, 1/k), B(b, 1/k)}, k = 1, 2, . . ., where B(a, 1/k) =
{x | d(a, x) < 1/k}, there exists xC ∈ Ck such that xCpk ∈ Ck for each k ≥ 1,
then:

(1) System (1.1) is sd-chaotic and the chaos is uniform.
(2) If (X, d) is a compact metric space, then (1.1) is chaotic in the strong

sense of Li–Yorke.

3. Proof of main theorems

Proofs of Theorem 2.12. Suppose that system (2.1) has an uncount-
able set distributively scrambled along a sequence S ⊂ E0. Since h0 is a
homeomorphism, T = h−10 (S) is also uncountable. We will show that T is
distributively scrambled along a sequence for system (1.1). Let x0 and y0
be distinct points in T , {xn}∞n=0 and {yn}∞n=0 be the orbits of (1.1) starting
from x0 and y0, respectively, and un = hn(xn) and vn = hn(yn) for n ≥ 0.
Then u0, v0 ∈ S, u0 6= v0, and {un}∞n=0 and {vn}∞n=0 are the orbits of (2.1)
starting from u0 and v0, respectively. By assumption, there exists a sequence
{pk} of positive integers such that

(3.1) Fu0v0(ε0, {pk}) = lim inf
n→∞

1

n
]{k | ρ(upk,vpk) < ε0, 1 ≤ k ≤ n} = 0

for some ε0 > 0, and

(3.2) F ∗u0v0(δ, {pk}) = lim sup
n→∞

1

n
]{k | ρ(upk,vpk) < δ, 1 ≤ k ≤ n} = 1

for all δ > 0. We will prove

Fx0y0(r, {pk}) = lim inf
n→∞

1

n
]{k | d(xpk,ypk) < r, 1 ≤ k ≤ n} = 0,
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for some r > 0, and

F ∗x0y0(δ, {pk}) = lim sup
n→∞

1

n
]{k | d(xpk,ypk) < δ, 1 ≤ k ≤ n} = 1

for all δ > 0.

Since {h−1n }∞n=0 is uniformly equicontinuous in {En}∞n=0, for any ε > 0
there exists δ1 > 0 such that d(h−1n (u), h−1n (v)) < ε for all n ≥ 0 and
u, v ∈ En with ρ(u, v) < δ1. From (3.2) there exists a subsequence ni → ∞
as i→∞ such that

lim
ni→∞

1

ni
]{k | d(xpk,ypk) < ε, 1 ≤ k ≤ ni} = 1,

F ∗x0y0(ε, {pk}) = lim
n→∞

sup
1

n
]{k | d(xpk,ypk) < ε, 1 ≤ k ≤ n} = 1,

for all ε > 0. Because {hn}∞n=0 is uniformly equicontinuous in {Dn}∞n=0,
there exists a positive r > 0 such that ρ(hn(x), hn(y)) < ε0/2 for all n ≥ 0
and x, y ∈ Dn with d(x, y) < r. Now, we show that

(3.3) Fx0y0(r, {pk}) = lim
n→∞

inf
1

n
]{k | d(xpk,ypk) < r, 1 ≤ k ≤ n} = 0

for some r > 0. If not, there exists {ni}∞i=1 such that

lim
i→∞

1

ni
]{k | d(xpk,ypk) < r, 1 ≤ k ≤ ni} = t > 0;

this yields

lim
i→∞

1

ni
]{k | ρ(upk,vpk) < ε0/2 < ε0, 1 ≤ k ≤ ni} > t > 0,

which contradicts (3.1). So (3.3) holds and consequently, T is distributively
scrambled along a sequence for system (1.1).

Proof of Theorem 2.13. Suppose that system (2.1) is weakly topological
mixing in E0. Let A0

1, A
0
2, B

0
1 and B0

2 be any four nonempty open subsets of
D0. Since h0 is a homeomorphism, U0

1 = h0(A
0
1), U

0
2 = h0(A

0
2), V

0
1 = h0(B

0
1)

and V 0
2 = h0(B

0
2) are also nonempty open subsets of E0. By assumption,

there exists n ≥ 1 such that Un
1 ∩ U0

2 6= ∅, V n
1 ∩ V 0

2 6= ∅, where U i+1
1 =

gi(U
i
1), V

i+1
1 = gi(V

i
1 ), 0 ≤ i ≤ n−1. Hence, there exist u0 ∈ U0

1 and v0 ∈ V 0
1

such that un ∈ Un
1 ∩ U0

2 ⊂ En ∩ E0 and vn ∈ V n
1 ∩ V 0

2 ⊂ En ∩ E0, where
{ui}, {vi} are the orbits of system (2.1) starting from u0 and v0, respectively.
Let xi = h−1i (ui) and yi = h−1i (vi) (0 ≤ i ≤ n). It is clear that x0 ∈ A0

1

and xn ∈ An
1 , y0 ∈ B0

1 and yn ∈ Bn
1 , where Ai+1

1 = fi(A
i
1), B

i+1
1 = fi(B

i
1),

0 ≤ i ≤ n − 1. In addition, xn = h−1n (un) = h−10 (un) ∈ h−10 (U0
2 ) = A0

2 and
yn = h−1n (vn) = h−10 (vn) ∈ h−10 (V 0

2 ) = B0
2 , which implies that xn ∈ An

1 ∩A0
2

and yn ∈ Bn
1 ∩B0

2 . Consequently, An
1 ∩A0

2 6= ∅ and Bn
1 ∩B0

2 6= ∅. Therefore,
system (1.1) is weakly topologically mixing in D0.
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Proof of Theorem 2.14. (1) Let E be an uncountable subset of Σ as
in Lemma 2.11. For each s = s0s1 · · · ∈ E, by hypothesis, we can choose
xs ∈ Σ such that for n! < k ≤ (n+ 1)!, we have

xspk ∈

{
B(a, 1/k) if sn = 0,

B(b, 1/k) if sn = 1.

Put D = {xs | s ∈ E}. Clearly, if s 6= t, then xs 6= xt. Because E is
uncountable, D is uncountable. Let xs, xt ∈ D be any different points, where
s = s0s1 · · · , t = t0t1 · · · ∈ E. By the property of E, there exist sequences
of positive integers ni →∞ and mi →∞ such that sni = tni and smi 6= tmi

for all i.
Firstly, for given δ > 0, we have 1/ni < δ/2 provided that ni is large

enough, and by definition, if ni! < k ≤ (ni + 1)!, then xspk and xtpk lie in the
same ball of diameter less than δ; thus

1

(ni + 1)!
]{k | d(xspk , x

t
pk

) < δ, 1 ≤ k ≤ (ni + 1)!} ≥ (ni + 1)!− ni!
(ni + 1)!

= 1− 1

ni + 1
→ 1 (ni →∞).

That is, F ∗xsxt(δ, {pk}) = 1.
Secondly, let ε = d(a, b)/2. For mi large enough, we have 1/mi <

d(a, b)/4. Then for mi! < k ≤ (mi + 1)!, we have d(xspk , x
t
pk

) > ε. Thus

1

(mi +1)!
]{k | d(xspk , x

t
pk

) < ε, 1 ≤ k ≤ (mi + 1)!} ≤ mi!

(mi +1)!
=

1

mi +1
→ 0

(mi →∞). There exists ε > 0 such that Fxsxt(ε, {pk}) = 0 for any distinct
xs, xt ∈ D. So system (1.1) is sd-chaotic and the chaos is uniform.

(2) Let xs, xt ∈D be different, where s = s0s1 · · · si · · · , t = t0t1 · · · ti · · ·
∈ E. By the property of E, there exist sequences of positive integers
mi, ni → ∞ such that smi 6= tmi and sni = tni for all i, and for i so
large that 1/i < d(a, b)/4 = δ, we have d(xsmi

, xtmi
) > δ. Thus

lim
i→∞

d(xsmi
, xtmi

) ≥ δ.

This shows
lim sup
n→∞

d(xsn, x
t
n) ≥ δ.

At the same time, for ni large enough, xsni
and xtni

lie in the same ball of
diameter less than 2/ni. Thus d(xsni

, xtni
) < 2/ni, so

lim
i→∞

d(xsni
, xtni

) = 0.

This shows
lim inf
n→∞

d(xsn, x
t
n) = 0.
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4. Example. It is well known that a finite-dimensional linear time-
invariant system cannot be chaotic. But an infinite-dimensional linear time-
invariant system may be chaotic [1, 4]. This subsection shows that a finite-
dimensional LTVDS can be sd-chaotic, but cannot be DC1 or DC2. This
means that for a finite-dimensional LTVDS, DC2 and sd-chaotic are not
equivalent, and shows from another angle that finite-dimensional LTVDSs
can have complex dynamical behaviors, but the complexity is not too strong.

We first consider the following simple one-dimensional LTVDS:

(4.1) xn+1 = anxn, n ≥ 0,

where an is a real number.

Example 4.1. Consider the above system with a2k = 22k and a2k+1 =
2−(2k+1), k ≥ 0. For any x0 ∈ R, one has x2k−1 = 2k−1x0 and x2k =
2−kx0, k ≥ 1, which implies that for any two different x0, y0 ∈ [0, 1],

d(x2k−1, y2k−1) = 2k−1d(x0, y0), d(x2k, y2k) = 2−kd(x0, y0).

Firstly, for given δ > 0, we have d(x0, y0)/ni < δ/2 provided that ni is large
enough. Let {pn} ⊂ N be an increasing sequence defined as follows:

ni! < k ≤ (ni + 1)! ⇒ pk = 2k,

(ni + 1)! < k ≤ (ni + 2)! ⇒ pk = 2k − 1,

(ni + 2)! < k ≤ (ni + 3)! ⇒ pk = 2k,

and so forth: if (ni + j− 1)! < k ≤ (ni + j)!, and j is even, then pk = 2k− 1;
when j is odd, pk = 2k. Thus we have

1

(ni + j)!
]{k | d(xpk , ypk) < δ, 1 ≤ k ≤ (ni + j)!}

≥ (ni + j)!− (ni + j − 1)!

(ni + j)!
= 1− 1

ni + j
→ 1, ni →∞,

when j is odd, that is,

(4.2) F ∗x0y0(δ, {pk}) = 1.

And

1

(ni + j)!
]{k | d(xpk , ypk) < ε, 1 < k < (ni + j)!}

≤ (ni + j − 1)!

(ni + j)!
=

1

ni + j
→ 0, ni →∞,

when j is even, that is,

(4.3) Fx0y0(ε, {pk}) = 0.

Combining (4.2) with (4.3), we see that x0, y0 are sd-chaotic, and so f is
sd-chaotic.



56 L. D. Wang et al.

In the following, we show that

xn+1 = anxn, n ≥ 1,

where a2k = 22k and a2k+1 = 2−(2k+1) (k ≥ 0), is neither DC1 nor DC2.

Let x0, y0 ∈ [0, 1], d(x2k−1, y2k−1) = 2k−1d(x0, y0), and d(x2k, y2k) =
2−kd(x0, y0), k ≥ 1. Thus, for any real δ > 0, there exists n0 ∈ N so that
2−kd(x0, y0) < δ, 2k−1d(x0, y0) ≥ δ, when k ≥ n0. Hence

1

n
· n− n0

2
≤ 1

n
]{i | d(xi, yi) < δ, 1 ≤ i ≤ n} ≤ 1

n
· n+ 1

2
,

lim
n→∞

1

n
]{i | d(xi, yi) < δ, 1 ≤ i ≤ n} =

1

2
.

This yields

F ∗x0,y0(δ, {N}) = Fx0,y0(δ, {N}) for all δ > 0.

So system (4.1) is neither DC1 nor DC2. This shows that being sd-chaotic
and DC2 are not equivalent.
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